ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.313
Committed: Sat Sep 4 21:21:14 2021 UTC (2 years, 8 months ago) by root
Branch: MAIN
Changes since 1.312: +11 -9 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.312 our $VERSION = 4.76;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.285 mmap munmap mremap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.302 IO::AIO::reinit
284    
285 root 1.307 $nfd = IO::AIO::get_fdlimit
286     IO::AIO::min_fdlimit $nfd
287 root 1.175
288     IO::AIO::sendfile $ofh, $ifh, $offset, $count
289     IO::AIO::fadvise $fh, $offset, $len, $advice
290 root 1.302
291 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
292     IO::AIO::munmap $scalar
293 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
294 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
295     IO::AIO::mprotect $scalar, $offset, $length, $protect
296 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
297 root 1.175 IO::AIO::munlockall
298    
299 root 1.302 # stat extensions
300     $counter = IO::AIO::st_gen
301     $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
302     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
303     $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
304     $seconds = IO::AIO::st_btimesec
305     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
306    
307     # very much unportable syscalls
308 root 1.305 IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_len, $flags
309 root 1.302 IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
310     IO::AIO::tee $r_fh, $w_fh, $length, $flags
311     $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
312     ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
313     $fh = IO::AIO::memfd_create $pathname[, $flags]
314     $fh = IO::AIO::eventfd [$initval, [$flags]]
315     $fh = IO::AIO::timerfd_create $clockid[, $flags]
316     ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
317     ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
318    
319 root 1.219 =head2 API NOTES
320 root 1.1
321 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
322     with the same name (sans C<aio_>). The arguments are similar or identical,
323 root 1.14 and they all accept an additional (and optional) C<$callback> argument
324 root 1.212 which must be a code reference. This code reference will be called after
325     the syscall has been executed in an asynchronous fashion. The results
326     of the request will be passed as arguments to the callback (and, if an
327     error occured, in C<$!>) - for most requests the syscall return code (e.g.
328     most syscalls return C<-1> on error, unlike perl, which usually delivers
329     "false").
330    
331     Some requests (such as C<aio_readdir>) pass the actual results and
332     communicate failures by passing C<undef>.
333 root 1.1
334 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
335     internally until the request has finished.
336 root 1.1
337 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
338     further manipulation of those requests while they are in-flight.
339 root 1.52
340 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
341     reason for this is that at the time the request is being executed, the
342 root 1.212 current working directory could have changed. Alternatively, you can
343     make sure that you never change the current working directory anywhere
344     in the program and then use relative paths. You can also take advantage
345     of IO::AIOs working directory abstraction, that lets you specify paths
346     relative to some previously-opened "working directory object" - see the
347     description of the C<IO::AIO::WD> class later in this document.
348 root 1.28
349 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
350     in filenames you got from outside (command line, readdir etc.) without
351 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
352     module and encode your pathnames to the locale (or other) encoding in
353     effect in the user environment, d) use Glib::filename_from_unicode on
354     unicode filenames or e) use something else to ensure your scalar has the
355     correct contents.
356 root 1.87
357     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
358 root 1.136 handles correctly whether it is set or not.
359 root 1.1
360 root 1.219 =head2 AIO REQUEST FUNCTIONS
361    
362 root 1.5 =over 4
363 root 1.1
364 root 1.80 =item $prev_pri = aioreq_pri [$pri]
365 root 1.68
366 root 1.80 Returns the priority value that would be used for the next request and, if
367     C<$pri> is given, sets the priority for the next aio request.
368 root 1.68
369 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
370     and C<4>, respectively. Requests with higher priority will be serviced
371     first.
372    
373     The priority will be reset to C<0> after each call to one of the C<aio_*>
374 root 1.68 functions.
375    
376 root 1.69 Example: open a file with low priority, then read something from it with
377     higher priority so the read request is serviced before other low priority
378     open requests (potentially spamming the cache):
379    
380     aioreq_pri -3;
381     aio_open ..., sub {
382     return unless $_[0];
383    
384     aioreq_pri -2;
385     aio_read $_[0], ..., sub {
386     ...
387     };
388     };
389    
390 root 1.106
391 root 1.69 =item aioreq_nice $pri_adjust
392    
393     Similar to C<aioreq_pri>, but subtracts the given value from the current
394 root 1.87 priority, so the effect is cumulative.
395 root 1.69
396 root 1.106
397 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
398 root 1.1
399 root 1.2 Asynchronously open or create a file and call the callback with a newly
400 root 1.233 created filehandle for the file (or C<undef> in case of an error).
401 root 1.1
402     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
403     for an explanation.
404    
405 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
406     list. They are the same as used by C<sysopen>.
407    
408     Likewise, C<$mode> specifies the mode of the newly created file, if it
409     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
410     except that it is mandatory (i.e. use C<0> if you don't create new files,
411 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
412     by the umask in effect then the request is being executed, so better never
413     change the umask.
414 root 1.1
415     Example:
416    
417 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
418 root 1.2 if ($_[0]) {
419     print "open successful, fh is $_[0]\n";
420 root 1.1 ...
421     } else {
422     die "open failed: $!\n";
423     }
424     };
425    
426 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
427     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
428     following POSIX and non-POSIX constants are available (missing ones on
429     your system are, as usual, C<0>):
430    
431     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
432     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
433 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
434 root 1.194
435 root 1.106
436 root 1.40 =item aio_close $fh, $callback->($status)
437 root 1.1
438 root 1.2 Asynchronously close a file and call the callback with the result
439 root 1.116 code.
440    
441 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
442 root 1.121 closing the file descriptor associated with the filehandle itself.
443 root 1.117
444 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
445     use dup2 to overwrite the file descriptor with the write-end of a pipe
446     (the pipe fd will be created on demand and will be cached).
447 root 1.117
448 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
449     free for reuse until the perl filehandle is closed.
450 root 1.117
451     =cut
452    
453 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
454    
455 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
456 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
457     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
458     C<IO::AIO::SEEK_END>).
459    
460     The resulting absolute offset will be passed to the callback, or C<-1> in
461     case of an error.
462    
463     In theory, the C<$whence> constants could be different than the
464     corresponding values from L<Fcntl>, but perl guarantees they are the same,
465     so don't panic.
466    
467 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
468     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
469     could be found. No guarantees about suitability for use in C<aio_seek> or
470     Perl's C<sysseek> can be made though, although I would naively assume they
471     "just work".
472    
473 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
474 root 1.1
475 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
476 root 1.1
477 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
478 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
479     calls the callback with the actual number of bytes transferred (or -1 on
480 root 1.145 error, just like the syscall).
481 root 1.109
482 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
483     offset plus the actual number of bytes read.
484    
485 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
486     be used (and updated), otherwise the file descriptor offset will not be
487     changed by these calls.
488 root 1.109
489 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
490     C<$data>.
491 root 1.109
492     If C<$dataoffset> is less than zero, it will be counted from the end of
493     C<$data>.
494 root 1.1
495 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
496 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
497     the necessary/optional hardware is installed).
498 root 1.31
499 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
500 root 1.1 offset C<0> within the scalar:
501    
502     aio_read $fh, 7, 15, $buffer, 0, sub {
503 root 1.9 $_[0] > 0 or die "read error: $!";
504     print "read $_[0] bytes: <$buffer>\n";
505 root 1.1 };
506    
507 root 1.106
508 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
509 root 1.35
510     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
511     reading at byte offset C<$in_offset>, and starts writing at the current
512     file offset of C<$out_fh>. Because of that, it is not safe to issue more
513     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
514 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
515     move or use the file offset of C<$in_fh>.
516 root 1.35
517 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
518 root 1.196 are written, and there is no way to find out how many more bytes have been
519     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
520     number of bytes written to C<$out_fh>. Only if the result value equals
521     C<$length> one can assume that C<$length> bytes have been read.
522 root 1.185
523     Unlike with other C<aio_> functions, it makes a lot of sense to use
524     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
525     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
526 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
527     into a trap where C<aio_sendfile> reads some data with readahead, then
528     fails to write all data, and when the socket is ready the next time, the
529     data in the cache is already lost, forcing C<aio_sendfile> to again hit
530     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
531     resource usage.
532    
533     This call tries to make use of a native C<sendfile>-like syscall to
534     provide zero-copy operation. For this to work, C<$out_fh> should refer to
535     a socket, and C<$in_fh> should refer to an mmap'able file.
536 root 1.35
537 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
538 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
539     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
540     type of filehandle regardless of the limitations of the operating system.
541    
542     As native sendfile syscalls (as practically any non-POSIX interface hacked
543     together in a hurry to improve benchmark numbers) tend to be rather buggy
544     on many systems, this implementation tries to work around some known bugs
545     in Linux and FreeBSD kernels (probably others, too), but that might fail,
546     so you really really should check the return value of C<aio_sendfile> -
547 root 1.262 fewer bytes than expected might have been transferred.
548 root 1.35
549 root 1.106
550 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
551 root 1.1
552 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
553 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
554     argument specifies the starting point from which data is to be read and
555     C<$length> specifies the number of bytes to be read. I/O is performed in
556     whole pages, so that offset is effectively rounded down to a page boundary
557     and bytes are read up to the next page boundary greater than or equal to
558 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
559 root 1.1 file. The current file offset of the file is left unchanged.
560    
561 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
562     be emulated by simply reading the data, which would have a similar effect.
563 root 1.26
564 root 1.106
565 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
566 root 1.1
567 root 1.40 =item aio_lstat $fh, $callback->($status)
568 root 1.1
569 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
570     callback will be called after the stat and the results will be available
571     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
572     and C<-T>).
573 root 1.1
574     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
575     for an explanation.
576    
577     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
578     error when stat'ing a large file, the results will be silently truncated
579     unless perl itself is compiled with large file support.
580    
581 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
582     following constants and functions (if not implemented, the constants will
583     be C<0> and the functions will either C<croak> or fall back on traditional
584     behaviour).
585    
586     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
587     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
588     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
589    
590 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
591     ACCESS>.
592    
593 root 1.1 Example: Print the length of F</etc/passwd>:
594    
595     aio_stat "/etc/passwd", sub {
596     $_[0] and die "stat failed: $!";
597     print "size is ", -s _, "\n";
598     };
599    
600 root 1.106
601 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
602 root 1.172
603     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
604     whether a file handle or path was passed.
605    
606     On success, the callback is passed a hash reference with the following
607     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
608     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
609     is passed.
610    
611     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
612     C<ST_NOSUID>.
613    
614     The following non-POSIX IO::AIO::ST_* flag masks are defined to
615     their correct value when available, or to C<0> on systems that do
616     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
617     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
618     C<ST_NODIRATIME> and C<ST_RELATIME>.
619    
620     Example: stat C</wd> and dump out the data if successful.
621    
622     aio_statvfs "/wd", sub {
623     my $f = $_[0]
624     or die "statvfs: $!";
625    
626     use Data::Dumper;
627     say Dumper $f;
628     };
629    
630     # result:
631     {
632     bsize => 1024,
633     bfree => 4333064312,
634     blocks => 10253828096,
635     files => 2050765568,
636     flag => 4096,
637     favail => 2042092649,
638     bavail => 4333064312,
639     ffree => 2042092649,
640     namemax => 255,
641     frsize => 1024,
642     fsid => 1810
643     }
644    
645 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
646    
647     Works like perl's C<utime> function (including the special case of $atime
648     and $mtime being undef). Fractional times are supported if the underlying
649     syscalls support them.
650    
651 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
652     otherwise utime(2). If called on a file descriptor, uses futimens(2)
653     or futimes(2) if available, otherwise returns ENOSYS, so this is not
654     portable.
655 root 1.106
656     Examples:
657    
658 root 1.107 # set atime and mtime to current time (basically touch(1)):
659 root 1.106 aio_utime "path", undef, undef;
660     # set atime to current time and mtime to beginning of the epoch:
661     aio_utime "path", time, undef; # undef==0
662    
663    
664     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
665    
666     Works like perl's C<chown> function, except that C<undef> for either $uid
667     or $gid is being interpreted as "do not change" (but -1 can also be used).
668    
669     Examples:
670    
671     # same as "chown root path" in the shell:
672     aio_chown "path", 0, -1;
673     # same as above:
674     aio_chown "path", 0, undef;
675    
676    
677 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
678    
679     Works like truncate(2) or ftruncate(2).
680    
681    
682 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
683    
684 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
685     linux C<fallocate> documentation for details.
686 root 1.229
687 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
688     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
689     to deallocate a file range.
690    
691     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
692 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
693     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
694     to unshare shared blocks (see your L<fallocate(2)> manpage).
695 root 1.229
696     The file system block size used by C<fallocate> is presumably the
697 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
698     can dictate other limitations.
699 root 1.229
700     If C<fallocate> isn't available or cannot be emulated (currently no
701     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
702    
703    
704 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
705    
706     Works like perl's C<chmod> function.
707    
708    
709 root 1.40 =item aio_unlink $pathname, $callback->($status)
710 root 1.1
711     Asynchronously unlink (delete) a file and call the callback with the
712     result code.
713    
714 root 1.106
715 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
716 root 1.82
717 root 1.86 [EXPERIMENTAL]
718    
719 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
720    
721 root 1.86 The only (POSIX-) portable way of calling this function is:
722 root 1.83
723 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
724 root 1.82
725 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
726     and functions.
727 root 1.106
728 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
729    
730     Asynchronously create a new link to the existing object at C<$srcpath> at
731     the path C<$dstpath> and call the callback with the result code.
732    
733 root 1.106
734 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
735    
736     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
737     the path C<$dstpath> and call the callback with the result code.
738    
739 root 1.106
740 root 1.209 =item aio_readlink $pathname, $callback->($link)
741 root 1.90
742     Asynchronously read the symlink specified by C<$path> and pass it to
743     the callback. If an error occurs, nothing or undef gets passed to the
744     callback.
745    
746 root 1.106
747 root 1.209 =item aio_realpath $pathname, $callback->($path)
748 root 1.201
749     Asynchronously make the path absolute and resolve any symlinks in
750 root 1.239 C<$path>. The resulting path only consists of directories (same as
751 root 1.202 L<Cwd::realpath>).
752 root 1.201
753     This request can be used to get the absolute path of the current working
754     directory by passing it a path of F<.> (a single dot).
755    
756    
757 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
758    
759     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
760     rename(2) and call the callback with the result code.
761    
762 root 1.241 On systems that support the AIO::WD working directory abstraction
763     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
764     of failing, C<rename> is called on the absolute path of C<$wd>.
765    
766 root 1.106
767 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
768    
769     Basically a version of C<aio_rename> with an additional C<$flags>
770     argument. Calling this with C<$flags=0> is the same as calling
771     C<aio_rename>.
772    
773     Non-zero flags are currently only supported on GNU/Linux systems that
774     support renameat2. Other systems fail with C<ENOSYS> in this case.
775    
776     The following constants are available (missing ones are, as usual C<0>),
777     see renameat2(2) for details:
778    
779     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
780     and C<IO::AIO::RENAME_WHITEOUT>.
781    
782    
783 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
784    
785     Asynchronously mkdir (create) a directory and call the callback with
786     the result code. C<$mode> will be modified by the umask at the time the
787     request is executed, so do not change your umask.
788    
789 root 1.106
790 root 1.40 =item aio_rmdir $pathname, $callback->($status)
791 root 1.27
792     Asynchronously rmdir (delete) a directory and call the callback with the
793     result code.
794    
795 root 1.241 On systems that support the AIO::WD working directory abstraction
796     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
797     C<rmdir> is called on the absolute path of C<$wd>.
798    
799 root 1.106
800 root 1.46 =item aio_readdir $pathname, $callback->($entries)
801 root 1.37
802     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
803     directory (i.e. opendir + readdir + closedir). The entries will not be
804     sorted, and will B<NOT> include the C<.> and C<..> entries.
805    
806 root 1.148 The callback is passed a single argument which is either C<undef> or an
807     array-ref with the filenames.
808    
809    
810     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
811    
812 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
813     tune behaviour and output format. In case of an error, C<$entries> will be
814 root 1.148 C<undef>.
815    
816     The flags are a combination of the following constants, ORed together (the
817     flags will also be passed to the callback, possibly modified):
818    
819     =over 4
820    
821 root 1.150 =item IO::AIO::READDIR_DENTS
822 root 1.148
823 root 1.284 Normally the callback gets an arrayref consisting of names only (as
824     with C<aio_readdir>). If this flag is set, then the callback gets an
825     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
826     single directory entry in more detail:
827 root 1.148
828     C<$name> is the name of the entry.
829    
830 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
831 root 1.148
832 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
833     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
834     C<IO::AIO::DT_WHT>.
835 root 1.148
836 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
837     to know, you have to run stat yourself. Also, for speed/memory reasons,
838     the C<$type> scalars are read-only: you must not modify them.
839 root 1.148
840 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
841 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
842     systems that do not deliver the inode information.
843 root 1.150
844     =item IO::AIO::READDIR_DIRS_FIRST
845 root 1.148
846     When this flag is set, then the names will be returned in an order where
847 root 1.193 likely directories come first, in optimal stat order. This is useful when
848     you need to quickly find directories, or you want to find all directories
849     while avoiding to stat() each entry.
850 root 1.148
851 root 1.149 If the system returns type information in readdir, then this is used
852 root 1.193 to find directories directly. Otherwise, likely directories are names
853     beginning with ".", or otherwise names with no dots, of which names with
854 root 1.149 short names are tried first.
855    
856 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
857 root 1.148
858     When this flag is set, then the names will be returned in an order
859 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
860     all files in the given directory, then the returned order will likely be
861     faster.
862    
863     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
864     then the likely dirs come first, resulting in a less optimal stat order
865     for stat'ing all entries, but likely a more optimal order for finding
866     subdirectories.
867 root 1.148
868 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
869 root 1.148
870     This flag should not be set when calling C<aio_readdirx>. Instead, it
871     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
872 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
873 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
874    
875     =back
876 root 1.37
877 root 1.106
878 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
879    
880     Opens, reads and closes the given file. The data is put into C<$data>,
881     which is resized as required.
882    
883     If C<$offset> is negative, then it is counted from the end of the file.
884    
885     If C<$length> is zero, then the remaining length of the file is
886     used. Also, in this case, the same limitations to modifying C<$data> apply
887     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
888     with C<substr>. If the size of the file is known, specifying a non-zero
889     C<$length> results in a performance advantage.
890    
891     This request is similar to the older C<aio_load> request, but since it is
892     a single request, it might be more efficient to use.
893    
894     Example: load F</etc/passwd> into C<$passwd>.
895    
896     my $passwd;
897     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
898     $_[0] >= 0
899     or die "/etc/passwd: $!\n";
900    
901     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
902     print $passwd;
903     };
904     IO::AIO::flush;
905    
906    
907 root 1.209 =item aio_load $pathname, $data, $callback->($status)
908 root 1.98
909     This is a composite request that tries to fully load the given file into
910     memory. Status is the same as with aio_read.
911    
912 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
913    
914 root 1.98 =cut
915    
916     sub aio_load($$;$) {
917 root 1.123 my ($path, undef, $cb) = @_;
918     my $data = \$_[1];
919 root 1.98
920 root 1.123 my $pri = aioreq_pri;
921     my $grp = aio_group $cb;
922    
923     aioreq_pri $pri;
924     add $grp aio_open $path, O_RDONLY, 0, sub {
925     my $fh = shift
926     or return $grp->result (-1);
927 root 1.98
928     aioreq_pri $pri;
929 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
930     $grp->result ($_[0]);
931 root 1.98 };
932 root 1.123 };
933 root 1.98
934 root 1.123 $grp
935 root 1.98 }
936    
937 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
938    
939     Try to copy the I<file> (directories not supported as either source or
940     destination) from C<$srcpath> to C<$dstpath> and call the callback with
941 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
942 root 1.82
943 root 1.275 Existing destination files will be truncated.
944    
945 root 1.134 This is a composite request that creates the destination file with
946 root 1.82 mode 0200 and copies the contents of the source file into it using
947     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
948     uid/gid, in that order.
949    
950     If an error occurs, the partial destination file will be unlinked, if
951     possible, except when setting atime, mtime, access mode and uid/gid, where
952     errors are being ignored.
953    
954     =cut
955    
956     sub aio_copy($$;$) {
957 root 1.123 my ($src, $dst, $cb) = @_;
958 root 1.82
959 root 1.123 my $pri = aioreq_pri;
960     my $grp = aio_group $cb;
961 root 1.82
962 root 1.123 aioreq_pri $pri;
963     add $grp aio_open $src, O_RDONLY, 0, sub {
964     if (my $src_fh = $_[0]) {
965 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
966 root 1.95
967 root 1.123 aioreq_pri $pri;
968     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
969     if (my $dst_fh = $_[0]) {
970     aioreq_pri $pri;
971     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
972     if ($_[0] == $stat[7]) {
973     $grp->result (0);
974     close $src_fh;
975    
976 root 1.147 my $ch = sub {
977     aioreq_pri $pri;
978     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
979     aioreq_pri $pri;
980     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
981     aioreq_pri $pri;
982     add $grp aio_close $dst_fh;
983     }
984     };
985     };
986 root 1.123
987     aioreq_pri $pri;
988 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
989     if ($_[0] < 0 && $! == ENOSYS) {
990     aioreq_pri $pri;
991     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
992     } else {
993     $ch->();
994     }
995     };
996 root 1.123 } else {
997     $grp->result (-1);
998     close $src_fh;
999     close $dst_fh;
1000    
1001     aioreq $pri;
1002     add $grp aio_unlink $dst;
1003     }
1004     };
1005     } else {
1006     $grp->result (-1);
1007     }
1008     },
1009 root 1.82
1010 root 1.123 } else {
1011     $grp->result (-1);
1012     }
1013     };
1014 root 1.82
1015 root 1.123 $grp
1016 root 1.82 }
1017    
1018     =item aio_move $srcpath, $dstpath, $callback->($status)
1019    
1020     Try to move the I<file> (directories not supported as either source or
1021     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1022 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1023 root 1.82
1024 root 1.137 This is a composite request that tries to rename(2) the file first; if
1025     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1026     that is successful, unlinks the C<$srcpath>.
1027 root 1.82
1028     =cut
1029    
1030     sub aio_move($$;$) {
1031 root 1.123 my ($src, $dst, $cb) = @_;
1032 root 1.82
1033 root 1.123 my $pri = aioreq_pri;
1034     my $grp = aio_group $cb;
1035 root 1.82
1036 root 1.123 aioreq_pri $pri;
1037     add $grp aio_rename $src, $dst, sub {
1038     if ($_[0] && $! == EXDEV) {
1039     aioreq_pri $pri;
1040     add $grp aio_copy $src, $dst, sub {
1041     $grp->result ($_[0]);
1042 root 1.95
1043 root 1.196 unless ($_[0]) {
1044 root 1.123 aioreq_pri $pri;
1045     add $grp aio_unlink $src;
1046     }
1047     };
1048     } else {
1049     $grp->result ($_[0]);
1050     }
1051     };
1052 root 1.82
1053 root 1.123 $grp
1054 root 1.82 }
1055    
1056 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1057 root 1.40
1058 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1059 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1060     names, directories you can recurse into (directories), and ones you cannot
1061     recurse into (everything else, including symlinks to directories).
1062 root 1.52
1063 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1064 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1065     this function generates. If it is C<< <= 0 >>, then a suitable default
1066 root 1.81 will be chosen (currently 4).
1067 root 1.40
1068     On error, the callback is called without arguments, otherwise it receives
1069     two array-refs with path-relative entry names.
1070    
1071     Example:
1072    
1073     aio_scandir $dir, 0, sub {
1074     my ($dirs, $nondirs) = @_;
1075     print "real directories: @$dirs\n";
1076     print "everything else: @$nondirs\n";
1077     };
1078    
1079     Implementation notes.
1080    
1081     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1082    
1083 root 1.149 If readdir returns file type information, then this is used directly to
1084     find directories.
1085    
1086     Otherwise, after reading the directory, the modification time, size etc.
1087     of the directory before and after the readdir is checked, and if they
1088     match (and isn't the current time), the link count will be used to decide
1089     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1090     number of subdirectories will be assumed.
1091    
1092     Then entries will be sorted into likely directories a non-initial dot
1093     currently) and likely non-directories (see C<aio_readdirx>). Then every
1094     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1095     in order of their inode numbers. If that succeeds, it assumes that the
1096     entry is a directory or a symlink to directory (which will be checked
1097 root 1.207 separately). This is often faster than stat'ing the entry itself because
1098 root 1.52 filesystems might detect the type of the entry without reading the inode
1099 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1100     the filetype information on readdir.
1101 root 1.52
1102     If the known number of directories (link count - 2) has been reached, the
1103     rest of the entries is assumed to be non-directories.
1104    
1105     This only works with certainty on POSIX (= UNIX) filesystems, which
1106     fortunately are the vast majority of filesystems around.
1107    
1108     It will also likely work on non-POSIX filesystems with reduced efficiency
1109     as those tend to return 0 or 1 as link counts, which disables the
1110     directory counting heuristic.
1111 root 1.40
1112     =cut
1113    
1114 root 1.100 sub aio_scandir($$;$) {
1115 root 1.123 my ($path, $maxreq, $cb) = @_;
1116    
1117     my $pri = aioreq_pri;
1118 root 1.40
1119 root 1.123 my $grp = aio_group $cb;
1120 root 1.80
1121 root 1.123 $maxreq = 4 if $maxreq <= 0;
1122 root 1.55
1123 root 1.210 # get a wd object
1124 root 1.123 aioreq_pri $pri;
1125 root 1.210 add $grp aio_wd $path, sub {
1126 root 1.212 $_[0]
1127     or return $grp->result ();
1128    
1129 root 1.210 my $wd = [shift, "."];
1130 root 1.40
1131 root 1.210 # stat once
1132 root 1.80 aioreq_pri $pri;
1133 root 1.210 add $grp aio_stat $wd, sub {
1134     return $grp->result () if $_[0];
1135     my $now = time;
1136     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1137 root 1.299 my $rdxflags = READDIR_DIRS_FIRST;
1138    
1139     if ((stat _)[3] < 2) {
1140     # at least one non-POSIX filesystem exists
1141     # that returns useful DT_type values: btrfs,
1142     # so optimise for this here by requesting dents
1143     $rdxflags |= READDIR_DENTS;
1144     }
1145 root 1.40
1146 root 1.210 # read the directory entries
1147 root 1.80 aioreq_pri $pri;
1148 root 1.299 add $grp aio_readdirx $wd, $rdxflags, sub {
1149     my ($entries, $flags) = @_
1150 root 1.210 or return $grp->result ();
1151    
1152 root 1.299 if ($rdxflags & READDIR_DENTS) {
1153     # if we requested type values, see if we can use them directly.
1154    
1155     # if there were any DT_UNKNOWN entries then we assume we
1156     # don't know. alternatively, we could assume that if we get
1157     # one DT_DIR, then all directories are indeed marked with
1158     # DT_DIR, but this seems not required for btrfs, and this
1159     # is basically the "btrfs can't get it's act together" code
1160     # branch.
1161     unless ($flags & READDIR_FOUND_UNKNOWN) {
1162     # now we have valid DT_ information for all entries,
1163     # so use it as an optimisation without further stat's.
1164     # they must also all be at the beginning of @$entries
1165     # by now.
1166    
1167     my $dirs;
1168    
1169     if (@$entries) {
1170     for (0 .. $#$entries) {
1171     if ($entries->[$_][1] != DT_DIR) {
1172     # splice out directories
1173     $dirs = [splice @$entries, 0, $_];
1174     last;
1175     }
1176     }
1177    
1178     # if we didn't find any non-dir, then all entries are dirs
1179     unless ($dirs) {
1180     ($dirs, $entries) = ($entries, []);
1181     }
1182     } else {
1183     # directory is empty, so there are no sbdirs
1184     $dirs = [];
1185     }
1186    
1187     # either splice'd the directories out or the dir was empty.
1188     # convert dents to filenames
1189     $_ = $_->[0] for @$dirs;
1190     $_ = $_->[0] for @$entries;
1191    
1192     return $grp->result ($dirs, $entries);
1193     }
1194    
1195     # cannot use, so return to our old ways
1196     # by pretending we only scanned for names.
1197     $_ = $_->[0] for @$entries;
1198     }
1199    
1200 root 1.210 # stat the dir another time
1201     aioreq_pri $pri;
1202     add $grp aio_stat $wd, sub {
1203     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1204 root 1.95
1205 root 1.210 my $ndirs;
1206 root 1.95
1207 root 1.210 # take the slow route if anything looks fishy
1208     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1209     $ndirs = -1;
1210     } else {
1211     # if nlink == 2, we are finished
1212     # for non-posix-fs's, we rely on nlink < 2
1213     $ndirs = (stat _)[3] - 2
1214     or return $grp->result ([], $entries);
1215     }
1216 root 1.123
1217 root 1.210 my (@dirs, @nondirs);
1218 root 1.40
1219 root 1.210 my $statgrp = add $grp aio_group sub {
1220     $grp->result (\@dirs, \@nondirs);
1221     };
1222 root 1.40
1223 root 1.210 limit $statgrp $maxreq;
1224     feed $statgrp sub {
1225     return unless @$entries;
1226     my $entry = shift @$entries;
1227    
1228     aioreq_pri $pri;
1229     $wd->[1] = "$entry/.";
1230     add $statgrp aio_stat $wd, sub {
1231     if ($_[0] < 0) {
1232     push @nondirs, $entry;
1233     } else {
1234     # need to check for real directory
1235     aioreq_pri $pri;
1236     $wd->[1] = $entry;
1237     add $statgrp aio_lstat $wd, sub {
1238     if (-d _) {
1239     push @dirs, $entry;
1240    
1241     unless (--$ndirs) {
1242     push @nondirs, @$entries;
1243     feed $statgrp;
1244     }
1245     } else {
1246     push @nondirs, $entry;
1247 root 1.74 }
1248 root 1.40 }
1249     }
1250 root 1.210 };
1251 root 1.74 };
1252 root 1.40 };
1253     };
1254     };
1255 root 1.123 };
1256 root 1.55
1257 root 1.123 $grp
1258 root 1.40 }
1259    
1260 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1261 root 1.99
1262 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1263 root 1.239 status of the final C<rmdir> only. This is a composite request that
1264 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1265     everything else.
1266 root 1.99
1267     =cut
1268    
1269     sub aio_rmtree;
1270 root 1.100 sub aio_rmtree($;$) {
1271 root 1.123 my ($path, $cb) = @_;
1272 root 1.99
1273 root 1.123 my $pri = aioreq_pri;
1274     my $grp = aio_group $cb;
1275 root 1.99
1276 root 1.123 aioreq_pri $pri;
1277     add $grp aio_scandir $path, 0, sub {
1278     my ($dirs, $nondirs) = @_;
1279 root 1.99
1280 root 1.123 my $dirgrp = aio_group sub {
1281     add $grp aio_rmdir $path, sub {
1282     $grp->result ($_[0]);
1283 root 1.99 };
1284 root 1.123 };
1285 root 1.99
1286 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1287     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1288 root 1.99
1289 root 1.123 add $grp $dirgrp;
1290     };
1291 root 1.99
1292 root 1.123 $grp
1293 root 1.99 }
1294    
1295 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1296    
1297     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1298    
1299     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1300     they execute asynchronously and pass the return value to the callback.
1301    
1302     Both calls can be used for a lot of things, some of which make more sense
1303     to run asynchronously in their own thread, while some others make less
1304     sense. For example, calls that block waiting for external events, such
1305     as locking, will also lock down an I/O thread while it is waiting, which
1306     can deadlock the whole I/O system. At the same time, there might be no
1307     alternative to using a thread to wait.
1308    
1309     So in general, you should only use these calls for things that do
1310     (filesystem) I/O, not for things that wait for other events (network,
1311     other processes), although if you are careful and know what you are doing,
1312     you still can.
1313    
1314 root 1.303 The following constants are available and can be used for normal C<ioctl>
1315     and C<fcntl> as well (missing ones are, as usual C<0>):
1316 root 1.264
1317 root 1.271 C<F_DUPFD_CLOEXEC>,
1318    
1319     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1320    
1321 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1322    
1323 root 1.303 C<F_ADD_SEALS>, C<F_GET_SEALS>, C<F_SEAL_SEAL>, C<F_SEAL_SHRINK>, C<F_SEAL_GROW> and
1324     C<F_SEAL_WRITE>.
1325    
1326 root 1.264 C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1327     C<FS_IOC_FIEMAP>.
1328    
1329     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1330     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1331    
1332     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1333     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1334     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1335     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1336     C<FS_FL_USER_MODIFIABLE>.
1337    
1338     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1339     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1340     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1341     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1342    
1343 root 1.119 =item aio_sync $callback->($status)
1344    
1345     Asynchronously call sync and call the callback when finished.
1346    
1347 root 1.40 =item aio_fsync $fh, $callback->($status)
1348 root 1.1
1349     Asynchronously call fsync on the given filehandle and call the callback
1350     with the fsync result code.
1351    
1352 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1353 root 1.1
1354     Asynchronously call fdatasync on the given filehandle and call the
1355 root 1.26 callback with the fdatasync result code.
1356    
1357     If this call isn't available because your OS lacks it or it couldn't be
1358     detected, it will be emulated by calling C<fsync> instead.
1359 root 1.1
1360 root 1.206 =item aio_syncfs $fh, $callback->($status)
1361    
1362     Asynchronously call the syncfs syscall to sync the filesystem associated
1363     to the given filehandle and call the callback with the syncfs result
1364     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1365     errno to C<ENOSYS> nevertheless.
1366    
1367 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1368    
1369     Sync the data portion of the file specified by C<$offset> and C<$length>
1370     to disk (but NOT the metadata), by calling the Linux-specific
1371     sync_file_range call. If sync_file_range is not available or it returns
1372     ENOSYS, then fdatasync or fsync is being substituted.
1373    
1374     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1375     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1376     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1377     manpage for details.
1378    
1379 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1380 root 1.120
1381     This request tries to open, fsync and close the given path. This is a
1382 root 1.135 composite request intended to sync directories after directory operations
1383 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1384     specific effect, but usually it makes sure that directory changes get
1385     written to disc. It works for anything that can be opened for read-only,
1386     not just directories.
1387    
1388 root 1.162 Future versions of this function might fall back to other methods when
1389     C<fsync> on the directory fails (such as calling C<sync>).
1390    
1391 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1392    
1393     =cut
1394    
1395     sub aio_pathsync($;$) {
1396 root 1.123 my ($path, $cb) = @_;
1397    
1398     my $pri = aioreq_pri;
1399     my $grp = aio_group $cb;
1400 root 1.120
1401 root 1.123 aioreq_pri $pri;
1402     add $grp aio_open $path, O_RDONLY, 0, sub {
1403     my ($fh) = @_;
1404     if ($fh) {
1405     aioreq_pri $pri;
1406     add $grp aio_fsync $fh, sub {
1407     $grp->result ($_[0]);
1408 root 1.120
1409     aioreq_pri $pri;
1410 root 1.123 add $grp aio_close $fh;
1411     };
1412     } else {
1413     $grp->result (-1);
1414     }
1415     };
1416 root 1.120
1417 root 1.123 $grp
1418 root 1.120 }
1419    
1420 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1421 root 1.170
1422     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1423 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1424     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1425     scalar must only be modified in-place while an aio operation is pending on
1426     it).
1427 root 1.170
1428     It calls the C<msync> function of your OS, if available, with the memory
1429     area starting at C<$offset> in the string and ending C<$length> bytes
1430     later. If C<$length> is negative, counts from the end, and if C<$length>
1431     is C<undef>, then it goes till the end of the string. The flags can be
1432 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1433     C<IO::AIO::MS_INVALIDATE>.
1434 root 1.170
1435     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1436    
1437     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1438     scalars.
1439    
1440     It touches (reads or writes) all memory pages in the specified
1441 root 1.239 range inside the scalar. All caveats and parameters are the same
1442 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1443     C<0> (which reads all pages and ensures they are instantiated) or
1444 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1445 root 1.170 writing an octet from it, which dirties the page).
1446    
1447 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1448    
1449     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1450     scalars.
1451    
1452     It reads in all the pages of the underlying storage into memory (if any)
1453     and locks them, so they are not getting swapped/paged out or removed.
1454    
1455     If C<$length> is undefined, then the scalar will be locked till the end.
1456    
1457     On systems that do not implement C<mlock>, this function returns C<-1>
1458     and sets errno to C<ENOSYS>.
1459    
1460     Note that the corresponding C<munlock> is synchronous and is
1461     documented under L<MISCELLANEOUS FUNCTIONS>.
1462    
1463 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1464     C<$data> gets destroyed.
1465    
1466     open my $fh, "<", $path or die "$path: $!";
1467     my $data;
1468     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1469     aio_mlock $data; # mlock in background
1470    
1471 root 1.182 =item aio_mlockall $flags, $callback->($status)
1472    
1473 root 1.297 Calls the C<mlockall> function with the given C<$flags> (a
1474     combination of C<IO::AIO::MCL_CURRENT>, C<IO::AIO::MCL_FUTURE> and
1475     C<IO::AIO::MCL_ONFAULT>).
1476 root 1.182
1477     On systems that do not implement C<mlockall>, this function returns C<-1>
1478 root 1.297 and sets errno to C<ENOSYS>. Similarly, flag combinations not supported
1479     by the system result in a return value of C<-1> with errno being set to
1480     C<EINVAL>.
1481 root 1.182
1482     Note that the corresponding C<munlockall> is synchronous and is
1483     documented under L<MISCELLANEOUS FUNCTIONS>.
1484    
1485 root 1.183 Example: asynchronously lock all current and future pages into memory.
1486    
1487     aio_mlockall IO::AIO::MCL_FUTURE;
1488    
1489 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1490    
1491 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1492     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1493     the ioctl is not available on your OS, then this request will fail with
1494 root 1.223 C<ENOSYS>.
1495    
1496     C<$start> is the starting offset to query extents for, C<$length> is the
1497     size of the range to query - if it is C<undef>, then the whole file will
1498     be queried.
1499    
1500     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1501     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1502     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1503     the data portion.
1504    
1505     C<$count> is the maximum number of extent records to return. If it is
1506 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1507 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1508 root 1.232 instead of the extents themselves (which is unreliable, see below).
1509 root 1.223
1510     If an error occurs, the callback receives no arguments. The special
1511     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1512    
1513     Otherwise, the callback receives an array reference with extent
1514     structures. Each extent structure is an array reference itself, with the
1515     following members:
1516    
1517     [$logical, $physical, $length, $flags]
1518    
1519     Flags is any combination of the following flag values (typically either C<0>
1520 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1521 root 1.223
1522     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1523     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1524     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1525     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1526     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1527     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1528    
1529 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1530 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1531 root 1.278 it to return all extents of a range for files with a large number of
1532     extents. The code (only) works around all these issues if C<$count> is
1533     C<undef>.
1534 root 1.232
1535 root 1.58 =item aio_group $callback->(...)
1536 root 1.54
1537 root 1.55 This is a very special aio request: Instead of doing something, it is a
1538     container for other aio requests, which is useful if you want to bundle
1539 root 1.71 many requests into a single, composite, request with a definite callback
1540     and the ability to cancel the whole request with its subrequests.
1541 root 1.55
1542     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1543     for more info.
1544    
1545     Example:
1546    
1547     my $grp = aio_group sub {
1548     print "all stats done\n";
1549     };
1550    
1551     add $grp
1552     (aio_stat ...),
1553     (aio_stat ...),
1554     ...;
1555    
1556 root 1.63 =item aio_nop $callback->()
1557    
1558     This is a special request - it does nothing in itself and is only used for
1559     side effects, such as when you want to add a dummy request to a group so
1560     that finishing the requests in the group depends on executing the given
1561     code.
1562    
1563 root 1.64 While this request does nothing, it still goes through the execution
1564     phase and still requires a worker thread. Thus, the callback will not
1565     be executed immediately but only after other requests in the queue have
1566     entered their execution phase. This can be used to measure request
1567     latency.
1568    
1569 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1570 root 1.54
1571     Mainly used for debugging and benchmarking, this aio request puts one of
1572     the request workers to sleep for the given time.
1573    
1574 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1575 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1576     immense (it blocks a thread for a long time) so do not use this function
1577     except to put your application under artificial I/O pressure.
1578 root 1.56
1579 root 1.5 =back
1580    
1581 root 1.209
1582     =head2 IO::AIO::WD - multiple working directories
1583    
1584     Your process only has one current working directory, which is used by all
1585     threads. This makes it hard to use relative paths (some other component
1586     could call C<chdir> at any time, and it is hard to control when the path
1587     will be used by IO::AIO).
1588    
1589     One solution for this is to always use absolute paths. This usually works,
1590     but can be quite slow (the kernel has to walk the whole path on every
1591     access), and can also be a hassle to implement.
1592    
1593     Newer POSIX systems have a number of functions (openat, fdopendir,
1594     futimensat and so on) that make it possible to specify working directories
1595     per operation.
1596    
1597     For portability, and because the clowns who "designed", or shall I write,
1598     perpetrated this new interface were obviously half-drunk, this abstraction
1599     cannot be perfect, though.
1600    
1601     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1602     object. This object stores the canonicalised, absolute version of the
1603     path, and on systems that allow it, also a directory file descriptor.
1604    
1605     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1606     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1607 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1608     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1609 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1610 root 1.209 to that IO::AIO::WD object.
1611    
1612     For example, to get a wd object for F</etc> and then stat F<passwd>
1613     inside, you would write:
1614    
1615     aio_wd "/etc", sub {
1616     my $etcdir = shift;
1617    
1618     # although $etcdir can be undef on error, there is generally no reason
1619     # to check for errors here, as aio_stat will fail with ENOENT
1620     # when $etcdir is undef.
1621    
1622     aio_stat [$etcdir, "passwd"], sub {
1623     # yay
1624     };
1625     };
1626    
1627 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1628     creating an IO::AIO::WD object is itself a potentially blocking operation,
1629     which is why it is done asynchronously.
1630 root 1.214
1631     To stat the directory obtained with C<aio_wd> above, one could write
1632     either of the following three request calls:
1633    
1634     aio_lstat "/etc" , sub { ... # pathname as normal string
1635     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1636     aio_lstat $wd , sub { ... # shorthand for the previous
1637 root 1.209
1638     As with normal pathnames, IO::AIO keeps a copy of the working directory
1639     object and the pathname string, so you could write the following without
1640     causing any issues due to C<$path> getting reused:
1641    
1642     my $path = [$wd, undef];
1643    
1644     for my $name (qw(abc def ghi)) {
1645     $path->[1] = $name;
1646     aio_stat $path, sub {
1647     # ...
1648     };
1649     }
1650    
1651     There are some caveats: when directories get renamed (or deleted), the
1652     pathname string doesn't change, so will point to the new directory (or
1653     nowhere at all), while the directory fd, if available on the system,
1654     will still point to the original directory. Most functions accepting a
1655     pathname will use the directory fd on newer systems, and the string on
1656 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1657     the string form of the pathname.
1658 root 1.209
1659 root 1.239 So this functionality is mainly useful to get some protection against
1660 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1661     reference, and to speed up doing many operations in the same directory
1662     (e.g. when stat'ing all files in a directory).
1663    
1664     The following functions implement this working directory abstraction:
1665    
1666     =over 4
1667    
1668     =item aio_wd $pathname, $callback->($wd)
1669    
1670     Asynchonously canonicalise the given pathname and convert it to an
1671     IO::AIO::WD object representing it. If possible and supported on the
1672     system, also open a directory fd to speed up pathname resolution relative
1673     to this working directory.
1674    
1675     If something goes wrong, then C<undef> is passwd to the callback instead
1676     of a working directory object and C<$!> is set appropriately. Since
1677     passing C<undef> as working directory component of a pathname fails the
1678     request with C<ENOENT>, there is often no need for error checking in the
1679     C<aio_wd> callback, as future requests using the value will fail in the
1680     expected way.
1681    
1682     =item IO::AIO::CWD
1683    
1684 root 1.306 This is a compile time constant (object) that represents the process
1685 root 1.209 current working directory.
1686    
1687 root 1.239 Specifying this object as working directory object for a pathname is as if
1688     the pathname would be specified directly, without a directory object. For
1689     example, these calls are functionally identical:
1690 root 1.209
1691     aio_stat "somefile", sub { ... };
1692     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1693    
1694     =back
1695    
1696 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1697     C<aio_realpath>:
1698    
1699     aio_realpath $wd, sub {
1700     warn "path is $_[0]\n";
1701     };
1702    
1703 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1704     sometimes, fall back to using an absolue path.
1705 root 1.209
1706 root 1.53 =head2 IO::AIO::REQ CLASS
1707 root 1.52
1708     All non-aggregate C<aio_*> functions return an object of this class when
1709     called in non-void context.
1710    
1711     =over 4
1712    
1713 root 1.65 =item cancel $req
1714 root 1.52
1715     Cancels the request, if possible. Has the effect of skipping execution
1716     when entering the B<execute> state and skipping calling the callback when
1717     entering the the B<result> state, but will leave the request otherwise
1718 root 1.151 untouched (with the exception of readdir). That means that requests that
1719     currently execute will not be stopped and resources held by the request
1720     will not be freed prematurely.
1721 root 1.52
1722 root 1.65 =item cb $req $callback->(...)
1723    
1724     Replace (or simply set) the callback registered to the request.
1725    
1726 root 1.52 =back
1727    
1728 root 1.55 =head2 IO::AIO::GRP CLASS
1729    
1730     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1731     objects of this class, too.
1732    
1733     A IO::AIO::GRP object is a special request that can contain multiple other
1734     aio requests.
1735    
1736     You create one by calling the C<aio_group> constructing function with a
1737     callback that will be called when all contained requests have entered the
1738     C<done> state:
1739    
1740     my $grp = aio_group sub {
1741     print "all requests are done\n";
1742     };
1743    
1744     You add requests by calling the C<add> method with one or more
1745     C<IO::AIO::REQ> objects:
1746    
1747     $grp->add (aio_unlink "...");
1748    
1749 root 1.58 add $grp aio_stat "...", sub {
1750     $_[0] or return $grp->result ("error");
1751    
1752     # add another request dynamically, if first succeeded
1753     add $grp aio_open "...", sub {
1754     $grp->result ("ok");
1755     };
1756     };
1757 root 1.55
1758     This makes it very easy to create composite requests (see the source of
1759     C<aio_move> for an application) that work and feel like simple requests.
1760    
1761 root 1.62 =over 4
1762    
1763     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1764 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1765    
1766 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1767 root 1.59 only the request itself, but also all requests it contains.
1768 root 1.55
1769 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1770 root 1.55
1771 root 1.62 =item * You must not add requests to a group from within the group callback (or
1772 root 1.60 any later time).
1773    
1774 root 1.62 =back
1775    
1776 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1777     will finish very quickly. If they contain only requests that are in the
1778     C<done> state, they will also finish. Otherwise they will continue to
1779     exist.
1780    
1781 root 1.133 That means after creating a group you have some time to add requests
1782     (precisely before the callback has been invoked, which is only done within
1783     the C<poll_cb>). And in the callbacks of those requests, you can add
1784     further requests to the group. And only when all those requests have
1785     finished will the the group itself finish.
1786 root 1.57
1787 root 1.55 =over 4
1788    
1789 root 1.65 =item add $grp ...
1790    
1791 root 1.55 =item $grp->add (...)
1792    
1793 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1794     be added, including other groups, as long as you do not create circular
1795     dependencies.
1796    
1797     Returns all its arguments.
1798 root 1.55
1799 root 1.74 =item $grp->cancel_subs
1800    
1801     Cancel all subrequests and clears any feeder, but not the group request
1802     itself. Useful when you queued a lot of events but got a result early.
1803    
1804 root 1.168 The group request will finish normally (you cannot add requests to the
1805     group).
1806    
1807 root 1.58 =item $grp->result (...)
1808    
1809     Set the result value(s) that will be passed to the group callback when all
1810 root 1.120 subrequests have finished and set the groups errno to the current value
1811 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1812     no argument will be passed and errno is zero.
1813    
1814     =item $grp->errno ([$errno])
1815    
1816     Sets the group errno value to C<$errno>, or the current value of errno
1817     when the argument is missing.
1818    
1819     Every aio request has an associated errno value that is restored when
1820     the callback is invoked. This method lets you change this value from its
1821     default (0).
1822    
1823     Calling C<result> will also set errno, so make sure you either set C<$!>
1824     before the call to C<result>, or call c<errno> after it.
1825 root 1.58
1826 root 1.65 =item feed $grp $callback->($grp)
1827 root 1.60
1828     Sets a feeder/generator on this group: every group can have an attached
1829     generator that generates requests if idle. The idea behind this is that,
1830     although you could just queue as many requests as you want in a group,
1831 root 1.139 this might starve other requests for a potentially long time. For example,
1832 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1833     requests, delaying any later requests for a long time.
1834 root 1.60
1835     To avoid this, and allow incremental generation of requests, you can
1836     instead a group and set a feeder on it that generates those requests. The
1837 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1838 root 1.60 below) requests active in the group itself and is expected to queue more
1839     requests.
1840    
1841 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1842     not impose any limits).
1843 root 1.60
1844 root 1.65 If the feed does not queue more requests when called, it will be
1845 root 1.60 automatically removed from the group.
1846    
1847 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1848     C<2> automatically.
1849 root 1.60
1850     Example:
1851    
1852     # stat all files in @files, but only ever use four aio requests concurrently:
1853    
1854     my $grp = aio_group sub { print "finished\n" };
1855 root 1.68 limit $grp 4;
1856 root 1.65 feed $grp sub {
1857 root 1.60 my $file = pop @files
1858     or return;
1859    
1860     add $grp aio_stat $file, sub { ... };
1861 root 1.65 };
1862 root 1.60
1863 root 1.68 =item limit $grp $num
1864 root 1.60
1865     Sets the feeder limit for the group: The feeder will be called whenever
1866     the group contains less than this many requests.
1867    
1868     Setting the limit to C<0> will pause the feeding process.
1869    
1870 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1871     automatically bumps it up to C<2>.
1872    
1873 root 1.55 =back
1874    
1875 root 1.294
1876 root 1.5 =head2 SUPPORT FUNCTIONS
1877    
1878 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1879    
1880 root 1.5 =over 4
1881    
1882     =item $fileno = IO::AIO::poll_fileno
1883    
1884 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1885 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1886     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1887     you have to call C<poll_cb> to check the results.
1888 root 1.5
1889     See C<poll_cb> for an example.
1890    
1891     =item IO::AIO::poll_cb
1892    
1893 root 1.240 Process some requests that have reached the result phase (i.e. they have
1894     been executed but the results are not yet reported). You have to call
1895     this "regularly" to finish outstanding requests.
1896    
1897     Returns C<0> if all events could be processed (or there were no
1898     events to process), or C<-1> if it returned earlier for whatever
1899     reason. Returns immediately when no events are outstanding. The amount
1900     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1901     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1902    
1903     If not all requests were processed for whatever reason, the poll file
1904     descriptor will still be ready when C<poll_cb> returns, so normally you
1905     don't have to do anything special to have it called later.
1906 root 1.78
1907 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1908     ready, it can be beneficial to call this function from loops which submit
1909     a lot of requests, to make sure the results get processed when they become
1910     available and not just when the loop is finished and the event loop takes
1911     over again. This function returns very fast when there are no outstanding
1912     requests.
1913    
1914 root 1.20 Example: Install an Event watcher that automatically calls
1915 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1916     SYNOPSIS section, at the top of this document):
1917 root 1.5
1918     Event->io (fd => IO::AIO::poll_fileno,
1919     poll => 'r', async => 1,
1920     cb => \&IO::AIO::poll_cb);
1921    
1922 root 1.175 =item IO::AIO::poll_wait
1923    
1924 root 1.240 Wait until either at least one request is in the result phase or no
1925     requests are outstanding anymore.
1926    
1927     This is useful if you want to synchronously wait for some requests to
1928     become ready, without actually handling them.
1929 root 1.175
1930     See C<nreqs> for an example.
1931    
1932     =item IO::AIO::poll
1933    
1934     Waits until some requests have been handled.
1935    
1936     Returns the number of requests processed, but is otherwise strictly
1937     equivalent to:
1938    
1939     IO::AIO::poll_wait, IO::AIO::poll_cb
1940    
1941     =item IO::AIO::flush
1942    
1943     Wait till all outstanding AIO requests have been handled.
1944    
1945     Strictly equivalent to:
1946    
1947     IO::AIO::poll_wait, IO::AIO::poll_cb
1948     while IO::AIO::nreqs;
1949    
1950 root 1.294 This function can be useful at program aborts, to make sure outstanding
1951     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1952     this function on normal exits), or when you are merely using C<IO::AIO>
1953     for its more advanced functions, rather than for async I/O, e.g.:
1954    
1955     my ($dirs, $nondirs);
1956     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1957     IO::AIO::flush;
1958     # $dirs, $nondirs are now set
1959    
1960 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1961    
1962     =item IO::AIO::max_poll_time $seconds
1963    
1964     These set the maximum number of requests (default C<0>, meaning infinity)
1965     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1966     the maximum amount of time (default C<0>, meaning infinity) spent in
1967     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1968     of time C<poll_cb> is allowed to use).
1969 root 1.78
1970 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1971     syscall per request processed, which is not normally a problem unless your
1972     callbacks are really really fast or your OS is really really slow (I am
1973     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1974    
1975 root 1.86 Setting these is useful if you want to ensure some level of
1976     interactiveness when perl is not fast enough to process all requests in
1977     time.
1978 root 1.78
1979 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1980 root 1.78
1981     Example: Install an Event watcher that automatically calls
1982 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1983 root 1.78 program get the CPU sometimes even under high AIO load.
1984    
1985 root 1.86 # try not to spend much more than 0.1s in poll_cb
1986     IO::AIO::max_poll_time 0.1;
1987    
1988     # use a low priority so other tasks have priority
1989 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1990     poll => 'r', nice => 1,
1991 root 1.86 cb => &IO::AIO::poll_cb);
1992 root 1.78
1993 root 1.104 =back
1994    
1995 root 1.294
1996 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1997 root 1.13
1998 root 1.105 =over
1999    
2000 root 1.5 =item IO::AIO::min_parallel $nthreads
2001    
2002 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
2003     default is C<8>, which means eight asynchronous operations can execute
2004     concurrently at any one time (the number of outstanding requests,
2005     however, is unlimited).
2006 root 1.5
2007 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
2008 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
2009     create demand for a hundred threads, even if it turns out that everything
2010     is in the cache and could have been processed faster by a single thread.
2011 root 1.34
2012 root 1.61 It is recommended to keep the number of threads relatively low, as some
2013     Linux kernel versions will scale negatively with the number of threads
2014     (higher parallelity => MUCH higher latency). With current Linux 2.6
2015     versions, 4-32 threads should be fine.
2016 root 1.5
2017 root 1.34 Under most circumstances you don't need to call this function, as the
2018     module selects a default that is suitable for low to moderate load.
2019 root 1.5
2020     =item IO::AIO::max_parallel $nthreads
2021    
2022 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
2023     specified number of threads are currently running, this function kills
2024     them. This function blocks until the limit is reached.
2025    
2026     While C<$nthreads> are zero, aio requests get queued but not executed
2027     until the number of threads has been increased again.
2028 root 1.5
2029     This module automatically runs C<max_parallel 0> at program end, to ensure
2030     that all threads are killed and that there are no outstanding requests.
2031    
2032     Under normal circumstances you don't need to call this function.
2033    
2034 root 1.86 =item IO::AIO::max_idle $nthreads
2035    
2036 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
2037     (i.e., threads that did not get a request to process within the idle
2038     timeout (default: 10 seconds). That means if a thread becomes idle while
2039     C<$nthreads> other threads are also idle, it will free its resources and
2040     exit.
2041 root 1.86
2042     This is useful when you allow a large number of threads (e.g. 100 or 1000)
2043     to allow for extremely high load situations, but want to free resources
2044     under normal circumstances (1000 threads can easily consume 30MB of RAM).
2045    
2046     The default is probably ok in most situations, especially if thread
2047     creation is fast. If thread creation is very slow on your system you might
2048     want to use larger values.
2049    
2050 root 1.188 =item IO::AIO::idle_timeout $seconds
2051    
2052     Sets the minimum idle timeout (default 10) after which worker threads are
2053     allowed to exit. SEe C<IO::AIO::max_idle>.
2054    
2055 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2056 root 1.5
2057 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2058     you do queue up more than this number of requests, the next call to
2059     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2060     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2061     longer exceeded.
2062    
2063     In other words, this setting does not enforce a queue limit, but can be
2064     used to make poll functions block if the limit is exceeded.
2065    
2066 root 1.313 This is a bad function to use in interactive programs because it blocks,
2067     and a bad way to reduce concurrency because it is inexact. If you need to
2068     issue many requests without being able to call a poll function on demand,
2069     it is better to use an C<aio_group> together with a feed callback.
2070 root 1.79
2071 root 1.313 Its main use is in scripts without an event loop - when you want to stat a
2072     lot of files, you can write something like this:
2073 root 1.195
2074     IO::AIO::max_outstanding 32;
2075    
2076     for my $path (...) {
2077     aio_stat $path , ...;
2078     IO::AIO::poll_cb;
2079     }
2080    
2081     IO::AIO::flush;
2082    
2083 root 1.313 The call to C<poll_cb> inside the loop will normally return instantly,
2084     allowing the loop to progress, but as soon as more than C<32> requests
2085     are in-flight, it will block until some requests have been handled. This
2086     keeps the loop from pushing a large number of C<aio_stat> requests onto
2087     the queue (which, with many paths to stat, can use up a lot of memory).
2088 root 1.195
2089     The default value for C<max_outstanding> is very large, so there is no
2090     practical limit on the number of outstanding requests.
2091 root 1.5
2092 root 1.104 =back
2093    
2094 root 1.294
2095 root 1.86 =head3 STATISTICAL INFORMATION
2096    
2097 root 1.104 =over
2098    
2099 root 1.86 =item IO::AIO::nreqs
2100    
2101     Returns the number of requests currently in the ready, execute or pending
2102     states (i.e. for which their callback has not been invoked yet).
2103    
2104     Example: wait till there are no outstanding requests anymore:
2105    
2106     IO::AIO::poll_wait, IO::AIO::poll_cb
2107     while IO::AIO::nreqs;
2108    
2109     =item IO::AIO::nready
2110    
2111     Returns the number of requests currently in the ready state (not yet
2112     executed).
2113    
2114     =item IO::AIO::npending
2115    
2116     Returns the number of requests currently in the pending state (executed,
2117     but not yet processed by poll_cb).
2118    
2119 root 1.5 =back
2120    
2121 root 1.294
2122 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2123    
2124     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2125     generally find access/modification and change times with subsecond time
2126     accuracy of the system supports it, but perl's built-in functions only
2127     return the integer part.
2128    
2129     The following functions return the timestamps of the most recent
2130     stat with subsecond precision on most systems and work both after
2131     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2132     value is only meaningful after a successful C<stat>/C<lstat> call, or
2133     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2134    
2135     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2136     full resolution without rounding and work with standard perl C<stat>,
2137     alleviating the need to call the special C<Time::HiRes> functions, which
2138     do not act like their perl counterparts.
2139    
2140     On operating systems or file systems where subsecond time resolution is
2141     not supported or could not be detected, a fractional part of C<0> is
2142     returned, so it is always safe to call these functions.
2143    
2144     =over 4
2145    
2146 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2147 root 1.289
2148 root 1.294 Return the access, modication, change or birth time, respectively,
2149     including fractional part. Due to the limited precision of floating point,
2150     the accuracy on most platforms is only a bit better than milliseconds
2151     for times around now - see the I<nsec> function family, below, for full
2152 root 1.289 accuracy.
2153    
2154 root 1.294 File birth time is only available when the OS and perl support it (on
2155     FreeBSD and NetBSD at the time of this writing, although support is
2156 root 1.301 adaptive, so if your OS/perl gains support, IO::AIO can take advantage of
2157 root 1.294 it). On systems where it isn't available, C<0> is currently returned, but
2158     this might change to C<undef> in a future version.
2159 root 1.289
2160 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2161 root 1.289
2162 root 1.294 Returns access, modification, change and birth time all in one go, and
2163     maybe more times in the future version.
2164 root 1.289
2165 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2166    
2167     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2168 root 1.289 as an integer in the range C<0> to C<999999999>.
2169    
2170 root 1.294 Note that no accessors are provided for access, modification and
2171     change times - you need to get those from C<stat _> if required (C<int
2172     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2173     value).
2174    
2175     =item $seconds = IO::AIO::st_btimesec
2176    
2177     The (integral) seconds part of the file birth time, if available.
2178    
2179     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2180 root 1.290
2181 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2182 root 1.290 more in future versions).
2183    
2184 root 1.294 =item $counter = IO::AIO::st_gen
2185    
2186 root 1.296 Returns the generation counter (in practice this is just a random number)
2187     of the file. This is only available on platforms which have this member in
2188     their C<struct stat> (most BSDs at the time of this writing) and generally
2189     only to the root usert. If unsupported, C<0> is returned, but this might
2190     change to C<undef> in a future version.
2191 root 1.294
2192 root 1.289 =back
2193    
2194     Example: print the high resolution modification time of F</etc>, using
2195     C<stat>, and C<IO::AIO::aio_stat>.
2196    
2197     if (stat "/etc") {
2198 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2199 root 1.289 }
2200    
2201     IO::AIO::aio_stat "/etc", sub {
2202     $_[0]
2203     and return;
2204    
2205 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2206 root 1.289 };
2207    
2208     IO::AIO::flush;
2209    
2210     Output of the awbove on my system, showing reduced and full accuracy:
2211    
2212     stat(/etc) mtime: 1534043702.020808
2213     aio_stat(/etc) mtime: 1534043702.020807792
2214    
2215 root 1.294
2216 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2217    
2218 root 1.248 IO::AIO implements some functions that are useful when you want to use
2219     some "Advanced I/O" function not available to in Perl, without going the
2220     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2221     counterpart.
2222 root 1.157
2223     =over 4
2224    
2225 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2226    
2227     Tries to find the current file descriptor limit and returns it, or
2228     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2229     the highest valid file descriptor number.
2230    
2231     =item IO::AIO::min_fdlimit [$numfd]
2232    
2233     Try to increase the current file descriptor limit(s) to at least C<$numfd>
2234     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2235     is missing, it will try to set a very high limit, although this is not
2236     recommended when you know the actual minimum that you require.
2237    
2238     If the limit cannot be raised enough, the function makes a best-effort
2239     attempt to increase the limit as much as possible, using various
2240     tricks, while still failing. You can query the resulting limit using
2241     C<IO::AIO::get_fdlimit>.
2242    
2243 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2244     true.
2245 root 1.275
2246 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2247    
2248     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2249     but is blocking (this makes most sense if you know the input data is
2250     likely cached already and the output filehandle is set to non-blocking
2251     operations).
2252    
2253     Returns the number of bytes copied, or C<-1> on error.
2254    
2255     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2256    
2257 root 1.184 Simply calls the C<posix_fadvise> function (see its
2258 root 1.157 manpage for details). The following advice constants are
2259 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2260 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2261     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2262    
2263     On systems that do not implement C<posix_fadvise>, this function returns
2264     ENOSYS, otherwise the return value of C<posix_fadvise>.
2265    
2266 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2267    
2268     Simply calls the C<posix_madvise> function (see its
2269     manpage for details). The following advice constants are
2270 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2271 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2272     C<IO::AIO::MADV_DONTNEED>.
2273 root 1.184
2274 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2275     the remaining length of the C<$scalar> is used. If possible, C<$length>
2276     will be reduced to fit into the C<$scalar>.
2277    
2278 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2279     ENOSYS, otherwise the return value of C<posix_madvise>.
2280    
2281     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2282    
2283     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2284     $scalar (see its manpage for details). The following protect
2285 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2286 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2287    
2288 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2289     the remaining length of the C<$scalar> is used. If possible, C<$length>
2290     will be reduced to fit into the C<$scalar>.
2291    
2292 root 1.184 On systems that do not implement C<mprotect>, this function returns
2293     ENOSYS, otherwise the return value of C<mprotect>.
2294    
2295 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2296    
2297     Memory-maps a file (or anonymous memory range) and attaches it to the
2298 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2299     success, and false otherwise.
2300 root 1.176
2301 root 1.268 The scalar must exist, but its contents do not matter - this means you
2302     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2303     the scalar first.
2304    
2305     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2306     which don't change the string length, and most read-only operations such
2307     as copying it or searching it with regexes and so on.
2308 root 1.176
2309     Anything else is unsafe and will, at best, result in memory leaks.
2310    
2311     The memory map associated with the C<$scalar> is automatically removed
2312 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2313     or C<IO::AIO::munmap> functions are called on it.
2314 root 1.176
2315     This calls the C<mmap>(2) function internally. See your system's manual
2316     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2317    
2318     The C<$length> must be larger than zero and smaller than the actual
2319     filesize.
2320    
2321     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2322     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2323    
2324 root 1.256 C<$flags> can be a combination of
2325     C<IO::AIO::MAP_SHARED> or
2326     C<IO::AIO::MAP_PRIVATE>,
2327     or a number of system-specific flags (when not available, the are C<0>):
2328     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2329     C<IO::AIO::MAP_LOCKED>,
2330     C<IO::AIO::MAP_NORESERVE>,
2331     C<IO::AIO::MAP_POPULATE>,
2332     C<IO::AIO::MAP_NONBLOCK>,
2333     C<IO::AIO::MAP_FIXED>,
2334     C<IO::AIO::MAP_GROWSDOWN>,
2335     C<IO::AIO::MAP_32BIT>,
2336 root 1.311 C<IO::AIO::MAP_HUGETLB>,
2337     C<IO::AIO::MAP_STACK>,
2338     C<IO::AIO::MAP_FIXED_NOREPLACE>,
2339     C<IO::AIO::MAP_SHARED_VALIDATE>,
2340     C<IO::AIO::MAP_SYNC> or
2341     C<IO::AIO::MAP_UNINITIALIZED>.
2342 root 1.176
2343     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2344    
2345 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2346     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2347    
2348 root 1.177 Example:
2349    
2350     use Digest::MD5;
2351     use IO::AIO;
2352    
2353     open my $fh, "<verybigfile"
2354     or die "$!";
2355    
2356     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2357     or die "verybigfile: $!";
2358    
2359     my $fast_md5 = md5 $data;
2360    
2361 root 1.176 =item IO::AIO::munmap $scalar
2362    
2363     Removes a previous mmap and undefines the C<$scalar>.
2364    
2365 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2366 root 1.285
2367     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2368     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2369     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2370    
2371     Returns true if successful, and false otherwise. If the underlying mmapped
2372     region has changed address, then the true value has the numerical value
2373     C<1>, otherwise it has the numerical value C<0>:
2374    
2375     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2376     or die "mremap: $!";
2377    
2378     if ($success*1) {
2379     warn "scalar has chanegd address in memory\n";
2380     }
2381    
2382     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2383     implemented, but not supported and might go away in a future version.
2384    
2385     On systems where this call is not supported or is not emulated, this call
2386     returns falls and sets C<$!> to C<ENOSYS>.
2387    
2388 root 1.298 =item IO::AIO::mlockall $flags
2389    
2390     Calls the C<eio_mlockall_sync> function, which is like C<aio_mlockall>,
2391     but is blocking.
2392    
2393 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2394 root 1.174
2395 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2396     C<aio_mlock> call (see its description for details).
2397 root 1.174
2398     =item IO::AIO::munlockall
2399    
2400     Calls the C<munlockall> function.
2401    
2402     On systems that do not implement C<munlockall>, this function returns
2403     ENOSYS, otherwise the return value of C<munlockall>.
2404    
2405 root 1.305 =item $fh = IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_maxlen, $flags
2406    
2407     Uses the GNU/Linux C<accept4(2)> syscall, if available, to accept a socket
2408     and return the new file handle on success, or sets C<$!> and returns
2409     C<undef> on error.
2410    
2411     The remote name of the new socket will be stored in C<$sockaddr>, which
2412     will be extended to allow for at least C<$sockaddr_maxlen> octets. If the
2413     socket name does not fit into C<$sockaddr_maxlen> octets, this is signaled
2414     by returning a longer string in C<$sockaddr>, which might or might not be
2415     truncated.
2416    
2417     To accept name-less sockets, use C<undef> for C<$sockaddr> and C<0> for
2418     C<$sockaddr_maxlen>.
2419    
2420 root 1.308 The main reasons to use this syscall rather than portable C<accept(2)>
2421 root 1.305 are that you can specify C<SOCK_NONBLOCK> and/or C<SOCK_CLOEXEC>
2422     flags and you can accept name-less sockets by specifying C<0> for
2423     C<$sockaddr_maxlen>, which is sadly not possible with perl's interface to
2424     C<accept>.
2425    
2426 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2427    
2428     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2429     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2430     should be the file offset.
2431    
2432 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2433     silently corrupt the data in this case.
2434    
2435 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2436     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2437     C<IO::AIO::SPLICE_F_GIFT>.
2438    
2439     See the C<splice(2)> manpage for details.
2440    
2441     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2442    
2443 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2444 root 1.225 description for C<IO::AIO::splice> above for details.
2445    
2446 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2447    
2448     Attempts to query or change the pipe buffer size. Obviously works only
2449     on pipes, and currently works only on GNU/Linux systems, and fails with
2450     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2451     size on other systems, drop me a note.
2452    
2453 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2454    
2455     This is a direct interface to the Linux L<pipe2(2)> system call. If
2456     C<$flags> is missing or C<0>, then this should be the same as a call to
2457 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2458     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2459     (..., 4096, O_BINARY)>.
2460 root 1.253
2461     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2462     the given flags (Linux 2.6.27, glibc 2.9).
2463    
2464     On success, the read and write file handles are returned.
2465    
2466     On error, nothing will be returned. If the pipe2 syscall is missing and
2467     C<$flags> is non-zero, fails with C<ENOSYS>.
2468    
2469     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2470     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2471     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2472    
2473 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2474    
2475     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2476     or die "pipe2: $!\n";
2477    
2478 root 1.302 =item $fh = IO::AIO::memfd_create $pathname[, $flags]
2479    
2480     This is a direct interface to the Linux L<memfd_create(2)> system
2481     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2482     should be C<IO::AIO::MFD_CLOEXEC>.
2483    
2484     On success, the new memfd filehandle is returned, otherwise returns
2485     C<undef>. If the memfd_create syscall is missing, fails with C<ENOSYS>.
2486    
2487     Please refer to L<memfd_create(2)> for more info on this call.
2488    
2489     The following C<$flags> values are available: C<IO::AIO::MFD_CLOEXEC>,
2490     C<IO::AIO::MFD_ALLOW_SEALING> and C<IO::AIO::MFD_HUGETLB>.
2491    
2492     Example: create a new memfd.
2493    
2494     my $fh = IO::AIO::memfd_create "somenameforprocfd", IO::AIO::MFD_CLOEXEC
2495 root 1.308 or die "memfd_create: $!\n";
2496    
2497     =item $fh = IO::AIO::pidfd_open $pid[, $flags]
2498    
2499     This is an interface to the Linux L<pidfd_open(2)> system call. The
2500     default for C<$flags> is C<0>.
2501    
2502     On success, a new pidfd filehandle is returned (that is already set to
2503     close-on-exec), otherwise returns C<undef>. If the syscall is missing,
2504     fails with C<ENOSYS>.
2505    
2506     Example: open pid 6341 as pidfd.
2507    
2508     my $fh = IO::AIO::pidfd_open 6341
2509     or die "pidfd_open: $!\n";
2510    
2511     =item $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
2512    
2513     This is an interface to the Linux L<pidfd_send_signal> system call. The
2514     default for C<$siginfo> is C<undef> and the default for C<$flags> is C<0>.
2515    
2516     Returns the system call status. If the syscall is missing, fails with
2517     C<ENOSYS>.
2518    
2519     When specified, C<$siginfo> must be a reference to a hash with one or more
2520     of the following members:
2521    
2522     =over
2523    
2524     =item code - the C<si_code> member
2525    
2526     =item pid - the C<si_pid> member
2527    
2528     =item uid - the C<si_uid> member
2529    
2530     =item value_int - the C<si_value.sival_int> member
2531    
2532     =item value_ptr - the C<si_value.sival_ptr> member, specified as an integer
2533    
2534     =back
2535    
2536     Example: send a SIGKILL to the specified process.
2537    
2538     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, undef
2539     and die "pidfd_send_signal: $!\n";
2540    
2541     Example: send a SIGKILL to the specified process with extra data.
2542    
2543     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, { code => -1, value_int => 7 }
2544     and die "pidfd_send_signal: $!\n";
2545    
2546     =item $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
2547    
2548     This is an interface to the Linux L<pidfd_getfd> system call. The default
2549     for C<$flags> is C<0>.
2550    
2551     On success, returns a dup'ed copy of the target file descriptor (specified
2552     as an integer) returned (that is already set to close-on-exec), otherwise
2553     returns C<undef>. If the syscall is missing, fails with C<ENOSYS>.
2554    
2555     Example: get a copy of standard error of another process and print soemthing to it.
2556    
2557     my $errfh = IO::AIO::pidfd_getfd $pidfh, 2
2558     or die "pidfd_getfd: $!\n";
2559     print $errfh "stderr\n";
2560    
2561 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2562 root 1.281
2563     This is a direct interface to the Linux L<eventfd(2)> system call. The
2564     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2565    
2566     On success, the new eventfd filehandle is returned, otherwise returns
2567     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2568    
2569     Please refer to L<eventfd(2)> for more info on this call.
2570    
2571     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2572     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2573    
2574 root 1.282 Example: create a new eventfd filehandle:
2575    
2576 root 1.302 $fh = IO::AIO::eventfd 0, IO::AIO::EFD_CLOEXEC
2577 root 1.282 or die "eventfd: $!\n";
2578    
2579     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2580    
2581 root 1.302 This is a direct interface to the Linux L<timerfd_create(2)> system
2582     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2583     should be C<IO::AIO::TFD_CLOEXEC>.
2584 root 1.282
2585     On success, the new timerfd filehandle is returned, otherwise returns
2586 root 1.302 C<undef>. If the timerfd_create syscall is missing, fails with C<ENOSYS>.
2587 root 1.282
2588     Please refer to L<timerfd_create(2)> for more info on this call.
2589    
2590     The following C<$clockid> values are
2591     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2592     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2593     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2594     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2595    
2596     The following C<$flags> values are available (Linux
2597     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2598    
2599     Example: create a new timerfd and set it to one-second repeated alarms,
2600     then wait for two alarms:
2601    
2602     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2603     or die "timerfd_create: $!\n";
2604    
2605     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2606     or die "timerfd_settime: $!\n";
2607    
2608     for (1..2) {
2609     8 == sysread $fh, my $buf, 8
2610     or die "timerfd read failure\n";
2611    
2612     printf "number of expirations (likely 1): %d\n",
2613     unpack "Q", $buf;
2614     }
2615    
2616     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2617    
2618     This is a direct interface to the Linux L<timerfd_settime(2)> system
2619     call. Please refer to its manpage for more info on this call.
2620    
2621     The new itimerspec is specified using two (possibly fractional) second
2622     values, C<$new_interval> and C<$new_value>).
2623    
2624     On success, the current interval and value are returned (as per
2625     C<timerfd_gettime>). On failure, the empty list is returned.
2626    
2627     The following C<$flags> values are
2628     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2629     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2630    
2631     See C<IO::AIO::timerfd_create> for a full example.
2632    
2633     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2634    
2635     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2636     call. Please refer to its manpage for more info on this call.
2637    
2638     On success, returns the current values of interval and value for the given
2639     timerfd (as potentially fractional second values). On failure, the empty
2640     list is returned.
2641    
2642 root 1.157 =back
2643    
2644 root 1.1 =cut
2645    
2646 root 1.61 min_parallel 8;
2647 root 1.1
2648 root 1.95 END { flush }
2649 root 1.82
2650 root 1.1 1;
2651    
2652 root 1.175 =head1 EVENT LOOP INTEGRATION
2653    
2654     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2655     automatically into many event loops:
2656    
2657     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2658     use AnyEvent::AIO;
2659    
2660     You can also integrate IO::AIO manually into many event loops, here are
2661     some examples of how to do this:
2662    
2663     # EV integration
2664     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2665    
2666     # Event integration
2667     Event->io (fd => IO::AIO::poll_fileno,
2668     poll => 'r',
2669     cb => \&IO::AIO::poll_cb);
2670    
2671     # Glib/Gtk2 integration
2672     add_watch Glib::IO IO::AIO::poll_fileno,
2673     in => sub { IO::AIO::poll_cb; 1 };
2674    
2675     # Tk integration
2676     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2677     readable => \&IO::AIO::poll_cb);
2678    
2679     # Danga::Socket integration
2680     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2681     \&IO::AIO::poll_cb);
2682    
2683 root 1.27 =head2 FORK BEHAVIOUR
2684    
2685 root 1.197 Usage of pthreads in a program changes the semantics of fork
2686     considerably. Specifically, only async-safe functions can be called after
2687     fork. Perl doesn't know about this, so in general, you cannot call fork
2688 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2689     pthreads, so this applies, but many other extensions and (for inexplicable
2690     reasons) perl itself often is linked against pthreads, so this limitation
2691     applies to quite a lot of perls.
2692    
2693     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2694     only works in the process that loaded it. Forking is fully supported, but
2695     using IO::AIO in the child is not.
2696    
2697     You might get around by not I<using> IO::AIO before (or after)
2698     forking. You could also try to call the L<IO::AIO::reinit> function in the
2699     child:
2700    
2701     =over 4
2702    
2703     =item IO::AIO::reinit
2704    
2705 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2706     data structures. This is not an operation supported by any standards, but
2707 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2708    
2709     The only reasonable use for this function is to call it after forking, if
2710     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2711     the process will result in undefined behaviour. Calling it at any time
2712     will also result in any undefined (by POSIX) behaviour.
2713    
2714     =back
2715 root 1.52
2716 root 1.282 =head2 LINUX-SPECIFIC CALLS
2717    
2718     When a call is documented as "linux-specific" then this means it
2719     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2720     availability and compatibility of such calls regardless of the platform
2721     it is compiled on, so platforms such as FreeBSD which often implement
2722     these calls will work. When in doubt, call them and see if they fail wth
2723     C<ENOSYS>.
2724    
2725 root 1.60 =head2 MEMORY USAGE
2726    
2727 root 1.72 Per-request usage:
2728    
2729     Each aio request uses - depending on your architecture - around 100-200
2730     bytes of memory. In addition, stat requests need a stat buffer (possibly
2731     a few hundred bytes), readdir requires a result buffer and so on. Perl
2732     scalars and other data passed into aio requests will also be locked and
2733     will consume memory till the request has entered the done state.
2734 root 1.60
2735 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2736 root 1.60 problem.
2737    
2738 root 1.72 Per-thread usage:
2739    
2740     In the execution phase, some aio requests require more memory for
2741     temporary buffers, and each thread requires a stack and other data
2742     structures (usually around 16k-128k, depending on the OS).
2743    
2744     =head1 KNOWN BUGS
2745    
2746 root 1.283 Known bugs will be fixed in the next release :)
2747    
2748     =head1 KNOWN ISSUES
2749    
2750     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2751     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2752     non-created hash slots or other scalars I didn't think of. It's best to
2753     avoid such and either use scalar variables or making sure that the scalar
2754     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2755    
2756     I am not sure anything can be done about this, so this is considered a
2757     known issue, rather than a bug.
2758 root 1.60
2759 root 1.1 =head1 SEE ALSO
2760    
2761 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2762 root 1.304 more natural syntax and L<IO::FDPass> for file descriptor passing.
2763 root 1.1
2764     =head1 AUTHOR
2765    
2766     Marc Lehmann <schmorp@schmorp.de>
2767     http://home.schmorp.de/
2768    
2769     =cut
2770