ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.316
Committed: Mon Sep 5 08:43:58 2022 UTC (20 months, 2 weeks ago) by root
Branch: MAIN
CVS Tags: rel-4_78
Changes since 1.315: +36 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.316 our $VERSION = 4.78;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.315 mmap munmap mremap munlock munlockall
198    
199     accept4 tee splice pipe2 pipesize
200 root 1.316 fexecve mount umount memfd_create eventfd
201 root 1.315 timerfd_create timerfd_settime timerfd_gettime
202     pidfd_open pidfd_send_signal pidfd_getfd);
203 root 1.1
204 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
205    
206 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
207    
208 root 1.1 require XSLoader;
209 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
210 root 1.1 }
211    
212 root 1.5 =head1 FUNCTIONS
213 root 1.1
214 root 1.175 =head2 QUICK OVERVIEW
215    
216 root 1.230 This section simply lists the prototypes most of the functions for
217     quick reference. See the following sections for function-by-function
218 root 1.175 documentation.
219    
220 root 1.208 aio_wd $pathname, $callback->($wd)
221 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
222     aio_close $fh, $callback->($status)
223 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
224 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
225     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
226     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
227     aio_readahead $fh,$offset,$length, $callback->($retval)
228     aio_stat $fh_or_path, $callback->($status)
229     aio_lstat $fh, $callback->($status)
230     aio_statvfs $fh_or_path, $callback->($statvfs)
231     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
232     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
233 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
234 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
235 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
236 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
237 root 1.175 aio_unlink $pathname, $callback->($status)
238 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
239 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
240     aio_symlink $srcpath, $dstpath, $callback->($status)
241 root 1.209 aio_readlink $pathname, $callback->($link)
242 root 1.249 aio_realpath $pathname, $callback->($path)
243 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
244 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
245 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
246     aio_rmdir $pathname, $callback->($status)
247     aio_readdir $pathname, $callback->($entries)
248     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
249     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
250     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
251 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
252 root 1.209 aio_load $pathname, $data, $callback->($status)
253 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
254     aio_move $srcpath, $dstpath, $callback->($status)
255 root 1.209 aio_rmtree $pathname, $callback->($status)
256 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
257     aio_ioctl $fh, $request, $buf, $callback->($status)
258 root 1.175 aio_sync $callback->($status)
259 root 1.206 aio_syncfs $fh, $callback->($status)
260 root 1.175 aio_fsync $fh, $callback->($status)
261     aio_fdatasync $fh, $callback->($status)
262     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
263 root 1.209 aio_pathsync $pathname, $callback->($status)
264 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
265 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
266 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
267     aio_mlockall $flags, $callback->($status)
268 root 1.175 aio_group $callback->(...)
269     aio_nop $callback->()
270    
271     $prev_pri = aioreq_pri [$pri]
272     aioreq_nice $pri_adjust
273    
274     IO::AIO::poll_wait
275     IO::AIO::poll_cb
276     IO::AIO::poll
277     IO::AIO::flush
278     IO::AIO::max_poll_reqs $nreqs
279     IO::AIO::max_poll_time $seconds
280     IO::AIO::min_parallel $nthreads
281     IO::AIO::max_parallel $nthreads
282     IO::AIO::max_idle $nthreads
283 root 1.188 IO::AIO::idle_timeout $seconds
284 root 1.175 IO::AIO::max_outstanding $maxreqs
285     IO::AIO::nreqs
286     IO::AIO::nready
287     IO::AIO::npending
288 root 1.302 IO::AIO::reinit
289    
290 root 1.307 $nfd = IO::AIO::get_fdlimit
291     IO::AIO::min_fdlimit $nfd
292 root 1.175
293     IO::AIO::sendfile $ofh, $ifh, $offset, $count
294     IO::AIO::fadvise $fh, $offset, $len, $advice
295 root 1.315 IO::AIO::fexecve $fh, $argv, $envp
296 root 1.302
297 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
298     IO::AIO::munmap $scalar
299 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
300 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
301     IO::AIO::mprotect $scalar, $offset, $length, $protect
302 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
303 root 1.175 IO::AIO::munlockall
304    
305 root 1.302 # stat extensions
306     $counter = IO::AIO::st_gen
307     $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
308     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
309     $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
310     $seconds = IO::AIO::st_btimesec
311     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
312    
313     # very much unportable syscalls
314 root 1.305 IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_len, $flags
315 root 1.302 IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
316     IO::AIO::tee $r_fh, $w_fh, $length, $flags
317 root 1.315
318 root 1.302 $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
319     ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
320 root 1.315
321     $fh = IO::AIO::eventfd [$initval, [$flags]]
322 root 1.302 $fh = IO::AIO::memfd_create $pathname[, $flags]
323 root 1.315
324 root 1.302 $fh = IO::AIO::timerfd_create $clockid[, $flags]
325     ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
326     ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
327    
328 root 1.315 $fh = IO::AIO::pidfd_open $pid[, $flags]
329     $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
330     $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
331    
332 root 1.316 $retval = IO::AIO::mount $special, $path, $fstype, $flags = 0, $data = undef
333     $retval = IO::AIO::umount $path, $flags = 0
334    
335 root 1.219 =head2 API NOTES
336 root 1.1
337 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
338     with the same name (sans C<aio_>). The arguments are similar or identical,
339 root 1.14 and they all accept an additional (and optional) C<$callback> argument
340 root 1.212 which must be a code reference. This code reference will be called after
341     the syscall has been executed in an asynchronous fashion. The results
342     of the request will be passed as arguments to the callback (and, if an
343     error occured, in C<$!>) - for most requests the syscall return code (e.g.
344     most syscalls return C<-1> on error, unlike perl, which usually delivers
345     "false").
346    
347     Some requests (such as C<aio_readdir>) pass the actual results and
348     communicate failures by passing C<undef>.
349 root 1.1
350 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
351     internally until the request has finished.
352 root 1.1
353 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
354     further manipulation of those requests while they are in-flight.
355 root 1.52
356 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
357     reason for this is that at the time the request is being executed, the
358 root 1.212 current working directory could have changed. Alternatively, you can
359     make sure that you never change the current working directory anywhere
360     in the program and then use relative paths. You can also take advantage
361     of IO::AIOs working directory abstraction, that lets you specify paths
362     relative to some previously-opened "working directory object" - see the
363     description of the C<IO::AIO::WD> class later in this document.
364 root 1.28
365 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
366     in filenames you got from outside (command line, readdir etc.) without
367 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
368     module and encode your pathnames to the locale (or other) encoding in
369     effect in the user environment, d) use Glib::filename_from_unicode on
370     unicode filenames or e) use something else to ensure your scalar has the
371     correct contents.
372 root 1.87
373     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
374 root 1.136 handles correctly whether it is set or not.
375 root 1.1
376 root 1.219 =head2 AIO REQUEST FUNCTIONS
377    
378 root 1.5 =over 4
379 root 1.1
380 root 1.80 =item $prev_pri = aioreq_pri [$pri]
381 root 1.68
382 root 1.80 Returns the priority value that would be used for the next request and, if
383     C<$pri> is given, sets the priority for the next aio request.
384 root 1.68
385 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
386     and C<4>, respectively. Requests with higher priority will be serviced
387     first.
388    
389     The priority will be reset to C<0> after each call to one of the C<aio_*>
390 root 1.68 functions.
391    
392 root 1.69 Example: open a file with low priority, then read something from it with
393     higher priority so the read request is serviced before other low priority
394     open requests (potentially spamming the cache):
395    
396     aioreq_pri -3;
397     aio_open ..., sub {
398     return unless $_[0];
399    
400     aioreq_pri -2;
401     aio_read $_[0], ..., sub {
402     ...
403     };
404     };
405    
406 root 1.106
407 root 1.69 =item aioreq_nice $pri_adjust
408    
409     Similar to C<aioreq_pri>, but subtracts the given value from the current
410 root 1.87 priority, so the effect is cumulative.
411 root 1.69
412 root 1.106
413 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
414 root 1.1
415 root 1.2 Asynchronously open or create a file and call the callback with a newly
416 root 1.233 created filehandle for the file (or C<undef> in case of an error).
417 root 1.1
418     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
419     for an explanation.
420    
421 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
422     list. They are the same as used by C<sysopen>.
423    
424     Likewise, C<$mode> specifies the mode of the newly created file, if it
425     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
426     except that it is mandatory (i.e. use C<0> if you don't create new files,
427 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
428     by the umask in effect then the request is being executed, so better never
429     change the umask.
430 root 1.1
431     Example:
432    
433 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
434 root 1.2 if ($_[0]) {
435     print "open successful, fh is $_[0]\n";
436 root 1.1 ...
437     } else {
438     die "open failed: $!\n";
439     }
440     };
441    
442 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
443     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
444     following POSIX and non-POSIX constants are available (missing ones on
445     your system are, as usual, C<0>):
446    
447     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
448     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
449 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
450 root 1.194
451 root 1.106
452 root 1.40 =item aio_close $fh, $callback->($status)
453 root 1.1
454 root 1.2 Asynchronously close a file and call the callback with the result
455 root 1.116 code.
456    
457 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
458 root 1.121 closing the file descriptor associated with the filehandle itself.
459 root 1.117
460 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
461     use dup2 to overwrite the file descriptor with the write-end of a pipe
462     (the pipe fd will be created on demand and will be cached).
463 root 1.117
464 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
465     free for reuse until the perl filehandle is closed.
466 root 1.117
467     =cut
468    
469 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
470    
471 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
472 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
473     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
474     C<IO::AIO::SEEK_END>).
475    
476     The resulting absolute offset will be passed to the callback, or C<-1> in
477     case of an error.
478    
479     In theory, the C<$whence> constants could be different than the
480     corresponding values from L<Fcntl>, but perl guarantees they are the same,
481     so don't panic.
482    
483 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
484     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
485     could be found. No guarantees about suitability for use in C<aio_seek> or
486     Perl's C<sysseek> can be made though, although I would naively assume they
487     "just work".
488    
489 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
490 root 1.1
491 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
492 root 1.1
493 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
494 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
495     calls the callback with the actual number of bytes transferred (or -1 on
496 root 1.145 error, just like the syscall).
497 root 1.109
498 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
499     offset plus the actual number of bytes read.
500    
501 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
502     be used (and updated), otherwise the file descriptor offset will not be
503     changed by these calls.
504 root 1.109
505 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
506     C<$data>.
507 root 1.109
508     If C<$dataoffset> is less than zero, it will be counted from the end of
509     C<$data>.
510 root 1.1
511 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
512 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
513     the necessary/optional hardware is installed).
514 root 1.31
515 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
516 root 1.1 offset C<0> within the scalar:
517    
518     aio_read $fh, 7, 15, $buffer, 0, sub {
519 root 1.9 $_[0] > 0 or die "read error: $!";
520     print "read $_[0] bytes: <$buffer>\n";
521 root 1.1 };
522    
523 root 1.106
524 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
525 root 1.35
526     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
527     reading at byte offset C<$in_offset>, and starts writing at the current
528     file offset of C<$out_fh>. Because of that, it is not safe to issue more
529     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
530 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
531     move or use the file offset of C<$in_fh>.
532 root 1.35
533 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
534 root 1.196 are written, and there is no way to find out how many more bytes have been
535     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
536     number of bytes written to C<$out_fh>. Only if the result value equals
537     C<$length> one can assume that C<$length> bytes have been read.
538 root 1.185
539     Unlike with other C<aio_> functions, it makes a lot of sense to use
540     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
541     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
542 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
543     into a trap where C<aio_sendfile> reads some data with readahead, then
544     fails to write all data, and when the socket is ready the next time, the
545     data in the cache is already lost, forcing C<aio_sendfile> to again hit
546     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
547     resource usage.
548    
549     This call tries to make use of a native C<sendfile>-like syscall to
550     provide zero-copy operation. For this to work, C<$out_fh> should refer to
551     a socket, and C<$in_fh> should refer to an mmap'able file.
552 root 1.35
553 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
554 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
555     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
556     type of filehandle regardless of the limitations of the operating system.
557    
558     As native sendfile syscalls (as practically any non-POSIX interface hacked
559     together in a hurry to improve benchmark numbers) tend to be rather buggy
560     on many systems, this implementation tries to work around some known bugs
561     in Linux and FreeBSD kernels (probably others, too), but that might fail,
562     so you really really should check the return value of C<aio_sendfile> -
563 root 1.262 fewer bytes than expected might have been transferred.
564 root 1.35
565 root 1.106
566 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
567 root 1.1
568 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
569 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
570     argument specifies the starting point from which data is to be read and
571     C<$length> specifies the number of bytes to be read. I/O is performed in
572     whole pages, so that offset is effectively rounded down to a page boundary
573     and bytes are read up to the next page boundary greater than or equal to
574 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
575 root 1.1 file. The current file offset of the file is left unchanged.
576    
577 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
578     be emulated by simply reading the data, which would have a similar effect.
579 root 1.26
580 root 1.106
581 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
582 root 1.1
583 root 1.40 =item aio_lstat $fh, $callback->($status)
584 root 1.1
585 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
586     callback will be called after the stat and the results will be available
587     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
588     and C<-T>).
589 root 1.1
590     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
591     for an explanation.
592    
593     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
594     error when stat'ing a large file, the results will be silently truncated
595     unless perl itself is compiled with large file support.
596    
597 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
598     following constants and functions (if not implemented, the constants will
599     be C<0> and the functions will either C<croak> or fall back on traditional
600     behaviour).
601    
602     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
603     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
604     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
605    
606 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
607     ACCESS>.
608    
609 root 1.1 Example: Print the length of F</etc/passwd>:
610    
611     aio_stat "/etc/passwd", sub {
612     $_[0] and die "stat failed: $!";
613     print "size is ", -s _, "\n";
614     };
615    
616 root 1.106
617 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
618 root 1.172
619     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
620     whether a file handle or path was passed.
621    
622     On success, the callback is passed a hash reference with the following
623     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
624     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
625     is passed.
626    
627     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
628     C<ST_NOSUID>.
629    
630     The following non-POSIX IO::AIO::ST_* flag masks are defined to
631     their correct value when available, or to C<0> on systems that do
632     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
633     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
634     C<ST_NODIRATIME> and C<ST_RELATIME>.
635    
636     Example: stat C</wd> and dump out the data if successful.
637    
638     aio_statvfs "/wd", sub {
639     my $f = $_[0]
640     or die "statvfs: $!";
641    
642     use Data::Dumper;
643     say Dumper $f;
644     };
645    
646     # result:
647     {
648     bsize => 1024,
649     bfree => 4333064312,
650     blocks => 10253828096,
651     files => 2050765568,
652     flag => 4096,
653     favail => 2042092649,
654     bavail => 4333064312,
655     ffree => 2042092649,
656     namemax => 255,
657     frsize => 1024,
658     fsid => 1810
659     }
660    
661 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
662    
663     Works like perl's C<utime> function (including the special case of $atime
664     and $mtime being undef). Fractional times are supported if the underlying
665     syscalls support them.
666    
667 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
668     otherwise utime(2). If called on a file descriptor, uses futimens(2)
669     or futimes(2) if available, otherwise returns ENOSYS, so this is not
670     portable.
671 root 1.106
672     Examples:
673    
674 root 1.107 # set atime and mtime to current time (basically touch(1)):
675 root 1.106 aio_utime "path", undef, undef;
676     # set atime to current time and mtime to beginning of the epoch:
677     aio_utime "path", time, undef; # undef==0
678    
679    
680     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
681    
682     Works like perl's C<chown> function, except that C<undef> for either $uid
683     or $gid is being interpreted as "do not change" (but -1 can also be used).
684    
685     Examples:
686    
687     # same as "chown root path" in the shell:
688     aio_chown "path", 0, -1;
689     # same as above:
690     aio_chown "path", 0, undef;
691    
692    
693 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
694    
695     Works like truncate(2) or ftruncate(2).
696    
697    
698 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
699    
700 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
701     linux C<fallocate> documentation for details.
702 root 1.229
703 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
704     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
705     to deallocate a file range.
706    
707     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
708 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
709     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
710     to unshare shared blocks (see your L<fallocate(2)> manpage).
711 root 1.229
712     The file system block size used by C<fallocate> is presumably the
713 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
714     can dictate other limitations.
715 root 1.229
716     If C<fallocate> isn't available or cannot be emulated (currently no
717     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
718    
719    
720 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
721    
722     Works like perl's C<chmod> function.
723    
724    
725 root 1.40 =item aio_unlink $pathname, $callback->($status)
726 root 1.1
727     Asynchronously unlink (delete) a file and call the callback with the
728     result code.
729    
730 root 1.106
731 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
732 root 1.82
733 root 1.86 [EXPERIMENTAL]
734    
735 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
736    
737 root 1.86 The only (POSIX-) portable way of calling this function is:
738 root 1.83
739 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
740 root 1.82
741 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
742     and functions.
743 root 1.106
744 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
745    
746     Asynchronously create a new link to the existing object at C<$srcpath> at
747     the path C<$dstpath> and call the callback with the result code.
748    
749 root 1.106
750 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
751    
752     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
753     the path C<$dstpath> and call the callback with the result code.
754    
755 root 1.106
756 root 1.209 =item aio_readlink $pathname, $callback->($link)
757 root 1.90
758     Asynchronously read the symlink specified by C<$path> and pass it to
759     the callback. If an error occurs, nothing or undef gets passed to the
760     callback.
761    
762 root 1.106
763 root 1.209 =item aio_realpath $pathname, $callback->($path)
764 root 1.201
765     Asynchronously make the path absolute and resolve any symlinks in
766 root 1.239 C<$path>. The resulting path only consists of directories (same as
767 root 1.202 L<Cwd::realpath>).
768 root 1.201
769     This request can be used to get the absolute path of the current working
770     directory by passing it a path of F<.> (a single dot).
771    
772    
773 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
774    
775     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
776     rename(2) and call the callback with the result code.
777    
778 root 1.241 On systems that support the AIO::WD working directory abstraction
779     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
780     of failing, C<rename> is called on the absolute path of C<$wd>.
781    
782 root 1.106
783 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
784    
785     Basically a version of C<aio_rename> with an additional C<$flags>
786     argument. Calling this with C<$flags=0> is the same as calling
787     C<aio_rename>.
788    
789     Non-zero flags are currently only supported on GNU/Linux systems that
790     support renameat2. Other systems fail with C<ENOSYS> in this case.
791    
792     The following constants are available (missing ones are, as usual C<0>),
793     see renameat2(2) for details:
794    
795     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
796     and C<IO::AIO::RENAME_WHITEOUT>.
797    
798    
799 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
800    
801     Asynchronously mkdir (create) a directory and call the callback with
802     the result code. C<$mode> will be modified by the umask at the time the
803     request is executed, so do not change your umask.
804    
805 root 1.106
806 root 1.40 =item aio_rmdir $pathname, $callback->($status)
807 root 1.27
808     Asynchronously rmdir (delete) a directory and call the callback with the
809     result code.
810    
811 root 1.241 On systems that support the AIO::WD working directory abstraction
812     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
813     C<rmdir> is called on the absolute path of C<$wd>.
814    
815 root 1.106
816 root 1.46 =item aio_readdir $pathname, $callback->($entries)
817 root 1.37
818     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
819     directory (i.e. opendir + readdir + closedir). The entries will not be
820     sorted, and will B<NOT> include the C<.> and C<..> entries.
821    
822 root 1.148 The callback is passed a single argument which is either C<undef> or an
823     array-ref with the filenames.
824    
825    
826     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
827    
828 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
829     tune behaviour and output format. In case of an error, C<$entries> will be
830 root 1.148 C<undef>.
831    
832     The flags are a combination of the following constants, ORed together (the
833     flags will also be passed to the callback, possibly modified):
834    
835     =over 4
836    
837 root 1.150 =item IO::AIO::READDIR_DENTS
838 root 1.148
839 root 1.284 Normally the callback gets an arrayref consisting of names only (as
840     with C<aio_readdir>). If this flag is set, then the callback gets an
841     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
842     single directory entry in more detail:
843 root 1.148
844     C<$name> is the name of the entry.
845    
846 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
847 root 1.148
848 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
849     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
850     C<IO::AIO::DT_WHT>.
851 root 1.148
852 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
853     to know, you have to run stat yourself. Also, for speed/memory reasons,
854     the C<$type> scalars are read-only: you must not modify them.
855 root 1.148
856 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
857 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
858     systems that do not deliver the inode information.
859 root 1.150
860     =item IO::AIO::READDIR_DIRS_FIRST
861 root 1.148
862     When this flag is set, then the names will be returned in an order where
863 root 1.193 likely directories come first, in optimal stat order. This is useful when
864     you need to quickly find directories, or you want to find all directories
865     while avoiding to stat() each entry.
866 root 1.148
867 root 1.149 If the system returns type information in readdir, then this is used
868 root 1.193 to find directories directly. Otherwise, likely directories are names
869     beginning with ".", or otherwise names with no dots, of which names with
870 root 1.149 short names are tried first.
871    
872 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
873 root 1.148
874     When this flag is set, then the names will be returned in an order
875 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
876     all files in the given directory, then the returned order will likely be
877     faster.
878    
879     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
880     then the likely dirs come first, resulting in a less optimal stat order
881     for stat'ing all entries, but likely a more optimal order for finding
882     subdirectories.
883 root 1.148
884 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
885 root 1.148
886     This flag should not be set when calling C<aio_readdirx>. Instead, it
887     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
888 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
889 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
890    
891     =back
892 root 1.37
893 root 1.106
894 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
895    
896     Opens, reads and closes the given file. The data is put into C<$data>,
897     which is resized as required.
898    
899     If C<$offset> is negative, then it is counted from the end of the file.
900    
901     If C<$length> is zero, then the remaining length of the file is
902     used. Also, in this case, the same limitations to modifying C<$data> apply
903     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
904     with C<substr>. If the size of the file is known, specifying a non-zero
905     C<$length> results in a performance advantage.
906    
907     This request is similar to the older C<aio_load> request, but since it is
908     a single request, it might be more efficient to use.
909    
910     Example: load F</etc/passwd> into C<$passwd>.
911    
912     my $passwd;
913     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
914     $_[0] >= 0
915     or die "/etc/passwd: $!\n";
916    
917     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
918     print $passwd;
919     };
920     IO::AIO::flush;
921    
922    
923 root 1.209 =item aio_load $pathname, $data, $callback->($status)
924 root 1.98
925     This is a composite request that tries to fully load the given file into
926     memory. Status is the same as with aio_read.
927    
928 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
929    
930 root 1.98 =cut
931    
932     sub aio_load($$;$) {
933 root 1.123 my ($path, undef, $cb) = @_;
934     my $data = \$_[1];
935 root 1.98
936 root 1.123 my $pri = aioreq_pri;
937     my $grp = aio_group $cb;
938    
939     aioreq_pri $pri;
940     add $grp aio_open $path, O_RDONLY, 0, sub {
941     my $fh = shift
942     or return $grp->result (-1);
943 root 1.98
944     aioreq_pri $pri;
945 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
946     $grp->result ($_[0]);
947 root 1.98 };
948 root 1.123 };
949 root 1.98
950 root 1.123 $grp
951 root 1.98 }
952    
953 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
954    
955     Try to copy the I<file> (directories not supported as either source or
956     destination) from C<$srcpath> to C<$dstpath> and call the callback with
957 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
958 root 1.82
959 root 1.275 Existing destination files will be truncated.
960    
961 root 1.134 This is a composite request that creates the destination file with
962 root 1.82 mode 0200 and copies the contents of the source file into it using
963     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
964     uid/gid, in that order.
965    
966     If an error occurs, the partial destination file will be unlinked, if
967     possible, except when setting atime, mtime, access mode and uid/gid, where
968     errors are being ignored.
969    
970     =cut
971    
972     sub aio_copy($$;$) {
973 root 1.123 my ($src, $dst, $cb) = @_;
974 root 1.82
975 root 1.123 my $pri = aioreq_pri;
976     my $grp = aio_group $cb;
977 root 1.82
978 root 1.123 aioreq_pri $pri;
979     add $grp aio_open $src, O_RDONLY, 0, sub {
980     if (my $src_fh = $_[0]) {
981 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
982 root 1.95
983 root 1.123 aioreq_pri $pri;
984     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
985     if (my $dst_fh = $_[0]) {
986     aioreq_pri $pri;
987     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
988     if ($_[0] == $stat[7]) {
989     $grp->result (0);
990     close $src_fh;
991    
992 root 1.147 my $ch = sub {
993     aioreq_pri $pri;
994     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
995     aioreq_pri $pri;
996     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
997     aioreq_pri $pri;
998     add $grp aio_close $dst_fh;
999     }
1000     };
1001     };
1002 root 1.123
1003     aioreq_pri $pri;
1004 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1005     if ($_[0] < 0 && $! == ENOSYS) {
1006     aioreq_pri $pri;
1007     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1008     } else {
1009     $ch->();
1010     }
1011     };
1012 root 1.123 } else {
1013     $grp->result (-1);
1014     close $src_fh;
1015     close $dst_fh;
1016    
1017     aioreq $pri;
1018     add $grp aio_unlink $dst;
1019     }
1020     };
1021     } else {
1022     $grp->result (-1);
1023     }
1024     },
1025 root 1.82
1026 root 1.123 } else {
1027     $grp->result (-1);
1028     }
1029     };
1030 root 1.82
1031 root 1.123 $grp
1032 root 1.82 }
1033    
1034     =item aio_move $srcpath, $dstpath, $callback->($status)
1035    
1036     Try to move the I<file> (directories not supported as either source or
1037     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1038 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1039 root 1.82
1040 root 1.137 This is a composite request that tries to rename(2) the file first; if
1041     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1042     that is successful, unlinks the C<$srcpath>.
1043 root 1.82
1044     =cut
1045    
1046     sub aio_move($$;$) {
1047 root 1.123 my ($src, $dst, $cb) = @_;
1048 root 1.82
1049 root 1.123 my $pri = aioreq_pri;
1050     my $grp = aio_group $cb;
1051 root 1.82
1052 root 1.123 aioreq_pri $pri;
1053     add $grp aio_rename $src, $dst, sub {
1054     if ($_[0] && $! == EXDEV) {
1055     aioreq_pri $pri;
1056     add $grp aio_copy $src, $dst, sub {
1057     $grp->result ($_[0]);
1058 root 1.95
1059 root 1.196 unless ($_[0]) {
1060 root 1.123 aioreq_pri $pri;
1061     add $grp aio_unlink $src;
1062     }
1063     };
1064     } else {
1065     $grp->result ($_[0]);
1066     }
1067     };
1068 root 1.82
1069 root 1.123 $grp
1070 root 1.82 }
1071    
1072 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1073 root 1.40
1074 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1075 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1076     names, directories you can recurse into (directories), and ones you cannot
1077     recurse into (everything else, including symlinks to directories).
1078 root 1.52
1079 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1080 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1081     this function generates. If it is C<< <= 0 >>, then a suitable default
1082 root 1.81 will be chosen (currently 4).
1083 root 1.40
1084     On error, the callback is called without arguments, otherwise it receives
1085     two array-refs with path-relative entry names.
1086    
1087     Example:
1088    
1089     aio_scandir $dir, 0, sub {
1090     my ($dirs, $nondirs) = @_;
1091     print "real directories: @$dirs\n";
1092     print "everything else: @$nondirs\n";
1093     };
1094    
1095     Implementation notes.
1096    
1097     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1098    
1099 root 1.149 If readdir returns file type information, then this is used directly to
1100     find directories.
1101    
1102     Otherwise, after reading the directory, the modification time, size etc.
1103     of the directory before and after the readdir is checked, and if they
1104     match (and isn't the current time), the link count will be used to decide
1105     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1106     number of subdirectories will be assumed.
1107    
1108     Then entries will be sorted into likely directories a non-initial dot
1109     currently) and likely non-directories (see C<aio_readdirx>). Then every
1110     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1111     in order of their inode numbers. If that succeeds, it assumes that the
1112     entry is a directory or a symlink to directory (which will be checked
1113 root 1.207 separately). This is often faster than stat'ing the entry itself because
1114 root 1.52 filesystems might detect the type of the entry without reading the inode
1115 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1116     the filetype information on readdir.
1117 root 1.52
1118     If the known number of directories (link count - 2) has been reached, the
1119     rest of the entries is assumed to be non-directories.
1120    
1121     This only works with certainty on POSIX (= UNIX) filesystems, which
1122     fortunately are the vast majority of filesystems around.
1123    
1124     It will also likely work on non-POSIX filesystems with reduced efficiency
1125     as those tend to return 0 or 1 as link counts, which disables the
1126     directory counting heuristic.
1127 root 1.40
1128     =cut
1129    
1130 root 1.100 sub aio_scandir($$;$) {
1131 root 1.123 my ($path, $maxreq, $cb) = @_;
1132    
1133     my $pri = aioreq_pri;
1134 root 1.40
1135 root 1.123 my $grp = aio_group $cb;
1136 root 1.80
1137 root 1.123 $maxreq = 4 if $maxreq <= 0;
1138 root 1.55
1139 root 1.210 # get a wd object
1140 root 1.123 aioreq_pri $pri;
1141 root 1.210 add $grp aio_wd $path, sub {
1142 root 1.212 $_[0]
1143     or return $grp->result ();
1144    
1145 root 1.210 my $wd = [shift, "."];
1146 root 1.40
1147 root 1.210 # stat once
1148 root 1.80 aioreq_pri $pri;
1149 root 1.210 add $grp aio_stat $wd, sub {
1150     return $grp->result () if $_[0];
1151     my $now = time;
1152     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1153 root 1.299 my $rdxflags = READDIR_DIRS_FIRST;
1154    
1155     if ((stat _)[3] < 2) {
1156     # at least one non-POSIX filesystem exists
1157     # that returns useful DT_type values: btrfs,
1158     # so optimise for this here by requesting dents
1159     $rdxflags |= READDIR_DENTS;
1160     }
1161 root 1.40
1162 root 1.210 # read the directory entries
1163 root 1.80 aioreq_pri $pri;
1164 root 1.299 add $grp aio_readdirx $wd, $rdxflags, sub {
1165     my ($entries, $flags) = @_
1166 root 1.210 or return $grp->result ();
1167    
1168 root 1.299 if ($rdxflags & READDIR_DENTS) {
1169     # if we requested type values, see if we can use them directly.
1170    
1171     # if there were any DT_UNKNOWN entries then we assume we
1172     # don't know. alternatively, we could assume that if we get
1173     # one DT_DIR, then all directories are indeed marked with
1174     # DT_DIR, but this seems not required for btrfs, and this
1175     # is basically the "btrfs can't get it's act together" code
1176     # branch.
1177     unless ($flags & READDIR_FOUND_UNKNOWN) {
1178     # now we have valid DT_ information for all entries,
1179     # so use it as an optimisation without further stat's.
1180     # they must also all be at the beginning of @$entries
1181     # by now.
1182    
1183     my $dirs;
1184    
1185     if (@$entries) {
1186     for (0 .. $#$entries) {
1187     if ($entries->[$_][1] != DT_DIR) {
1188     # splice out directories
1189     $dirs = [splice @$entries, 0, $_];
1190     last;
1191     }
1192     }
1193    
1194     # if we didn't find any non-dir, then all entries are dirs
1195     unless ($dirs) {
1196     ($dirs, $entries) = ($entries, []);
1197     }
1198     } else {
1199     # directory is empty, so there are no sbdirs
1200     $dirs = [];
1201     }
1202    
1203     # either splice'd the directories out or the dir was empty.
1204     # convert dents to filenames
1205     $_ = $_->[0] for @$dirs;
1206     $_ = $_->[0] for @$entries;
1207    
1208     return $grp->result ($dirs, $entries);
1209     }
1210    
1211     # cannot use, so return to our old ways
1212     # by pretending we only scanned for names.
1213     $_ = $_->[0] for @$entries;
1214     }
1215    
1216 root 1.210 # stat the dir another time
1217     aioreq_pri $pri;
1218     add $grp aio_stat $wd, sub {
1219     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1220 root 1.95
1221 root 1.210 my $ndirs;
1222 root 1.95
1223 root 1.210 # take the slow route if anything looks fishy
1224     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1225     $ndirs = -1;
1226     } else {
1227     # if nlink == 2, we are finished
1228     # for non-posix-fs's, we rely on nlink < 2
1229     $ndirs = (stat _)[3] - 2
1230     or return $grp->result ([], $entries);
1231     }
1232 root 1.123
1233 root 1.210 my (@dirs, @nondirs);
1234 root 1.40
1235 root 1.210 my $statgrp = add $grp aio_group sub {
1236     $grp->result (\@dirs, \@nondirs);
1237     };
1238 root 1.40
1239 root 1.210 limit $statgrp $maxreq;
1240     feed $statgrp sub {
1241     return unless @$entries;
1242     my $entry = shift @$entries;
1243    
1244     aioreq_pri $pri;
1245     $wd->[1] = "$entry/.";
1246     add $statgrp aio_stat $wd, sub {
1247     if ($_[0] < 0) {
1248     push @nondirs, $entry;
1249     } else {
1250     # need to check for real directory
1251     aioreq_pri $pri;
1252     $wd->[1] = $entry;
1253     add $statgrp aio_lstat $wd, sub {
1254     if (-d _) {
1255     push @dirs, $entry;
1256    
1257     unless (--$ndirs) {
1258     push @nondirs, @$entries;
1259     feed $statgrp;
1260     }
1261     } else {
1262     push @nondirs, $entry;
1263 root 1.74 }
1264 root 1.40 }
1265     }
1266 root 1.210 };
1267 root 1.74 };
1268 root 1.40 };
1269     };
1270     };
1271 root 1.123 };
1272 root 1.55
1273 root 1.123 $grp
1274 root 1.40 }
1275    
1276 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1277 root 1.99
1278 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1279 root 1.239 status of the final C<rmdir> only. This is a composite request that
1280 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1281     everything else.
1282 root 1.99
1283     =cut
1284    
1285     sub aio_rmtree;
1286 root 1.100 sub aio_rmtree($;$) {
1287 root 1.123 my ($path, $cb) = @_;
1288 root 1.99
1289 root 1.123 my $pri = aioreq_pri;
1290     my $grp = aio_group $cb;
1291 root 1.99
1292 root 1.123 aioreq_pri $pri;
1293     add $grp aio_scandir $path, 0, sub {
1294     my ($dirs, $nondirs) = @_;
1295 root 1.99
1296 root 1.123 my $dirgrp = aio_group sub {
1297     add $grp aio_rmdir $path, sub {
1298     $grp->result ($_[0]);
1299 root 1.99 };
1300 root 1.123 };
1301 root 1.99
1302 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1303     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1304 root 1.99
1305 root 1.123 add $grp $dirgrp;
1306     };
1307 root 1.99
1308 root 1.123 $grp
1309 root 1.99 }
1310    
1311 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1312    
1313     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1314    
1315     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1316     they execute asynchronously and pass the return value to the callback.
1317    
1318     Both calls can be used for a lot of things, some of which make more sense
1319     to run asynchronously in their own thread, while some others make less
1320     sense. For example, calls that block waiting for external events, such
1321     as locking, will also lock down an I/O thread while it is waiting, which
1322     can deadlock the whole I/O system. At the same time, there might be no
1323     alternative to using a thread to wait.
1324    
1325     So in general, you should only use these calls for things that do
1326     (filesystem) I/O, not for things that wait for other events (network,
1327     other processes), although if you are careful and know what you are doing,
1328     you still can.
1329    
1330 root 1.303 The following constants are available and can be used for normal C<ioctl>
1331     and C<fcntl> as well (missing ones are, as usual C<0>):
1332 root 1.264
1333 root 1.271 C<F_DUPFD_CLOEXEC>,
1334    
1335     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1336    
1337 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1338    
1339 root 1.303 C<F_ADD_SEALS>, C<F_GET_SEALS>, C<F_SEAL_SEAL>, C<F_SEAL_SHRINK>, C<F_SEAL_GROW> and
1340     C<F_SEAL_WRITE>.
1341    
1342 root 1.264 C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1343     C<FS_IOC_FIEMAP>.
1344    
1345     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1346     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1347    
1348     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1349     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1350     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1351     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1352     C<FS_FL_USER_MODIFIABLE>.
1353    
1354     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1355     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1356     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1357     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1358    
1359 root 1.316 C<BLKROSET>, C<BLKROGET>, C<BLKRRPART>, C<BLKGETSIZE>, C<BLKFLSBUF>, C<BLKRASET>,
1360     C<BLKRAGET>, C<BLKFRASET>, C<BLKFRAGET>, C<BLKSECTSET>, C<BLKSECTGET>, C<BLKSSZGET>,
1361     C<BLKBSZGET>, C<BLKBSZSET>, C<BLKGETSIZE64>,
1362    
1363    
1364 root 1.119 =item aio_sync $callback->($status)
1365    
1366     Asynchronously call sync and call the callback when finished.
1367    
1368 root 1.40 =item aio_fsync $fh, $callback->($status)
1369 root 1.1
1370     Asynchronously call fsync on the given filehandle and call the callback
1371     with the fsync result code.
1372    
1373 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1374 root 1.1
1375     Asynchronously call fdatasync on the given filehandle and call the
1376 root 1.26 callback with the fdatasync result code.
1377    
1378     If this call isn't available because your OS lacks it or it couldn't be
1379     detected, it will be emulated by calling C<fsync> instead.
1380 root 1.1
1381 root 1.206 =item aio_syncfs $fh, $callback->($status)
1382    
1383     Asynchronously call the syncfs syscall to sync the filesystem associated
1384     to the given filehandle and call the callback with the syncfs result
1385     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1386     errno to C<ENOSYS> nevertheless.
1387    
1388 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1389    
1390     Sync the data portion of the file specified by C<$offset> and C<$length>
1391     to disk (but NOT the metadata), by calling the Linux-specific
1392     sync_file_range call. If sync_file_range is not available or it returns
1393     ENOSYS, then fdatasync or fsync is being substituted.
1394    
1395     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1396     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1397     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1398     manpage for details.
1399    
1400 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1401 root 1.120
1402     This request tries to open, fsync and close the given path. This is a
1403 root 1.135 composite request intended to sync directories after directory operations
1404 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1405     specific effect, but usually it makes sure that directory changes get
1406     written to disc. It works for anything that can be opened for read-only,
1407     not just directories.
1408    
1409 root 1.162 Future versions of this function might fall back to other methods when
1410     C<fsync> on the directory fails (such as calling C<sync>).
1411    
1412 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1413    
1414     =cut
1415    
1416     sub aio_pathsync($;$) {
1417 root 1.123 my ($path, $cb) = @_;
1418    
1419     my $pri = aioreq_pri;
1420     my $grp = aio_group $cb;
1421 root 1.120
1422 root 1.123 aioreq_pri $pri;
1423     add $grp aio_open $path, O_RDONLY, 0, sub {
1424     my ($fh) = @_;
1425     if ($fh) {
1426     aioreq_pri $pri;
1427     add $grp aio_fsync $fh, sub {
1428     $grp->result ($_[0]);
1429 root 1.120
1430     aioreq_pri $pri;
1431 root 1.123 add $grp aio_close $fh;
1432     };
1433     } else {
1434     $grp->result (-1);
1435     }
1436     };
1437 root 1.120
1438 root 1.123 $grp
1439 root 1.120 }
1440    
1441 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1442 root 1.170
1443     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1444 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1445     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1446     scalar must only be modified in-place while an aio operation is pending on
1447     it).
1448 root 1.170
1449     It calls the C<msync> function of your OS, if available, with the memory
1450     area starting at C<$offset> in the string and ending C<$length> bytes
1451     later. If C<$length> is negative, counts from the end, and if C<$length>
1452     is C<undef>, then it goes till the end of the string. The flags can be
1453 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1454     C<IO::AIO::MS_INVALIDATE>.
1455 root 1.170
1456     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1457    
1458     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1459     scalars.
1460    
1461     It touches (reads or writes) all memory pages in the specified
1462 root 1.239 range inside the scalar. All caveats and parameters are the same
1463 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1464     C<0> (which reads all pages and ensures they are instantiated) or
1465 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1466 root 1.170 writing an octet from it, which dirties the page).
1467    
1468 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1469    
1470     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1471     scalars.
1472    
1473     It reads in all the pages of the underlying storage into memory (if any)
1474     and locks them, so they are not getting swapped/paged out or removed.
1475    
1476     If C<$length> is undefined, then the scalar will be locked till the end.
1477    
1478     On systems that do not implement C<mlock>, this function returns C<-1>
1479     and sets errno to C<ENOSYS>.
1480    
1481     Note that the corresponding C<munlock> is synchronous and is
1482     documented under L<MISCELLANEOUS FUNCTIONS>.
1483    
1484 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1485     C<$data> gets destroyed.
1486    
1487     open my $fh, "<", $path or die "$path: $!";
1488     my $data;
1489     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1490     aio_mlock $data; # mlock in background
1491    
1492 root 1.182 =item aio_mlockall $flags, $callback->($status)
1493    
1494 root 1.297 Calls the C<mlockall> function with the given C<$flags> (a
1495     combination of C<IO::AIO::MCL_CURRENT>, C<IO::AIO::MCL_FUTURE> and
1496     C<IO::AIO::MCL_ONFAULT>).
1497 root 1.182
1498     On systems that do not implement C<mlockall>, this function returns C<-1>
1499 root 1.297 and sets errno to C<ENOSYS>. Similarly, flag combinations not supported
1500     by the system result in a return value of C<-1> with errno being set to
1501     C<EINVAL>.
1502 root 1.182
1503     Note that the corresponding C<munlockall> is synchronous and is
1504     documented under L<MISCELLANEOUS FUNCTIONS>.
1505    
1506 root 1.183 Example: asynchronously lock all current and future pages into memory.
1507    
1508     aio_mlockall IO::AIO::MCL_FUTURE;
1509    
1510 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1511    
1512 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1513     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1514     the ioctl is not available on your OS, then this request will fail with
1515 root 1.223 C<ENOSYS>.
1516    
1517     C<$start> is the starting offset to query extents for, C<$length> is the
1518     size of the range to query - if it is C<undef>, then the whole file will
1519     be queried.
1520    
1521     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1522     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1523     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1524     the data portion.
1525    
1526     C<$count> is the maximum number of extent records to return. If it is
1527 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1528 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1529 root 1.232 instead of the extents themselves (which is unreliable, see below).
1530 root 1.223
1531     If an error occurs, the callback receives no arguments. The special
1532     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1533    
1534     Otherwise, the callback receives an array reference with extent
1535     structures. Each extent structure is an array reference itself, with the
1536     following members:
1537    
1538     [$logical, $physical, $length, $flags]
1539    
1540     Flags is any combination of the following flag values (typically either C<0>
1541 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1542 root 1.223
1543     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1544     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1545     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1546     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1547     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1548     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1549    
1550 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1551 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1552 root 1.278 it to return all extents of a range for files with a large number of
1553     extents. The code (only) works around all these issues if C<$count> is
1554     C<undef>.
1555 root 1.232
1556 root 1.58 =item aio_group $callback->(...)
1557 root 1.54
1558 root 1.55 This is a very special aio request: Instead of doing something, it is a
1559     container for other aio requests, which is useful if you want to bundle
1560 root 1.71 many requests into a single, composite, request with a definite callback
1561     and the ability to cancel the whole request with its subrequests.
1562 root 1.55
1563     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1564     for more info.
1565    
1566     Example:
1567    
1568     my $grp = aio_group sub {
1569     print "all stats done\n";
1570     };
1571    
1572     add $grp
1573     (aio_stat ...),
1574     (aio_stat ...),
1575     ...;
1576    
1577 root 1.63 =item aio_nop $callback->()
1578    
1579     This is a special request - it does nothing in itself and is only used for
1580     side effects, such as when you want to add a dummy request to a group so
1581     that finishing the requests in the group depends on executing the given
1582     code.
1583    
1584 root 1.64 While this request does nothing, it still goes through the execution
1585     phase and still requires a worker thread. Thus, the callback will not
1586     be executed immediately but only after other requests in the queue have
1587     entered their execution phase. This can be used to measure request
1588     latency.
1589    
1590 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1591 root 1.54
1592     Mainly used for debugging and benchmarking, this aio request puts one of
1593     the request workers to sleep for the given time.
1594    
1595 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1596 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1597     immense (it blocks a thread for a long time) so do not use this function
1598     except to put your application under artificial I/O pressure.
1599 root 1.56
1600 root 1.5 =back
1601    
1602 root 1.209
1603     =head2 IO::AIO::WD - multiple working directories
1604    
1605     Your process only has one current working directory, which is used by all
1606     threads. This makes it hard to use relative paths (some other component
1607     could call C<chdir> at any time, and it is hard to control when the path
1608     will be used by IO::AIO).
1609    
1610     One solution for this is to always use absolute paths. This usually works,
1611     but can be quite slow (the kernel has to walk the whole path on every
1612     access), and can also be a hassle to implement.
1613    
1614     Newer POSIX systems have a number of functions (openat, fdopendir,
1615     futimensat and so on) that make it possible to specify working directories
1616     per operation.
1617    
1618     For portability, and because the clowns who "designed", or shall I write,
1619     perpetrated this new interface were obviously half-drunk, this abstraction
1620     cannot be perfect, though.
1621    
1622     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1623     object. This object stores the canonicalised, absolute version of the
1624     path, and on systems that allow it, also a directory file descriptor.
1625    
1626     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1627     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1628 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1629     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1630 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1631 root 1.209 to that IO::AIO::WD object.
1632    
1633     For example, to get a wd object for F</etc> and then stat F<passwd>
1634     inside, you would write:
1635    
1636     aio_wd "/etc", sub {
1637     my $etcdir = shift;
1638    
1639     # although $etcdir can be undef on error, there is generally no reason
1640     # to check for errors here, as aio_stat will fail with ENOENT
1641     # when $etcdir is undef.
1642    
1643     aio_stat [$etcdir, "passwd"], sub {
1644     # yay
1645     };
1646     };
1647    
1648 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1649     creating an IO::AIO::WD object is itself a potentially blocking operation,
1650     which is why it is done asynchronously.
1651 root 1.214
1652     To stat the directory obtained with C<aio_wd> above, one could write
1653     either of the following three request calls:
1654    
1655     aio_lstat "/etc" , sub { ... # pathname as normal string
1656     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1657     aio_lstat $wd , sub { ... # shorthand for the previous
1658 root 1.209
1659     As with normal pathnames, IO::AIO keeps a copy of the working directory
1660     object and the pathname string, so you could write the following without
1661     causing any issues due to C<$path> getting reused:
1662    
1663     my $path = [$wd, undef];
1664    
1665     for my $name (qw(abc def ghi)) {
1666     $path->[1] = $name;
1667     aio_stat $path, sub {
1668     # ...
1669     };
1670     }
1671    
1672     There are some caveats: when directories get renamed (or deleted), the
1673     pathname string doesn't change, so will point to the new directory (or
1674     nowhere at all), while the directory fd, if available on the system,
1675     will still point to the original directory. Most functions accepting a
1676     pathname will use the directory fd on newer systems, and the string on
1677 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1678     the string form of the pathname.
1679 root 1.209
1680 root 1.239 So this functionality is mainly useful to get some protection against
1681 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1682     reference, and to speed up doing many operations in the same directory
1683     (e.g. when stat'ing all files in a directory).
1684    
1685     The following functions implement this working directory abstraction:
1686    
1687     =over 4
1688    
1689     =item aio_wd $pathname, $callback->($wd)
1690    
1691     Asynchonously canonicalise the given pathname and convert it to an
1692     IO::AIO::WD object representing it. If possible and supported on the
1693     system, also open a directory fd to speed up pathname resolution relative
1694     to this working directory.
1695    
1696     If something goes wrong, then C<undef> is passwd to the callback instead
1697     of a working directory object and C<$!> is set appropriately. Since
1698     passing C<undef> as working directory component of a pathname fails the
1699     request with C<ENOENT>, there is often no need for error checking in the
1700     C<aio_wd> callback, as future requests using the value will fail in the
1701     expected way.
1702    
1703     =item IO::AIO::CWD
1704    
1705 root 1.306 This is a compile time constant (object) that represents the process
1706 root 1.209 current working directory.
1707    
1708 root 1.239 Specifying this object as working directory object for a pathname is as if
1709     the pathname would be specified directly, without a directory object. For
1710     example, these calls are functionally identical:
1711 root 1.209
1712     aio_stat "somefile", sub { ... };
1713     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1714    
1715     =back
1716    
1717 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1718     C<aio_realpath>:
1719    
1720     aio_realpath $wd, sub {
1721     warn "path is $_[0]\n";
1722     };
1723    
1724 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1725     sometimes, fall back to using an absolue path.
1726 root 1.209
1727 root 1.53 =head2 IO::AIO::REQ CLASS
1728 root 1.52
1729     All non-aggregate C<aio_*> functions return an object of this class when
1730     called in non-void context.
1731    
1732     =over 4
1733    
1734 root 1.65 =item cancel $req
1735 root 1.52
1736     Cancels the request, if possible. Has the effect of skipping execution
1737     when entering the B<execute> state and skipping calling the callback when
1738     entering the the B<result> state, but will leave the request otherwise
1739 root 1.151 untouched (with the exception of readdir). That means that requests that
1740     currently execute will not be stopped and resources held by the request
1741     will not be freed prematurely.
1742 root 1.52
1743 root 1.65 =item cb $req $callback->(...)
1744    
1745     Replace (or simply set) the callback registered to the request.
1746    
1747 root 1.52 =back
1748    
1749 root 1.55 =head2 IO::AIO::GRP CLASS
1750    
1751     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1752     objects of this class, too.
1753    
1754     A IO::AIO::GRP object is a special request that can contain multiple other
1755     aio requests.
1756    
1757     You create one by calling the C<aio_group> constructing function with a
1758     callback that will be called when all contained requests have entered the
1759     C<done> state:
1760    
1761     my $grp = aio_group sub {
1762     print "all requests are done\n";
1763     };
1764    
1765     You add requests by calling the C<add> method with one or more
1766     C<IO::AIO::REQ> objects:
1767    
1768     $grp->add (aio_unlink "...");
1769    
1770 root 1.58 add $grp aio_stat "...", sub {
1771     $_[0] or return $grp->result ("error");
1772    
1773     # add another request dynamically, if first succeeded
1774     add $grp aio_open "...", sub {
1775     $grp->result ("ok");
1776     };
1777     };
1778 root 1.55
1779     This makes it very easy to create composite requests (see the source of
1780     C<aio_move> for an application) that work and feel like simple requests.
1781    
1782 root 1.62 =over 4
1783    
1784     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1785 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1786    
1787 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1788 root 1.59 only the request itself, but also all requests it contains.
1789 root 1.55
1790 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1791 root 1.55
1792 root 1.62 =item * You must not add requests to a group from within the group callback (or
1793 root 1.60 any later time).
1794    
1795 root 1.62 =back
1796    
1797 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1798     will finish very quickly. If they contain only requests that are in the
1799     C<done> state, they will also finish. Otherwise they will continue to
1800     exist.
1801    
1802 root 1.133 That means after creating a group you have some time to add requests
1803     (precisely before the callback has been invoked, which is only done within
1804     the C<poll_cb>). And in the callbacks of those requests, you can add
1805     further requests to the group. And only when all those requests have
1806     finished will the the group itself finish.
1807 root 1.57
1808 root 1.55 =over 4
1809    
1810 root 1.65 =item add $grp ...
1811    
1812 root 1.55 =item $grp->add (...)
1813    
1814 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1815     be added, including other groups, as long as you do not create circular
1816     dependencies.
1817    
1818     Returns all its arguments.
1819 root 1.55
1820 root 1.74 =item $grp->cancel_subs
1821    
1822     Cancel all subrequests and clears any feeder, but not the group request
1823     itself. Useful when you queued a lot of events but got a result early.
1824    
1825 root 1.168 The group request will finish normally (you cannot add requests to the
1826     group).
1827    
1828 root 1.58 =item $grp->result (...)
1829    
1830     Set the result value(s) that will be passed to the group callback when all
1831 root 1.120 subrequests have finished and set the groups errno to the current value
1832 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1833     no argument will be passed and errno is zero.
1834    
1835     =item $grp->errno ([$errno])
1836    
1837     Sets the group errno value to C<$errno>, or the current value of errno
1838     when the argument is missing.
1839    
1840     Every aio request has an associated errno value that is restored when
1841     the callback is invoked. This method lets you change this value from its
1842     default (0).
1843    
1844     Calling C<result> will also set errno, so make sure you either set C<$!>
1845     before the call to C<result>, or call c<errno> after it.
1846 root 1.58
1847 root 1.65 =item feed $grp $callback->($grp)
1848 root 1.60
1849     Sets a feeder/generator on this group: every group can have an attached
1850     generator that generates requests if idle. The idea behind this is that,
1851     although you could just queue as many requests as you want in a group,
1852 root 1.139 this might starve other requests for a potentially long time. For example,
1853 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1854     requests, delaying any later requests for a long time.
1855 root 1.60
1856     To avoid this, and allow incremental generation of requests, you can
1857     instead a group and set a feeder on it that generates those requests. The
1858 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1859 root 1.60 below) requests active in the group itself and is expected to queue more
1860     requests.
1861    
1862 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1863     not impose any limits).
1864 root 1.60
1865 root 1.65 If the feed does not queue more requests when called, it will be
1866 root 1.60 automatically removed from the group.
1867    
1868 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1869     C<2> automatically.
1870 root 1.60
1871     Example:
1872    
1873     # stat all files in @files, but only ever use four aio requests concurrently:
1874    
1875     my $grp = aio_group sub { print "finished\n" };
1876 root 1.68 limit $grp 4;
1877 root 1.65 feed $grp sub {
1878 root 1.60 my $file = pop @files
1879     or return;
1880    
1881     add $grp aio_stat $file, sub { ... };
1882 root 1.65 };
1883 root 1.60
1884 root 1.68 =item limit $grp $num
1885 root 1.60
1886     Sets the feeder limit for the group: The feeder will be called whenever
1887     the group contains less than this many requests.
1888    
1889     Setting the limit to C<0> will pause the feeding process.
1890    
1891 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1892     automatically bumps it up to C<2>.
1893    
1894 root 1.55 =back
1895    
1896 root 1.294
1897 root 1.5 =head2 SUPPORT FUNCTIONS
1898    
1899 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1900    
1901 root 1.5 =over 4
1902    
1903     =item $fileno = IO::AIO::poll_fileno
1904    
1905 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1906 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1907     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1908     you have to call C<poll_cb> to check the results.
1909 root 1.5
1910     See C<poll_cb> for an example.
1911    
1912     =item IO::AIO::poll_cb
1913    
1914 root 1.240 Process some requests that have reached the result phase (i.e. they have
1915     been executed but the results are not yet reported). You have to call
1916     this "regularly" to finish outstanding requests.
1917    
1918     Returns C<0> if all events could be processed (or there were no
1919     events to process), or C<-1> if it returned earlier for whatever
1920     reason. Returns immediately when no events are outstanding. The amount
1921     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1922     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1923    
1924     If not all requests were processed for whatever reason, the poll file
1925     descriptor will still be ready when C<poll_cb> returns, so normally you
1926     don't have to do anything special to have it called later.
1927 root 1.78
1928 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1929     ready, it can be beneficial to call this function from loops which submit
1930     a lot of requests, to make sure the results get processed when they become
1931     available and not just when the loop is finished and the event loop takes
1932     over again. This function returns very fast when there are no outstanding
1933     requests.
1934    
1935 root 1.20 Example: Install an Event watcher that automatically calls
1936 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1937     SYNOPSIS section, at the top of this document):
1938 root 1.5
1939     Event->io (fd => IO::AIO::poll_fileno,
1940     poll => 'r', async => 1,
1941     cb => \&IO::AIO::poll_cb);
1942    
1943 root 1.175 =item IO::AIO::poll_wait
1944    
1945 root 1.240 Wait until either at least one request is in the result phase or no
1946     requests are outstanding anymore.
1947    
1948     This is useful if you want to synchronously wait for some requests to
1949     become ready, without actually handling them.
1950 root 1.175
1951     See C<nreqs> for an example.
1952    
1953     =item IO::AIO::poll
1954    
1955     Waits until some requests have been handled.
1956    
1957     Returns the number of requests processed, but is otherwise strictly
1958     equivalent to:
1959    
1960     IO::AIO::poll_wait, IO::AIO::poll_cb
1961    
1962     =item IO::AIO::flush
1963    
1964     Wait till all outstanding AIO requests have been handled.
1965    
1966     Strictly equivalent to:
1967    
1968     IO::AIO::poll_wait, IO::AIO::poll_cb
1969     while IO::AIO::nreqs;
1970    
1971 root 1.294 This function can be useful at program aborts, to make sure outstanding
1972     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1973     this function on normal exits), or when you are merely using C<IO::AIO>
1974     for its more advanced functions, rather than for async I/O, e.g.:
1975    
1976     my ($dirs, $nondirs);
1977     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1978     IO::AIO::flush;
1979     # $dirs, $nondirs are now set
1980    
1981 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1982    
1983     =item IO::AIO::max_poll_time $seconds
1984    
1985     These set the maximum number of requests (default C<0>, meaning infinity)
1986     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1987     the maximum amount of time (default C<0>, meaning infinity) spent in
1988     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1989     of time C<poll_cb> is allowed to use).
1990 root 1.78
1991 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1992     syscall per request processed, which is not normally a problem unless your
1993     callbacks are really really fast or your OS is really really slow (I am
1994     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1995    
1996 root 1.86 Setting these is useful if you want to ensure some level of
1997     interactiveness when perl is not fast enough to process all requests in
1998     time.
1999 root 1.78
2000 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
2001 root 1.78
2002     Example: Install an Event watcher that automatically calls
2003 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
2004 root 1.78 program get the CPU sometimes even under high AIO load.
2005    
2006 root 1.86 # try not to spend much more than 0.1s in poll_cb
2007     IO::AIO::max_poll_time 0.1;
2008    
2009     # use a low priority so other tasks have priority
2010 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
2011     poll => 'r', nice => 1,
2012 root 1.86 cb => &IO::AIO::poll_cb);
2013 root 1.78
2014 root 1.104 =back
2015    
2016 root 1.294
2017 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
2018 root 1.13
2019 root 1.105 =over
2020    
2021 root 1.5 =item IO::AIO::min_parallel $nthreads
2022    
2023 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
2024     default is C<8>, which means eight asynchronous operations can execute
2025     concurrently at any one time (the number of outstanding requests,
2026     however, is unlimited).
2027 root 1.5
2028 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
2029 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
2030     create demand for a hundred threads, even if it turns out that everything
2031     is in the cache and could have been processed faster by a single thread.
2032 root 1.34
2033 root 1.61 It is recommended to keep the number of threads relatively low, as some
2034     Linux kernel versions will scale negatively with the number of threads
2035     (higher parallelity => MUCH higher latency). With current Linux 2.6
2036     versions, 4-32 threads should be fine.
2037 root 1.5
2038 root 1.34 Under most circumstances you don't need to call this function, as the
2039     module selects a default that is suitable for low to moderate load.
2040 root 1.5
2041     =item IO::AIO::max_parallel $nthreads
2042    
2043 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
2044     specified number of threads are currently running, this function kills
2045     them. This function blocks until the limit is reached.
2046    
2047     While C<$nthreads> are zero, aio requests get queued but not executed
2048     until the number of threads has been increased again.
2049 root 1.5
2050     This module automatically runs C<max_parallel 0> at program end, to ensure
2051     that all threads are killed and that there are no outstanding requests.
2052    
2053     Under normal circumstances you don't need to call this function.
2054    
2055 root 1.86 =item IO::AIO::max_idle $nthreads
2056    
2057 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
2058     (i.e., threads that did not get a request to process within the idle
2059     timeout (default: 10 seconds). That means if a thread becomes idle while
2060     C<$nthreads> other threads are also idle, it will free its resources and
2061     exit.
2062 root 1.86
2063     This is useful when you allow a large number of threads (e.g. 100 or 1000)
2064     to allow for extremely high load situations, but want to free resources
2065     under normal circumstances (1000 threads can easily consume 30MB of RAM).
2066    
2067     The default is probably ok in most situations, especially if thread
2068     creation is fast. If thread creation is very slow on your system you might
2069     want to use larger values.
2070    
2071 root 1.188 =item IO::AIO::idle_timeout $seconds
2072    
2073     Sets the minimum idle timeout (default 10) after which worker threads are
2074     allowed to exit. SEe C<IO::AIO::max_idle>.
2075    
2076 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2077 root 1.5
2078 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2079     you do queue up more than this number of requests, the next call to
2080     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2081     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2082     longer exceeded.
2083    
2084     In other words, this setting does not enforce a queue limit, but can be
2085     used to make poll functions block if the limit is exceeded.
2086    
2087 root 1.313 This is a bad function to use in interactive programs because it blocks,
2088     and a bad way to reduce concurrency because it is inexact. If you need to
2089     issue many requests without being able to call a poll function on demand,
2090     it is better to use an C<aio_group> together with a feed callback.
2091 root 1.79
2092 root 1.313 Its main use is in scripts without an event loop - when you want to stat a
2093     lot of files, you can write something like this:
2094 root 1.195
2095     IO::AIO::max_outstanding 32;
2096    
2097     for my $path (...) {
2098     aio_stat $path , ...;
2099     IO::AIO::poll_cb;
2100     }
2101    
2102     IO::AIO::flush;
2103    
2104 root 1.313 The call to C<poll_cb> inside the loop will normally return instantly,
2105     allowing the loop to progress, but as soon as more than C<32> requests
2106     are in-flight, it will block until some requests have been handled. This
2107     keeps the loop from pushing a large number of C<aio_stat> requests onto
2108     the queue (which, with many paths to stat, can use up a lot of memory).
2109 root 1.195
2110     The default value for C<max_outstanding> is very large, so there is no
2111     practical limit on the number of outstanding requests.
2112 root 1.5
2113 root 1.104 =back
2114    
2115 root 1.294
2116 root 1.86 =head3 STATISTICAL INFORMATION
2117    
2118 root 1.104 =over
2119    
2120 root 1.86 =item IO::AIO::nreqs
2121    
2122     Returns the number of requests currently in the ready, execute or pending
2123     states (i.e. for which their callback has not been invoked yet).
2124    
2125     Example: wait till there are no outstanding requests anymore:
2126    
2127     IO::AIO::poll_wait, IO::AIO::poll_cb
2128     while IO::AIO::nreqs;
2129    
2130     =item IO::AIO::nready
2131    
2132     Returns the number of requests currently in the ready state (not yet
2133     executed).
2134    
2135     =item IO::AIO::npending
2136    
2137     Returns the number of requests currently in the pending state (executed,
2138     but not yet processed by poll_cb).
2139    
2140 root 1.5 =back
2141    
2142 root 1.294
2143 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2144    
2145     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2146     generally find access/modification and change times with subsecond time
2147     accuracy of the system supports it, but perl's built-in functions only
2148     return the integer part.
2149    
2150     The following functions return the timestamps of the most recent
2151     stat with subsecond precision on most systems and work both after
2152     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2153     value is only meaningful after a successful C<stat>/C<lstat> call, or
2154     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2155    
2156     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2157     full resolution without rounding and work with standard perl C<stat>,
2158     alleviating the need to call the special C<Time::HiRes> functions, which
2159     do not act like their perl counterparts.
2160    
2161     On operating systems or file systems where subsecond time resolution is
2162     not supported or could not be detected, a fractional part of C<0> is
2163     returned, so it is always safe to call these functions.
2164    
2165     =over 4
2166    
2167 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2168 root 1.289
2169 root 1.294 Return the access, modication, change or birth time, respectively,
2170     including fractional part. Due to the limited precision of floating point,
2171     the accuracy on most platforms is only a bit better than milliseconds
2172     for times around now - see the I<nsec> function family, below, for full
2173 root 1.289 accuracy.
2174    
2175 root 1.294 File birth time is only available when the OS and perl support it (on
2176     FreeBSD and NetBSD at the time of this writing, although support is
2177 root 1.301 adaptive, so if your OS/perl gains support, IO::AIO can take advantage of
2178 root 1.294 it). On systems where it isn't available, C<0> is currently returned, but
2179     this might change to C<undef> in a future version.
2180 root 1.289
2181 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2182 root 1.289
2183 root 1.294 Returns access, modification, change and birth time all in one go, and
2184     maybe more times in the future version.
2185 root 1.289
2186 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2187    
2188     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2189 root 1.289 as an integer in the range C<0> to C<999999999>.
2190    
2191 root 1.294 Note that no accessors are provided for access, modification and
2192     change times - you need to get those from C<stat _> if required (C<int
2193     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2194     value).
2195    
2196     =item $seconds = IO::AIO::st_btimesec
2197    
2198     The (integral) seconds part of the file birth time, if available.
2199    
2200     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2201 root 1.290
2202 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2203 root 1.290 more in future versions).
2204    
2205 root 1.294 =item $counter = IO::AIO::st_gen
2206    
2207 root 1.296 Returns the generation counter (in practice this is just a random number)
2208     of the file. This is only available on platforms which have this member in
2209     their C<struct stat> (most BSDs at the time of this writing) and generally
2210     only to the root usert. If unsupported, C<0> is returned, but this might
2211     change to C<undef> in a future version.
2212 root 1.294
2213 root 1.289 =back
2214    
2215     Example: print the high resolution modification time of F</etc>, using
2216     C<stat>, and C<IO::AIO::aio_stat>.
2217    
2218     if (stat "/etc") {
2219 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2220 root 1.289 }
2221    
2222     IO::AIO::aio_stat "/etc", sub {
2223     $_[0]
2224     and return;
2225    
2226 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2227 root 1.289 };
2228    
2229     IO::AIO::flush;
2230    
2231     Output of the awbove on my system, showing reduced and full accuracy:
2232    
2233     stat(/etc) mtime: 1534043702.020808
2234     aio_stat(/etc) mtime: 1534043702.020807792
2235    
2236 root 1.294
2237 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2238    
2239 root 1.248 IO::AIO implements some functions that are useful when you want to use
2240     some "Advanced I/O" function not available to in Perl, without going the
2241     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2242     counterpart.
2243 root 1.157
2244     =over 4
2245    
2246 root 1.315 =item $retval = IO::AIO::fexecve $fh, $argv, $envp
2247    
2248     A more-or-less direct equivalent to the POSIX C<fexecve> functions, which
2249     allows you to specify the program to be executed via a file descriptor (or
2250     handle). Returns C<-1> and sets errno to C<ENOSYS> if not available.
2251    
2252 root 1.316 =item $retval = IO::AIO::mount $special, $path, $fstype, $flags = 0, $data = undef
2253    
2254     Calls the GNU/Linux mount syscall with the given arguments. All except
2255     C<$flags> are strings, and if C<$data> is C<undef>, a C<NULL> will be
2256     passed.
2257    
2258     The following values for C<$flags> are available:
2259    
2260     C<IO::AIO::MS_RDONLY>, C<IO::AIO::MS_NOSUID>, C<IO::AIO::MS_NODEV>, C<IO::AIO::MS_NOEXEC>, C<IO::AIO::MS_SYNCHRONOUS>,
2261     C<IO::AIO::MS_REMOUNT>, C<IO::AIO::MS_MANDLOCK>, C<IO::AIO::MS_DIRSYNC>, C<IO::AIO::MS_NOATIME>,
2262     C<IO::AIO::MS_NODIRATIME>, C<IO::AIO::MS_BIND>, C<IO::AIO::MS_MOVE>, C<IO::AIO::MS_REC>, C<IO::AIO::MS_SILENT>,
2263     C<IO::AIO::MS_POSIXACL>, C<IO::AIO::MS_UNBINDABLE>, C<IO::AIO::MS_PRIVATE>, C<IO::AIO::MS_SLAVE>, C<IO::AIO::MS_SHARED>,
2264     C<IO::AIO::MS_RELATIME>, C<IO::AIO::MS_KERNMOUNT>, C<IO::AIO::MS_I_VERSION>, C<IO::AIO::MS_STRICTATIME>,
2265     C<IO::AIO::MS_LAZYTIME>, C<IO::AIO::MS_ACTIVE>, C<IO::AIO::MS_NOUSER>, C<IO::AIO::MS_RMT_MASK>, C<IO::AIO::MS_MGC_VAL> and
2266     C<IO::AIO::MS_MGC_MSK>.
2267    
2268     =item $retval = IO::AIO::umount $path, $flags = 0
2269    
2270     Invokes the GNU/Linux C<umount> or C<umount2> syscalls. Always calls
2271     C<umount> if C<$flags> is C<0>, otherwqise always tries to call
2272     C<umount2>.
2273    
2274     The following C<$flags> are available:
2275    
2276     C<IO::AIO::MNT_FORCE>, C<IO::AIO::MNT_DETACH>, C<IO::AIO::MNT_EXPIRE> and C<IO::AIO::UMOUNT_NOFOLLOW>.
2277    
2278 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2279    
2280     Tries to find the current file descriptor limit and returns it, or
2281     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2282     the highest valid file descriptor number.
2283    
2284     =item IO::AIO::min_fdlimit [$numfd]
2285    
2286     Try to increase the current file descriptor limit(s) to at least C<$numfd>
2287     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2288     is missing, it will try to set a very high limit, although this is not
2289     recommended when you know the actual minimum that you require.
2290    
2291     If the limit cannot be raised enough, the function makes a best-effort
2292     attempt to increase the limit as much as possible, using various
2293     tricks, while still failing. You can query the resulting limit using
2294     C<IO::AIO::get_fdlimit>.
2295    
2296 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2297     true.
2298 root 1.275
2299 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2300    
2301     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2302     but is blocking (this makes most sense if you know the input data is
2303     likely cached already and the output filehandle is set to non-blocking
2304     operations).
2305    
2306     Returns the number of bytes copied, or C<-1> on error.
2307    
2308     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2309    
2310 root 1.184 Simply calls the C<posix_fadvise> function (see its
2311 root 1.157 manpage for details). The following advice constants are
2312 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2313 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2314     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2315    
2316     On systems that do not implement C<posix_fadvise>, this function returns
2317     ENOSYS, otherwise the return value of C<posix_fadvise>.
2318    
2319 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2320    
2321     Simply calls the C<posix_madvise> function (see its
2322     manpage for details). The following advice constants are
2323 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2324 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2325     C<IO::AIO::MADV_DONTNEED>.
2326 root 1.184
2327 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2328     the remaining length of the C<$scalar> is used. If possible, C<$length>
2329     will be reduced to fit into the C<$scalar>.
2330    
2331 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2332     ENOSYS, otherwise the return value of C<posix_madvise>.
2333    
2334     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2335    
2336     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2337     $scalar (see its manpage for details). The following protect
2338 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2339 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2340    
2341 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2342     the remaining length of the C<$scalar> is used. If possible, C<$length>
2343     will be reduced to fit into the C<$scalar>.
2344    
2345 root 1.184 On systems that do not implement C<mprotect>, this function returns
2346     ENOSYS, otherwise the return value of C<mprotect>.
2347    
2348 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2349    
2350     Memory-maps a file (or anonymous memory range) and attaches it to the
2351 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2352     success, and false otherwise.
2353 root 1.176
2354 root 1.268 The scalar must exist, but its contents do not matter - this means you
2355     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2356     the scalar first.
2357    
2358     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2359     which don't change the string length, and most read-only operations such
2360     as copying it or searching it with regexes and so on.
2361 root 1.176
2362     Anything else is unsafe and will, at best, result in memory leaks.
2363    
2364     The memory map associated with the C<$scalar> is automatically removed
2365 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2366     or C<IO::AIO::munmap> functions are called on it.
2367 root 1.176
2368     This calls the C<mmap>(2) function internally. See your system's manual
2369     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2370    
2371     The C<$length> must be larger than zero and smaller than the actual
2372     filesize.
2373    
2374     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2375     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2376    
2377 root 1.256 C<$flags> can be a combination of
2378     C<IO::AIO::MAP_SHARED> or
2379     C<IO::AIO::MAP_PRIVATE>,
2380     or a number of system-specific flags (when not available, the are C<0>):
2381     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2382     C<IO::AIO::MAP_LOCKED>,
2383     C<IO::AIO::MAP_NORESERVE>,
2384     C<IO::AIO::MAP_POPULATE>,
2385     C<IO::AIO::MAP_NONBLOCK>,
2386     C<IO::AIO::MAP_FIXED>,
2387     C<IO::AIO::MAP_GROWSDOWN>,
2388     C<IO::AIO::MAP_32BIT>,
2389 root 1.311 C<IO::AIO::MAP_HUGETLB>,
2390     C<IO::AIO::MAP_STACK>,
2391     C<IO::AIO::MAP_FIXED_NOREPLACE>,
2392     C<IO::AIO::MAP_SHARED_VALIDATE>,
2393     C<IO::AIO::MAP_SYNC> or
2394     C<IO::AIO::MAP_UNINITIALIZED>.
2395 root 1.176
2396     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2397    
2398 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2399     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2400    
2401 root 1.177 Example:
2402    
2403     use Digest::MD5;
2404     use IO::AIO;
2405    
2406     open my $fh, "<verybigfile"
2407     or die "$!";
2408    
2409     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2410     or die "verybigfile: $!";
2411    
2412     my $fast_md5 = md5 $data;
2413    
2414 root 1.176 =item IO::AIO::munmap $scalar
2415    
2416     Removes a previous mmap and undefines the C<$scalar>.
2417    
2418 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2419 root 1.285
2420     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2421     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2422     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2423    
2424     Returns true if successful, and false otherwise. If the underlying mmapped
2425     region has changed address, then the true value has the numerical value
2426     C<1>, otherwise it has the numerical value C<0>:
2427    
2428     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2429     or die "mremap: $!";
2430    
2431     if ($success*1) {
2432     warn "scalar has chanegd address in memory\n";
2433     }
2434    
2435     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2436     implemented, but not supported and might go away in a future version.
2437    
2438     On systems where this call is not supported or is not emulated, this call
2439     returns falls and sets C<$!> to C<ENOSYS>.
2440    
2441 root 1.298 =item IO::AIO::mlockall $flags
2442    
2443     Calls the C<eio_mlockall_sync> function, which is like C<aio_mlockall>,
2444     but is blocking.
2445    
2446 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2447 root 1.174
2448 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2449     C<aio_mlock> call (see its description for details).
2450 root 1.174
2451     =item IO::AIO::munlockall
2452    
2453     Calls the C<munlockall> function.
2454    
2455     On systems that do not implement C<munlockall>, this function returns
2456     ENOSYS, otherwise the return value of C<munlockall>.
2457    
2458 root 1.305 =item $fh = IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_maxlen, $flags
2459    
2460     Uses the GNU/Linux C<accept4(2)> syscall, if available, to accept a socket
2461     and return the new file handle on success, or sets C<$!> and returns
2462     C<undef> on error.
2463    
2464     The remote name of the new socket will be stored in C<$sockaddr>, which
2465     will be extended to allow for at least C<$sockaddr_maxlen> octets. If the
2466     socket name does not fit into C<$sockaddr_maxlen> octets, this is signaled
2467     by returning a longer string in C<$sockaddr>, which might or might not be
2468     truncated.
2469    
2470     To accept name-less sockets, use C<undef> for C<$sockaddr> and C<0> for
2471     C<$sockaddr_maxlen>.
2472    
2473 root 1.308 The main reasons to use this syscall rather than portable C<accept(2)>
2474 root 1.305 are that you can specify C<SOCK_NONBLOCK> and/or C<SOCK_CLOEXEC>
2475     flags and you can accept name-less sockets by specifying C<0> for
2476     C<$sockaddr_maxlen>, which is sadly not possible with perl's interface to
2477     C<accept>.
2478    
2479 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2480    
2481     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2482     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2483     should be the file offset.
2484    
2485 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2486     silently corrupt the data in this case.
2487    
2488 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2489     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2490     C<IO::AIO::SPLICE_F_GIFT>.
2491    
2492     See the C<splice(2)> manpage for details.
2493    
2494     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2495    
2496 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2497 root 1.225 description for C<IO::AIO::splice> above for details.
2498    
2499 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2500    
2501     Attempts to query or change the pipe buffer size. Obviously works only
2502     on pipes, and currently works only on GNU/Linux systems, and fails with
2503     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2504     size on other systems, drop me a note.
2505    
2506 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2507    
2508     This is a direct interface to the Linux L<pipe2(2)> system call. If
2509     C<$flags> is missing or C<0>, then this should be the same as a call to
2510 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2511     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2512     (..., 4096, O_BINARY)>.
2513 root 1.253
2514     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2515     the given flags (Linux 2.6.27, glibc 2.9).
2516    
2517     On success, the read and write file handles are returned.
2518    
2519     On error, nothing will be returned. If the pipe2 syscall is missing and
2520     C<$flags> is non-zero, fails with C<ENOSYS>.
2521    
2522     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2523     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2524     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2525    
2526 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2527    
2528     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2529     or die "pipe2: $!\n";
2530    
2531 root 1.302 =item $fh = IO::AIO::memfd_create $pathname[, $flags]
2532    
2533     This is a direct interface to the Linux L<memfd_create(2)> system
2534     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2535     should be C<IO::AIO::MFD_CLOEXEC>.
2536    
2537     On success, the new memfd filehandle is returned, otherwise returns
2538     C<undef>. If the memfd_create syscall is missing, fails with C<ENOSYS>.
2539    
2540     Please refer to L<memfd_create(2)> for more info on this call.
2541    
2542     The following C<$flags> values are available: C<IO::AIO::MFD_CLOEXEC>,
2543 root 1.314 C<IO::AIO::MFD_ALLOW_SEALING>, C<IO::AIO::MFD_HUGETLB>,
2544     C<IO::AIO::MFD_HUGETLB_2MB> and C<IO::AIO::MFD_HUGETLB_1GB>.
2545 root 1.302
2546     Example: create a new memfd.
2547    
2548     my $fh = IO::AIO::memfd_create "somenameforprocfd", IO::AIO::MFD_CLOEXEC
2549 root 1.308 or die "memfd_create: $!\n";
2550    
2551     =item $fh = IO::AIO::pidfd_open $pid[, $flags]
2552    
2553     This is an interface to the Linux L<pidfd_open(2)> system call. The
2554     default for C<$flags> is C<0>.
2555    
2556     On success, a new pidfd filehandle is returned (that is already set to
2557     close-on-exec), otherwise returns C<undef>. If the syscall is missing,
2558     fails with C<ENOSYS>.
2559    
2560     Example: open pid 6341 as pidfd.
2561    
2562     my $fh = IO::AIO::pidfd_open 6341
2563     or die "pidfd_open: $!\n";
2564    
2565     =item $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
2566    
2567     This is an interface to the Linux L<pidfd_send_signal> system call. The
2568     default for C<$siginfo> is C<undef> and the default for C<$flags> is C<0>.
2569    
2570     Returns the system call status. If the syscall is missing, fails with
2571     C<ENOSYS>.
2572    
2573     When specified, C<$siginfo> must be a reference to a hash with one or more
2574     of the following members:
2575    
2576     =over
2577    
2578     =item code - the C<si_code> member
2579    
2580     =item pid - the C<si_pid> member
2581    
2582     =item uid - the C<si_uid> member
2583    
2584     =item value_int - the C<si_value.sival_int> member
2585    
2586     =item value_ptr - the C<si_value.sival_ptr> member, specified as an integer
2587    
2588     =back
2589    
2590     Example: send a SIGKILL to the specified process.
2591    
2592     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, undef
2593     and die "pidfd_send_signal: $!\n";
2594    
2595     Example: send a SIGKILL to the specified process with extra data.
2596    
2597     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, { code => -1, value_int => 7 }
2598     and die "pidfd_send_signal: $!\n";
2599    
2600     =item $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
2601    
2602     This is an interface to the Linux L<pidfd_getfd> system call. The default
2603     for C<$flags> is C<0>.
2604    
2605     On success, returns a dup'ed copy of the target file descriptor (specified
2606     as an integer) returned (that is already set to close-on-exec), otherwise
2607     returns C<undef>. If the syscall is missing, fails with C<ENOSYS>.
2608    
2609     Example: get a copy of standard error of another process and print soemthing to it.
2610    
2611     my $errfh = IO::AIO::pidfd_getfd $pidfh, 2
2612     or die "pidfd_getfd: $!\n";
2613     print $errfh "stderr\n";
2614    
2615 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2616 root 1.281
2617     This is a direct interface to the Linux L<eventfd(2)> system call. The
2618     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2619    
2620     On success, the new eventfd filehandle is returned, otherwise returns
2621     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2622    
2623     Please refer to L<eventfd(2)> for more info on this call.
2624    
2625     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2626     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2627    
2628 root 1.282 Example: create a new eventfd filehandle:
2629    
2630 root 1.302 $fh = IO::AIO::eventfd 0, IO::AIO::EFD_CLOEXEC
2631 root 1.282 or die "eventfd: $!\n";
2632    
2633     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2634    
2635 root 1.302 This is a direct interface to the Linux L<timerfd_create(2)> system
2636     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2637     should be C<IO::AIO::TFD_CLOEXEC>.
2638 root 1.282
2639     On success, the new timerfd filehandle is returned, otherwise returns
2640 root 1.302 C<undef>. If the timerfd_create syscall is missing, fails with C<ENOSYS>.
2641 root 1.282
2642     Please refer to L<timerfd_create(2)> for more info on this call.
2643    
2644     The following C<$clockid> values are
2645     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2646     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2647     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2648     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2649    
2650     The following C<$flags> values are available (Linux
2651     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2652    
2653     Example: create a new timerfd and set it to one-second repeated alarms,
2654     then wait for two alarms:
2655    
2656     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2657     or die "timerfd_create: $!\n";
2658    
2659     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2660     or die "timerfd_settime: $!\n";
2661    
2662     for (1..2) {
2663     8 == sysread $fh, my $buf, 8
2664     or die "timerfd read failure\n";
2665    
2666     printf "number of expirations (likely 1): %d\n",
2667     unpack "Q", $buf;
2668     }
2669    
2670     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2671    
2672     This is a direct interface to the Linux L<timerfd_settime(2)> system
2673     call. Please refer to its manpage for more info on this call.
2674    
2675     The new itimerspec is specified using two (possibly fractional) second
2676     values, C<$new_interval> and C<$new_value>).
2677    
2678     On success, the current interval and value are returned (as per
2679     C<timerfd_gettime>). On failure, the empty list is returned.
2680    
2681     The following C<$flags> values are
2682     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2683     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2684    
2685     See C<IO::AIO::timerfd_create> for a full example.
2686    
2687     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2688    
2689     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2690     call. Please refer to its manpage for more info on this call.
2691    
2692     On success, returns the current values of interval and value for the given
2693     timerfd (as potentially fractional second values). On failure, the empty
2694     list is returned.
2695    
2696 root 1.157 =back
2697    
2698 root 1.1 =cut
2699    
2700 root 1.61 min_parallel 8;
2701 root 1.1
2702 root 1.95 END { flush }
2703 root 1.82
2704 root 1.1 1;
2705    
2706 root 1.175 =head1 EVENT LOOP INTEGRATION
2707    
2708     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2709     automatically into many event loops:
2710    
2711     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2712     use AnyEvent::AIO;
2713    
2714     You can also integrate IO::AIO manually into many event loops, here are
2715     some examples of how to do this:
2716    
2717     # EV integration
2718     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2719    
2720     # Event integration
2721     Event->io (fd => IO::AIO::poll_fileno,
2722     poll => 'r',
2723     cb => \&IO::AIO::poll_cb);
2724    
2725     # Glib/Gtk2 integration
2726     add_watch Glib::IO IO::AIO::poll_fileno,
2727     in => sub { IO::AIO::poll_cb; 1 };
2728    
2729     # Tk integration
2730     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2731     readable => \&IO::AIO::poll_cb);
2732    
2733     # Danga::Socket integration
2734     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2735     \&IO::AIO::poll_cb);
2736    
2737 root 1.27 =head2 FORK BEHAVIOUR
2738    
2739 root 1.197 Usage of pthreads in a program changes the semantics of fork
2740     considerably. Specifically, only async-safe functions can be called after
2741     fork. Perl doesn't know about this, so in general, you cannot call fork
2742 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2743     pthreads, so this applies, but many other extensions and (for inexplicable
2744     reasons) perl itself often is linked against pthreads, so this limitation
2745     applies to quite a lot of perls.
2746    
2747     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2748     only works in the process that loaded it. Forking is fully supported, but
2749     using IO::AIO in the child is not.
2750    
2751     You might get around by not I<using> IO::AIO before (or after)
2752     forking. You could also try to call the L<IO::AIO::reinit> function in the
2753     child:
2754    
2755     =over 4
2756    
2757     =item IO::AIO::reinit
2758    
2759 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2760     data structures. This is not an operation supported by any standards, but
2761 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2762    
2763     The only reasonable use for this function is to call it after forking, if
2764     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2765     the process will result in undefined behaviour. Calling it at any time
2766     will also result in any undefined (by POSIX) behaviour.
2767    
2768     =back
2769 root 1.52
2770 root 1.282 =head2 LINUX-SPECIFIC CALLS
2771    
2772     When a call is documented as "linux-specific" then this means it
2773     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2774     availability and compatibility of such calls regardless of the platform
2775     it is compiled on, so platforms such as FreeBSD which often implement
2776     these calls will work. When in doubt, call them and see if they fail wth
2777     C<ENOSYS>.
2778    
2779 root 1.60 =head2 MEMORY USAGE
2780    
2781 root 1.72 Per-request usage:
2782    
2783     Each aio request uses - depending on your architecture - around 100-200
2784     bytes of memory. In addition, stat requests need a stat buffer (possibly
2785     a few hundred bytes), readdir requires a result buffer and so on. Perl
2786     scalars and other data passed into aio requests will also be locked and
2787     will consume memory till the request has entered the done state.
2788 root 1.60
2789 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2790 root 1.60 problem.
2791    
2792 root 1.72 Per-thread usage:
2793    
2794     In the execution phase, some aio requests require more memory for
2795     temporary buffers, and each thread requires a stack and other data
2796     structures (usually around 16k-128k, depending on the OS).
2797    
2798     =head1 KNOWN BUGS
2799    
2800 root 1.283 Known bugs will be fixed in the next release :)
2801    
2802     =head1 KNOWN ISSUES
2803    
2804     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2805     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2806     non-created hash slots or other scalars I didn't think of. It's best to
2807     avoid such and either use scalar variables or making sure that the scalar
2808     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2809    
2810     I am not sure anything can be done about this, so this is considered a
2811     known issue, rather than a bug.
2812 root 1.60
2813 root 1.1 =head1 SEE ALSO
2814    
2815 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2816 root 1.304 more natural syntax and L<IO::FDPass> for file descriptor passing.
2817 root 1.1
2818     =head1 AUTHOR
2819    
2820     Marc Lehmann <schmorp@schmorp.de>
2821     http://home.schmorp.de/
2822    
2823     =cut
2824