ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.318
Committed: Sat Apr 1 02:14:05 2023 UTC (14 months, 3 weeks ago) by root
Branch: MAIN
CVS Tags: rel-4_80
Changes since 1.317: +1 -7 lines
Log Message:
4.80

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.318 our $VERSION = 4.80;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.315 mmap munmap mremap munlock munlockall
198    
199     accept4 tee splice pipe2 pipesize
200 root 1.316 fexecve mount umount memfd_create eventfd
201 root 1.315 timerfd_create timerfd_settime timerfd_gettime
202     pidfd_open pidfd_send_signal pidfd_getfd);
203 root 1.1
204 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
205    
206 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
207    
208 root 1.1 require XSLoader;
209 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
210 root 1.1 }
211    
212 root 1.5 =head1 FUNCTIONS
213 root 1.1
214 root 1.175 =head2 QUICK OVERVIEW
215    
216 root 1.230 This section simply lists the prototypes most of the functions for
217     quick reference. See the following sections for function-by-function
218 root 1.175 documentation.
219    
220 root 1.208 aio_wd $pathname, $callback->($wd)
221 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
222     aio_close $fh, $callback->($status)
223 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
224 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
225     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
226     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
227     aio_readahead $fh,$offset,$length, $callback->($retval)
228     aio_stat $fh_or_path, $callback->($status)
229     aio_lstat $fh, $callback->($status)
230     aio_statvfs $fh_or_path, $callback->($statvfs)
231     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
232     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
233 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
234 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
235 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
236 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
237 root 1.175 aio_unlink $pathname, $callback->($status)
238 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
239 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
240     aio_symlink $srcpath, $dstpath, $callback->($status)
241 root 1.209 aio_readlink $pathname, $callback->($link)
242 root 1.249 aio_realpath $pathname, $callback->($path)
243 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
244 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
245 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
246     aio_rmdir $pathname, $callback->($status)
247     aio_readdir $pathname, $callback->($entries)
248     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
249     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
250     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
251 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
252 root 1.209 aio_load $pathname, $data, $callback->($status)
253 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
254     aio_move $srcpath, $dstpath, $callback->($status)
255 root 1.209 aio_rmtree $pathname, $callback->($status)
256 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
257     aio_ioctl $fh, $request, $buf, $callback->($status)
258 root 1.175 aio_sync $callback->($status)
259 root 1.206 aio_syncfs $fh, $callback->($status)
260 root 1.175 aio_fsync $fh, $callback->($status)
261     aio_fdatasync $fh, $callback->($status)
262     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
263 root 1.209 aio_pathsync $pathname, $callback->($status)
264 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
265 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
266 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
267     aio_mlockall $flags, $callback->($status)
268 root 1.175 aio_group $callback->(...)
269     aio_nop $callback->()
270    
271     $prev_pri = aioreq_pri [$pri]
272     aioreq_nice $pri_adjust
273    
274     IO::AIO::poll_wait
275     IO::AIO::poll_cb
276     IO::AIO::poll
277     IO::AIO::flush
278     IO::AIO::max_poll_reqs $nreqs
279     IO::AIO::max_poll_time $seconds
280     IO::AIO::min_parallel $nthreads
281     IO::AIO::max_parallel $nthreads
282     IO::AIO::max_idle $nthreads
283 root 1.188 IO::AIO::idle_timeout $seconds
284 root 1.175 IO::AIO::max_outstanding $maxreqs
285     IO::AIO::nreqs
286     IO::AIO::nready
287     IO::AIO::npending
288 root 1.302 IO::AIO::reinit
289    
290 root 1.307 $nfd = IO::AIO::get_fdlimit
291     IO::AIO::min_fdlimit $nfd
292 root 1.175
293     IO::AIO::sendfile $ofh, $ifh, $offset, $count
294     IO::AIO::fadvise $fh, $offset, $len, $advice
295 root 1.315 IO::AIO::fexecve $fh, $argv, $envp
296 root 1.302
297 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
298     IO::AIO::munmap $scalar
299 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
300 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
301     IO::AIO::mprotect $scalar, $offset, $length, $protect
302 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
303 root 1.175 IO::AIO::munlockall
304    
305 root 1.302 # stat extensions
306     $counter = IO::AIO::st_gen
307     $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
308     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
309     $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
310     $seconds = IO::AIO::st_btimesec
311     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
312    
313     # very much unportable syscalls
314 root 1.305 IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_len, $flags
315 root 1.302 IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
316     IO::AIO::tee $r_fh, $w_fh, $length, $flags
317 root 1.315
318 root 1.302 $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
319     ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
320 root 1.315
321     $fh = IO::AIO::eventfd [$initval, [$flags]]
322 root 1.302 $fh = IO::AIO::memfd_create $pathname[, $flags]
323 root 1.315
324 root 1.302 $fh = IO::AIO::timerfd_create $clockid[, $flags]
325     ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
326     ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
327    
328 root 1.315 $fh = IO::AIO::pidfd_open $pid[, $flags]
329     $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
330     $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
331    
332 root 1.316 $retval = IO::AIO::mount $special, $path, $fstype, $flags = 0, $data = undef
333     $retval = IO::AIO::umount $path, $flags = 0
334    
335 root 1.219 =head2 API NOTES
336 root 1.1
337 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
338     with the same name (sans C<aio_>). The arguments are similar or identical,
339 root 1.14 and they all accept an additional (and optional) C<$callback> argument
340 root 1.212 which must be a code reference. This code reference will be called after
341     the syscall has been executed in an asynchronous fashion. The results
342     of the request will be passed as arguments to the callback (and, if an
343     error occured, in C<$!>) - for most requests the syscall return code (e.g.
344     most syscalls return C<-1> on error, unlike perl, which usually delivers
345     "false").
346    
347     Some requests (such as C<aio_readdir>) pass the actual results and
348     communicate failures by passing C<undef>.
349 root 1.1
350 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
351     internally until the request has finished.
352 root 1.1
353 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
354     further manipulation of those requests while they are in-flight.
355 root 1.52
356 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
357     reason for this is that at the time the request is being executed, the
358 root 1.212 current working directory could have changed. Alternatively, you can
359     make sure that you never change the current working directory anywhere
360     in the program and then use relative paths. You can also take advantage
361     of IO::AIOs working directory abstraction, that lets you specify paths
362     relative to some previously-opened "working directory object" - see the
363     description of the C<IO::AIO::WD> class later in this document.
364 root 1.28
365 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
366     in filenames you got from outside (command line, readdir etc.) without
367 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
368     module and encode your pathnames to the locale (or other) encoding in
369     effect in the user environment, d) use Glib::filename_from_unicode on
370     unicode filenames or e) use something else to ensure your scalar has the
371     correct contents.
372 root 1.87
373     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
374 root 1.136 handles correctly whether it is set or not.
375 root 1.1
376 root 1.219 =head2 AIO REQUEST FUNCTIONS
377    
378 root 1.5 =over 4
379 root 1.1
380 root 1.80 =item $prev_pri = aioreq_pri [$pri]
381 root 1.68
382 root 1.80 Returns the priority value that would be used for the next request and, if
383     C<$pri> is given, sets the priority for the next aio request.
384 root 1.68
385 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
386     and C<4>, respectively. Requests with higher priority will be serviced
387     first.
388    
389     The priority will be reset to C<0> after each call to one of the C<aio_*>
390 root 1.68 functions.
391    
392 root 1.69 Example: open a file with low priority, then read something from it with
393     higher priority so the read request is serviced before other low priority
394     open requests (potentially spamming the cache):
395    
396     aioreq_pri -3;
397     aio_open ..., sub {
398     return unless $_[0];
399    
400     aioreq_pri -2;
401     aio_read $_[0], ..., sub {
402     ...
403     };
404     };
405    
406 root 1.106
407 root 1.69 =item aioreq_nice $pri_adjust
408    
409     Similar to C<aioreq_pri>, but subtracts the given value from the current
410 root 1.87 priority, so the effect is cumulative.
411 root 1.69
412 root 1.106
413 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
414 root 1.1
415 root 1.2 Asynchronously open or create a file and call the callback with a newly
416 root 1.233 created filehandle for the file (or C<undef> in case of an error).
417 root 1.1
418 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
419     list. They are the same as used by C<sysopen>.
420    
421     Likewise, C<$mode> specifies the mode of the newly created file, if it
422     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
423     except that it is mandatory (i.e. use C<0> if you don't create new files,
424 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
425     by the umask in effect then the request is being executed, so better never
426     change the umask.
427 root 1.1
428     Example:
429    
430 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
431 root 1.2 if ($_[0]) {
432     print "open successful, fh is $_[0]\n";
433 root 1.1 ...
434     } else {
435     die "open failed: $!\n";
436     }
437     };
438    
439 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
440     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
441     following POSIX and non-POSIX constants are available (missing ones on
442     your system are, as usual, C<0>):
443    
444     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
445     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
446 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
447 root 1.194
448 root 1.106
449 root 1.40 =item aio_close $fh, $callback->($status)
450 root 1.1
451 root 1.2 Asynchronously close a file and call the callback with the result
452 root 1.116 code.
453    
454 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
455 root 1.121 closing the file descriptor associated with the filehandle itself.
456 root 1.117
457 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
458     use dup2 to overwrite the file descriptor with the write-end of a pipe
459     (the pipe fd will be created on demand and will be cached).
460 root 1.117
461 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
462     free for reuse until the perl filehandle is closed.
463 root 1.117
464     =cut
465    
466 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
467    
468 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
469 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
470     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
471     C<IO::AIO::SEEK_END>).
472    
473     The resulting absolute offset will be passed to the callback, or C<-1> in
474     case of an error.
475    
476     In theory, the C<$whence> constants could be different than the
477     corresponding values from L<Fcntl>, but perl guarantees they are the same,
478     so don't panic.
479    
480 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
481     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
482     could be found. No guarantees about suitability for use in C<aio_seek> or
483     Perl's C<sysseek> can be made though, although I would naively assume they
484     "just work".
485    
486 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
487 root 1.1
488 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
489 root 1.1
490 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
491 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
492     calls the callback with the actual number of bytes transferred (or -1 on
493 root 1.145 error, just like the syscall).
494 root 1.109
495 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
496     offset plus the actual number of bytes read.
497    
498 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
499     be used (and updated), otherwise the file descriptor offset will not be
500     changed by these calls.
501 root 1.109
502 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
503     C<$data>.
504 root 1.109
505     If C<$dataoffset> is less than zero, it will be counted from the end of
506     C<$data>.
507 root 1.1
508 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
509 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
510     the necessary/optional hardware is installed).
511 root 1.31
512 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
513 root 1.1 offset C<0> within the scalar:
514    
515     aio_read $fh, 7, 15, $buffer, 0, sub {
516 root 1.9 $_[0] > 0 or die "read error: $!";
517     print "read $_[0] bytes: <$buffer>\n";
518 root 1.1 };
519    
520 root 1.106
521 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
522 root 1.35
523     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
524     reading at byte offset C<$in_offset>, and starts writing at the current
525     file offset of C<$out_fh>. Because of that, it is not safe to issue more
526     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
527 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
528     move or use the file offset of C<$in_fh>.
529 root 1.35
530 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
531 root 1.196 are written, and there is no way to find out how many more bytes have been
532     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
533     number of bytes written to C<$out_fh>. Only if the result value equals
534     C<$length> one can assume that C<$length> bytes have been read.
535 root 1.185
536     Unlike with other C<aio_> functions, it makes a lot of sense to use
537     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
538     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
539 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
540     into a trap where C<aio_sendfile> reads some data with readahead, then
541     fails to write all data, and when the socket is ready the next time, the
542     data in the cache is already lost, forcing C<aio_sendfile> to again hit
543     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
544     resource usage.
545    
546     This call tries to make use of a native C<sendfile>-like syscall to
547     provide zero-copy operation. For this to work, C<$out_fh> should refer to
548     a socket, and C<$in_fh> should refer to an mmap'able file.
549 root 1.35
550 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
551 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
552     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
553     type of filehandle regardless of the limitations of the operating system.
554    
555     As native sendfile syscalls (as practically any non-POSIX interface hacked
556     together in a hurry to improve benchmark numbers) tend to be rather buggy
557     on many systems, this implementation tries to work around some known bugs
558     in Linux and FreeBSD kernels (probably others, too), but that might fail,
559     so you really really should check the return value of C<aio_sendfile> -
560 root 1.262 fewer bytes than expected might have been transferred.
561 root 1.35
562 root 1.106
563 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
564 root 1.1
565 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
566 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
567     argument specifies the starting point from which data is to be read and
568     C<$length> specifies the number of bytes to be read. I/O is performed in
569     whole pages, so that offset is effectively rounded down to a page boundary
570     and bytes are read up to the next page boundary greater than or equal to
571 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
572 root 1.1 file. The current file offset of the file is left unchanged.
573    
574 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
575     be emulated by simply reading the data, which would have a similar effect.
576 root 1.26
577 root 1.106
578 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
579 root 1.1
580 root 1.40 =item aio_lstat $fh, $callback->($status)
581 root 1.1
582 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
583     callback will be called after the stat and the results will be available
584     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
585     and C<-T>).
586 root 1.1
587     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
588     error when stat'ing a large file, the results will be silently truncated
589     unless perl itself is compiled with large file support.
590    
591 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
592     following constants and functions (if not implemented, the constants will
593     be C<0> and the functions will either C<croak> or fall back on traditional
594     behaviour).
595    
596     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
597     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
598     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
599    
600 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
601     ACCESS>.
602    
603 root 1.1 Example: Print the length of F</etc/passwd>:
604    
605     aio_stat "/etc/passwd", sub {
606     $_[0] and die "stat failed: $!";
607     print "size is ", -s _, "\n";
608     };
609    
610 root 1.106
611 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
612 root 1.172
613     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
614     whether a file handle or path was passed.
615    
616     On success, the callback is passed a hash reference with the following
617     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
618     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
619     is passed.
620    
621     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
622     C<ST_NOSUID>.
623    
624     The following non-POSIX IO::AIO::ST_* flag masks are defined to
625     their correct value when available, or to C<0> on systems that do
626     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
627     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
628     C<ST_NODIRATIME> and C<ST_RELATIME>.
629    
630     Example: stat C</wd> and dump out the data if successful.
631    
632     aio_statvfs "/wd", sub {
633     my $f = $_[0]
634     or die "statvfs: $!";
635    
636     use Data::Dumper;
637     say Dumper $f;
638     };
639    
640     # result:
641     {
642     bsize => 1024,
643     bfree => 4333064312,
644     blocks => 10253828096,
645     files => 2050765568,
646     flag => 4096,
647     favail => 2042092649,
648     bavail => 4333064312,
649     ffree => 2042092649,
650     namemax => 255,
651     frsize => 1024,
652     fsid => 1810
653     }
654    
655 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
656    
657     Works like perl's C<utime> function (including the special case of $atime
658     and $mtime being undef). Fractional times are supported if the underlying
659     syscalls support them.
660    
661 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
662     otherwise utime(2). If called on a file descriptor, uses futimens(2)
663     or futimes(2) if available, otherwise returns ENOSYS, so this is not
664     portable.
665 root 1.106
666     Examples:
667    
668 root 1.107 # set atime and mtime to current time (basically touch(1)):
669 root 1.106 aio_utime "path", undef, undef;
670     # set atime to current time and mtime to beginning of the epoch:
671     aio_utime "path", time, undef; # undef==0
672    
673    
674     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
675    
676     Works like perl's C<chown> function, except that C<undef> for either $uid
677     or $gid is being interpreted as "do not change" (but -1 can also be used).
678    
679     Examples:
680    
681     # same as "chown root path" in the shell:
682     aio_chown "path", 0, -1;
683     # same as above:
684     aio_chown "path", 0, undef;
685    
686    
687 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
688    
689     Works like truncate(2) or ftruncate(2).
690    
691    
692 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
693    
694 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
695     linux C<fallocate> documentation for details.
696 root 1.229
697 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
698     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
699     to deallocate a file range.
700    
701     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
702 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
703     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
704     to unshare shared blocks (see your L<fallocate(2)> manpage).
705 root 1.229
706     The file system block size used by C<fallocate> is presumably the
707 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
708     can dictate other limitations.
709 root 1.229
710     If C<fallocate> isn't available or cannot be emulated (currently no
711     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
712    
713    
714 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
715    
716     Works like perl's C<chmod> function.
717    
718    
719 root 1.40 =item aio_unlink $pathname, $callback->($status)
720 root 1.1
721     Asynchronously unlink (delete) a file and call the callback with the
722     result code.
723    
724 root 1.106
725 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
726 root 1.82
727 root 1.86 [EXPERIMENTAL]
728    
729 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
730    
731 root 1.86 The only (POSIX-) portable way of calling this function is:
732 root 1.83
733 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
734 root 1.82
735 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
736     and functions.
737 root 1.106
738 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
739    
740     Asynchronously create a new link to the existing object at C<$srcpath> at
741     the path C<$dstpath> and call the callback with the result code.
742    
743 root 1.106
744 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
745    
746     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
747     the path C<$dstpath> and call the callback with the result code.
748    
749 root 1.106
750 root 1.209 =item aio_readlink $pathname, $callback->($link)
751 root 1.90
752     Asynchronously read the symlink specified by C<$path> and pass it to
753     the callback. If an error occurs, nothing or undef gets passed to the
754     callback.
755    
756 root 1.106
757 root 1.209 =item aio_realpath $pathname, $callback->($path)
758 root 1.201
759     Asynchronously make the path absolute and resolve any symlinks in
760 root 1.239 C<$path>. The resulting path only consists of directories (same as
761 root 1.202 L<Cwd::realpath>).
762 root 1.201
763     This request can be used to get the absolute path of the current working
764     directory by passing it a path of F<.> (a single dot).
765    
766    
767 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
768    
769     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
770     rename(2) and call the callback with the result code.
771    
772 root 1.241 On systems that support the AIO::WD working directory abstraction
773     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
774     of failing, C<rename> is called on the absolute path of C<$wd>.
775    
776 root 1.106
777 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
778    
779     Basically a version of C<aio_rename> with an additional C<$flags>
780     argument. Calling this with C<$flags=0> is the same as calling
781     C<aio_rename>.
782    
783     Non-zero flags are currently only supported on GNU/Linux systems that
784     support renameat2. Other systems fail with C<ENOSYS> in this case.
785    
786     The following constants are available (missing ones are, as usual C<0>),
787     see renameat2(2) for details:
788    
789     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
790     and C<IO::AIO::RENAME_WHITEOUT>.
791    
792    
793 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
794    
795     Asynchronously mkdir (create) a directory and call the callback with
796     the result code. C<$mode> will be modified by the umask at the time the
797     request is executed, so do not change your umask.
798    
799 root 1.106
800 root 1.40 =item aio_rmdir $pathname, $callback->($status)
801 root 1.27
802     Asynchronously rmdir (delete) a directory and call the callback with the
803     result code.
804    
805 root 1.241 On systems that support the AIO::WD working directory abstraction
806     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
807     C<rmdir> is called on the absolute path of C<$wd>.
808    
809 root 1.106
810 root 1.46 =item aio_readdir $pathname, $callback->($entries)
811 root 1.37
812     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
813     directory (i.e. opendir + readdir + closedir). The entries will not be
814     sorted, and will B<NOT> include the C<.> and C<..> entries.
815    
816 root 1.148 The callback is passed a single argument which is either C<undef> or an
817     array-ref with the filenames.
818    
819    
820     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
821    
822 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
823     tune behaviour and output format. In case of an error, C<$entries> will be
824 root 1.148 C<undef>.
825    
826     The flags are a combination of the following constants, ORed together (the
827     flags will also be passed to the callback, possibly modified):
828    
829     =over 4
830    
831 root 1.150 =item IO::AIO::READDIR_DENTS
832 root 1.148
833 root 1.284 Normally the callback gets an arrayref consisting of names only (as
834     with C<aio_readdir>). If this flag is set, then the callback gets an
835     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
836     single directory entry in more detail:
837 root 1.148
838     C<$name> is the name of the entry.
839    
840 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
841 root 1.148
842 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
843     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
844     C<IO::AIO::DT_WHT>.
845 root 1.148
846 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
847     to know, you have to run stat yourself. Also, for speed/memory reasons,
848     the C<$type> scalars are read-only: you must not modify them.
849 root 1.148
850 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
851 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
852     systems that do not deliver the inode information.
853 root 1.150
854     =item IO::AIO::READDIR_DIRS_FIRST
855 root 1.148
856     When this flag is set, then the names will be returned in an order where
857 root 1.193 likely directories come first, in optimal stat order. This is useful when
858     you need to quickly find directories, or you want to find all directories
859     while avoiding to stat() each entry.
860 root 1.148
861 root 1.149 If the system returns type information in readdir, then this is used
862 root 1.193 to find directories directly. Otherwise, likely directories are names
863     beginning with ".", or otherwise names with no dots, of which names with
864 root 1.149 short names are tried first.
865    
866 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
867 root 1.148
868     When this flag is set, then the names will be returned in an order
869 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
870     all files in the given directory, then the returned order will likely be
871     faster.
872    
873     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
874     then the likely dirs come first, resulting in a less optimal stat order
875     for stat'ing all entries, but likely a more optimal order for finding
876     subdirectories.
877 root 1.148
878 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
879 root 1.148
880     This flag should not be set when calling C<aio_readdirx>. Instead, it
881     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
882 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
883 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
884    
885     =back
886 root 1.37
887 root 1.106
888 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
889    
890     Opens, reads and closes the given file. The data is put into C<$data>,
891     which is resized as required.
892    
893     If C<$offset> is negative, then it is counted from the end of the file.
894    
895     If C<$length> is zero, then the remaining length of the file is
896     used. Also, in this case, the same limitations to modifying C<$data> apply
897     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
898     with C<substr>. If the size of the file is known, specifying a non-zero
899     C<$length> results in a performance advantage.
900    
901     This request is similar to the older C<aio_load> request, but since it is
902     a single request, it might be more efficient to use.
903    
904     Example: load F</etc/passwd> into C<$passwd>.
905    
906     my $passwd;
907     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
908     $_[0] >= 0
909     or die "/etc/passwd: $!\n";
910    
911     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
912     print $passwd;
913     };
914     IO::AIO::flush;
915    
916    
917 root 1.209 =item aio_load $pathname, $data, $callback->($status)
918 root 1.98
919     This is a composite request that tries to fully load the given file into
920     memory. Status is the same as with aio_read.
921    
922 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
923    
924 root 1.98 =cut
925    
926     sub aio_load($$;$) {
927 root 1.123 my ($path, undef, $cb) = @_;
928     my $data = \$_[1];
929 root 1.98
930 root 1.123 my $pri = aioreq_pri;
931     my $grp = aio_group $cb;
932    
933     aioreq_pri $pri;
934     add $grp aio_open $path, O_RDONLY, 0, sub {
935     my $fh = shift
936     or return $grp->result (-1);
937 root 1.98
938     aioreq_pri $pri;
939 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
940     $grp->result ($_[0]);
941 root 1.98 };
942 root 1.123 };
943 root 1.98
944 root 1.123 $grp
945 root 1.98 }
946    
947 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
948    
949     Try to copy the I<file> (directories not supported as either source or
950     destination) from C<$srcpath> to C<$dstpath> and call the callback with
951 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
952 root 1.82
953 root 1.275 Existing destination files will be truncated.
954    
955 root 1.134 This is a composite request that creates the destination file with
956 root 1.82 mode 0200 and copies the contents of the source file into it using
957     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
958     uid/gid, in that order.
959    
960     If an error occurs, the partial destination file will be unlinked, if
961     possible, except when setting atime, mtime, access mode and uid/gid, where
962     errors are being ignored.
963    
964     =cut
965    
966     sub aio_copy($$;$) {
967 root 1.123 my ($src, $dst, $cb) = @_;
968 root 1.82
969 root 1.123 my $pri = aioreq_pri;
970     my $grp = aio_group $cb;
971 root 1.82
972 root 1.123 aioreq_pri $pri;
973     add $grp aio_open $src, O_RDONLY, 0, sub {
974     if (my $src_fh = $_[0]) {
975 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
976 root 1.95
977 root 1.123 aioreq_pri $pri;
978     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
979     if (my $dst_fh = $_[0]) {
980     aioreq_pri $pri;
981     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
982     if ($_[0] == $stat[7]) {
983     $grp->result (0);
984     close $src_fh;
985    
986 root 1.147 my $ch = sub {
987     aioreq_pri $pri;
988     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
989     aioreq_pri $pri;
990     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
991     aioreq_pri $pri;
992     add $grp aio_close $dst_fh;
993     }
994     };
995     };
996 root 1.123
997     aioreq_pri $pri;
998 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
999     if ($_[0] < 0 && $! == ENOSYS) {
1000     aioreq_pri $pri;
1001     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1002     } else {
1003     $ch->();
1004     }
1005     };
1006 root 1.123 } else {
1007     $grp->result (-1);
1008     close $src_fh;
1009     close $dst_fh;
1010    
1011     aioreq $pri;
1012     add $grp aio_unlink $dst;
1013     }
1014     };
1015     } else {
1016     $grp->result (-1);
1017     }
1018     },
1019 root 1.82
1020 root 1.123 } else {
1021     $grp->result (-1);
1022     }
1023     };
1024 root 1.82
1025 root 1.123 $grp
1026 root 1.82 }
1027    
1028     =item aio_move $srcpath, $dstpath, $callback->($status)
1029    
1030     Try to move the I<file> (directories not supported as either source or
1031     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1032 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1033 root 1.82
1034 root 1.137 This is a composite request that tries to rename(2) the file first; if
1035     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1036     that is successful, unlinks the C<$srcpath>.
1037 root 1.82
1038     =cut
1039    
1040     sub aio_move($$;$) {
1041 root 1.123 my ($src, $dst, $cb) = @_;
1042 root 1.82
1043 root 1.123 my $pri = aioreq_pri;
1044     my $grp = aio_group $cb;
1045 root 1.82
1046 root 1.123 aioreq_pri $pri;
1047     add $grp aio_rename $src, $dst, sub {
1048     if ($_[0] && $! == EXDEV) {
1049     aioreq_pri $pri;
1050     add $grp aio_copy $src, $dst, sub {
1051     $grp->result ($_[0]);
1052 root 1.95
1053 root 1.196 unless ($_[0]) {
1054 root 1.123 aioreq_pri $pri;
1055     add $grp aio_unlink $src;
1056     }
1057     };
1058     } else {
1059     $grp->result ($_[0]);
1060     }
1061     };
1062 root 1.82
1063 root 1.123 $grp
1064 root 1.82 }
1065    
1066 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1067 root 1.40
1068 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1069 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1070     names, directories you can recurse into (directories), and ones you cannot
1071     recurse into (everything else, including symlinks to directories).
1072 root 1.52
1073 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1074 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1075     this function generates. If it is C<< <= 0 >>, then a suitable default
1076 root 1.81 will be chosen (currently 4).
1077 root 1.40
1078     On error, the callback is called without arguments, otherwise it receives
1079     two array-refs with path-relative entry names.
1080    
1081     Example:
1082    
1083     aio_scandir $dir, 0, sub {
1084     my ($dirs, $nondirs) = @_;
1085     print "real directories: @$dirs\n";
1086     print "everything else: @$nondirs\n";
1087     };
1088    
1089     Implementation notes.
1090    
1091     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1092    
1093 root 1.149 If readdir returns file type information, then this is used directly to
1094     find directories.
1095    
1096     Otherwise, after reading the directory, the modification time, size etc.
1097     of the directory before and after the readdir is checked, and if they
1098     match (and isn't the current time), the link count will be used to decide
1099     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1100     number of subdirectories will be assumed.
1101    
1102     Then entries will be sorted into likely directories a non-initial dot
1103     currently) and likely non-directories (see C<aio_readdirx>). Then every
1104     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1105     in order of their inode numbers. If that succeeds, it assumes that the
1106     entry is a directory or a symlink to directory (which will be checked
1107 root 1.207 separately). This is often faster than stat'ing the entry itself because
1108 root 1.52 filesystems might detect the type of the entry without reading the inode
1109 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1110     the filetype information on readdir.
1111 root 1.52
1112     If the known number of directories (link count - 2) has been reached, the
1113     rest of the entries is assumed to be non-directories.
1114    
1115     This only works with certainty on POSIX (= UNIX) filesystems, which
1116     fortunately are the vast majority of filesystems around.
1117    
1118     It will also likely work on non-POSIX filesystems with reduced efficiency
1119     as those tend to return 0 or 1 as link counts, which disables the
1120     directory counting heuristic.
1121 root 1.40
1122     =cut
1123    
1124 root 1.100 sub aio_scandir($$;$) {
1125 root 1.123 my ($path, $maxreq, $cb) = @_;
1126    
1127     my $pri = aioreq_pri;
1128 root 1.40
1129 root 1.123 my $grp = aio_group $cb;
1130 root 1.80
1131 root 1.123 $maxreq = 4 if $maxreq <= 0;
1132 root 1.55
1133 root 1.210 # get a wd object
1134 root 1.123 aioreq_pri $pri;
1135 root 1.210 add $grp aio_wd $path, sub {
1136 root 1.212 $_[0]
1137     or return $grp->result ();
1138    
1139 root 1.210 my $wd = [shift, "."];
1140 root 1.40
1141 root 1.210 # stat once
1142 root 1.80 aioreq_pri $pri;
1143 root 1.210 add $grp aio_stat $wd, sub {
1144     return $grp->result () if $_[0];
1145     my $now = time;
1146     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1147 root 1.299 my $rdxflags = READDIR_DIRS_FIRST;
1148    
1149     if ((stat _)[3] < 2) {
1150     # at least one non-POSIX filesystem exists
1151     # that returns useful DT_type values: btrfs,
1152     # so optimise for this here by requesting dents
1153     $rdxflags |= READDIR_DENTS;
1154     }
1155 root 1.40
1156 root 1.210 # read the directory entries
1157 root 1.80 aioreq_pri $pri;
1158 root 1.299 add $grp aio_readdirx $wd, $rdxflags, sub {
1159     my ($entries, $flags) = @_
1160 root 1.210 or return $grp->result ();
1161    
1162 root 1.299 if ($rdxflags & READDIR_DENTS) {
1163     # if we requested type values, see if we can use them directly.
1164    
1165     # if there were any DT_UNKNOWN entries then we assume we
1166     # don't know. alternatively, we could assume that if we get
1167     # one DT_DIR, then all directories are indeed marked with
1168     # DT_DIR, but this seems not required for btrfs, and this
1169     # is basically the "btrfs can't get it's act together" code
1170     # branch.
1171     unless ($flags & READDIR_FOUND_UNKNOWN) {
1172     # now we have valid DT_ information for all entries,
1173     # so use it as an optimisation without further stat's.
1174     # they must also all be at the beginning of @$entries
1175     # by now.
1176    
1177     my $dirs;
1178    
1179     if (@$entries) {
1180     for (0 .. $#$entries) {
1181     if ($entries->[$_][1] != DT_DIR) {
1182     # splice out directories
1183     $dirs = [splice @$entries, 0, $_];
1184     last;
1185     }
1186     }
1187    
1188     # if we didn't find any non-dir, then all entries are dirs
1189     unless ($dirs) {
1190     ($dirs, $entries) = ($entries, []);
1191     }
1192     } else {
1193     # directory is empty, so there are no sbdirs
1194     $dirs = [];
1195     }
1196    
1197     # either splice'd the directories out or the dir was empty.
1198     # convert dents to filenames
1199     $_ = $_->[0] for @$dirs;
1200     $_ = $_->[0] for @$entries;
1201    
1202     return $grp->result ($dirs, $entries);
1203     }
1204    
1205     # cannot use, so return to our old ways
1206     # by pretending we only scanned for names.
1207     $_ = $_->[0] for @$entries;
1208     }
1209    
1210 root 1.210 # stat the dir another time
1211     aioreq_pri $pri;
1212     add $grp aio_stat $wd, sub {
1213     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1214 root 1.95
1215 root 1.210 my $ndirs;
1216 root 1.95
1217 root 1.210 # take the slow route if anything looks fishy
1218     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1219     $ndirs = -1;
1220     } else {
1221     # if nlink == 2, we are finished
1222     # for non-posix-fs's, we rely on nlink < 2
1223     $ndirs = (stat _)[3] - 2
1224     or return $grp->result ([], $entries);
1225     }
1226 root 1.123
1227 root 1.210 my (@dirs, @nondirs);
1228 root 1.40
1229 root 1.210 my $statgrp = add $grp aio_group sub {
1230     $grp->result (\@dirs, \@nondirs);
1231     };
1232 root 1.40
1233 root 1.210 limit $statgrp $maxreq;
1234     feed $statgrp sub {
1235     return unless @$entries;
1236     my $entry = shift @$entries;
1237    
1238     aioreq_pri $pri;
1239     $wd->[1] = "$entry/.";
1240     add $statgrp aio_stat $wd, sub {
1241     if ($_[0] < 0) {
1242     push @nondirs, $entry;
1243     } else {
1244     # need to check for real directory
1245     aioreq_pri $pri;
1246     $wd->[1] = $entry;
1247     add $statgrp aio_lstat $wd, sub {
1248     if (-d _) {
1249     push @dirs, $entry;
1250    
1251     unless (--$ndirs) {
1252     push @nondirs, @$entries;
1253     feed $statgrp;
1254     }
1255     } else {
1256     push @nondirs, $entry;
1257 root 1.74 }
1258 root 1.40 }
1259     }
1260 root 1.210 };
1261 root 1.74 };
1262 root 1.40 };
1263     };
1264     };
1265 root 1.123 };
1266 root 1.55
1267 root 1.123 $grp
1268 root 1.40 }
1269    
1270 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1271 root 1.99
1272 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1273 root 1.239 status of the final C<rmdir> only. This is a composite request that
1274 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1275     everything else.
1276 root 1.99
1277     =cut
1278    
1279     sub aio_rmtree;
1280 root 1.100 sub aio_rmtree($;$) {
1281 root 1.123 my ($path, $cb) = @_;
1282 root 1.99
1283 root 1.123 my $pri = aioreq_pri;
1284     my $grp = aio_group $cb;
1285 root 1.99
1286 root 1.123 aioreq_pri $pri;
1287     add $grp aio_scandir $path, 0, sub {
1288     my ($dirs, $nondirs) = @_;
1289 root 1.99
1290 root 1.123 my $dirgrp = aio_group sub {
1291     add $grp aio_rmdir $path, sub {
1292     $grp->result ($_[0]);
1293 root 1.99 };
1294 root 1.123 };
1295 root 1.99
1296 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1297     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1298 root 1.99
1299 root 1.123 add $grp $dirgrp;
1300     };
1301 root 1.99
1302 root 1.123 $grp
1303 root 1.99 }
1304    
1305 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1306    
1307     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1308    
1309     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1310     they execute asynchronously and pass the return value to the callback.
1311    
1312     Both calls can be used for a lot of things, some of which make more sense
1313     to run asynchronously in their own thread, while some others make less
1314     sense. For example, calls that block waiting for external events, such
1315     as locking, will also lock down an I/O thread while it is waiting, which
1316     can deadlock the whole I/O system. At the same time, there might be no
1317     alternative to using a thread to wait.
1318    
1319     So in general, you should only use these calls for things that do
1320     (filesystem) I/O, not for things that wait for other events (network,
1321     other processes), although if you are careful and know what you are doing,
1322     you still can.
1323    
1324 root 1.303 The following constants are available and can be used for normal C<ioctl>
1325     and C<fcntl> as well (missing ones are, as usual C<0>):
1326 root 1.264
1327 root 1.271 C<F_DUPFD_CLOEXEC>,
1328    
1329     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1330    
1331 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1332    
1333 root 1.303 C<F_ADD_SEALS>, C<F_GET_SEALS>, C<F_SEAL_SEAL>, C<F_SEAL_SHRINK>, C<F_SEAL_GROW> and
1334     C<F_SEAL_WRITE>.
1335    
1336 root 1.264 C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1337     C<FS_IOC_FIEMAP>.
1338    
1339     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1340     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1341    
1342     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1343     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1344     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1345     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1346     C<FS_FL_USER_MODIFIABLE>.
1347    
1348     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1349     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1350     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1351     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1352    
1353 root 1.316 C<BLKROSET>, C<BLKROGET>, C<BLKRRPART>, C<BLKGETSIZE>, C<BLKFLSBUF>, C<BLKRASET>,
1354     C<BLKRAGET>, C<BLKFRASET>, C<BLKFRAGET>, C<BLKSECTSET>, C<BLKSECTGET>, C<BLKSSZGET>,
1355     C<BLKBSZGET>, C<BLKBSZSET>, C<BLKGETSIZE64>,
1356    
1357    
1358 root 1.119 =item aio_sync $callback->($status)
1359    
1360     Asynchronously call sync and call the callback when finished.
1361    
1362 root 1.40 =item aio_fsync $fh, $callback->($status)
1363 root 1.1
1364     Asynchronously call fsync on the given filehandle and call the callback
1365     with the fsync result code.
1366    
1367 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1368 root 1.1
1369     Asynchronously call fdatasync on the given filehandle and call the
1370 root 1.26 callback with the fdatasync result code.
1371    
1372     If this call isn't available because your OS lacks it or it couldn't be
1373     detected, it will be emulated by calling C<fsync> instead.
1374 root 1.1
1375 root 1.206 =item aio_syncfs $fh, $callback->($status)
1376    
1377     Asynchronously call the syncfs syscall to sync the filesystem associated
1378     to the given filehandle and call the callback with the syncfs result
1379     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1380     errno to C<ENOSYS> nevertheless.
1381    
1382 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1383    
1384     Sync the data portion of the file specified by C<$offset> and C<$length>
1385     to disk (but NOT the metadata), by calling the Linux-specific
1386     sync_file_range call. If sync_file_range is not available or it returns
1387     ENOSYS, then fdatasync or fsync is being substituted.
1388    
1389     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1390     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1391     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1392     manpage for details.
1393    
1394 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1395 root 1.120
1396     This request tries to open, fsync and close the given path. This is a
1397 root 1.135 composite request intended to sync directories after directory operations
1398 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1399     specific effect, but usually it makes sure that directory changes get
1400     written to disc. It works for anything that can be opened for read-only,
1401     not just directories.
1402    
1403 root 1.162 Future versions of this function might fall back to other methods when
1404     C<fsync> on the directory fails (such as calling C<sync>).
1405    
1406 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1407    
1408     =cut
1409    
1410     sub aio_pathsync($;$) {
1411 root 1.123 my ($path, $cb) = @_;
1412    
1413     my $pri = aioreq_pri;
1414     my $grp = aio_group $cb;
1415 root 1.120
1416 root 1.123 aioreq_pri $pri;
1417     add $grp aio_open $path, O_RDONLY, 0, sub {
1418     my ($fh) = @_;
1419     if ($fh) {
1420     aioreq_pri $pri;
1421     add $grp aio_fsync $fh, sub {
1422     $grp->result ($_[0]);
1423 root 1.120
1424     aioreq_pri $pri;
1425 root 1.123 add $grp aio_close $fh;
1426     };
1427     } else {
1428     $grp->result (-1);
1429     }
1430     };
1431 root 1.120
1432 root 1.123 $grp
1433 root 1.120 }
1434    
1435 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1436 root 1.170
1437     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1438 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1439     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1440     scalar must only be modified in-place while an aio operation is pending on
1441     it).
1442 root 1.170
1443     It calls the C<msync> function of your OS, if available, with the memory
1444     area starting at C<$offset> in the string and ending C<$length> bytes
1445     later. If C<$length> is negative, counts from the end, and if C<$length>
1446     is C<undef>, then it goes till the end of the string. The flags can be
1447 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1448     C<IO::AIO::MS_INVALIDATE>.
1449 root 1.170
1450     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1451    
1452     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1453     scalars.
1454    
1455     It touches (reads or writes) all memory pages in the specified
1456 root 1.239 range inside the scalar. All caveats and parameters are the same
1457 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1458     C<0> (which reads all pages and ensures they are instantiated) or
1459 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1460 root 1.170 writing an octet from it, which dirties the page).
1461    
1462 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1463    
1464     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1465     scalars.
1466    
1467     It reads in all the pages of the underlying storage into memory (if any)
1468     and locks them, so they are not getting swapped/paged out or removed.
1469    
1470     If C<$length> is undefined, then the scalar will be locked till the end.
1471    
1472     On systems that do not implement C<mlock>, this function returns C<-1>
1473     and sets errno to C<ENOSYS>.
1474    
1475     Note that the corresponding C<munlock> is synchronous and is
1476     documented under L<MISCELLANEOUS FUNCTIONS>.
1477    
1478 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1479     C<$data> gets destroyed.
1480    
1481     open my $fh, "<", $path or die "$path: $!";
1482     my $data;
1483     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1484     aio_mlock $data; # mlock in background
1485    
1486 root 1.182 =item aio_mlockall $flags, $callback->($status)
1487    
1488 root 1.297 Calls the C<mlockall> function with the given C<$flags> (a
1489     combination of C<IO::AIO::MCL_CURRENT>, C<IO::AIO::MCL_FUTURE> and
1490     C<IO::AIO::MCL_ONFAULT>).
1491 root 1.182
1492     On systems that do not implement C<mlockall>, this function returns C<-1>
1493 root 1.297 and sets errno to C<ENOSYS>. Similarly, flag combinations not supported
1494     by the system result in a return value of C<-1> with errno being set to
1495     C<EINVAL>.
1496 root 1.182
1497     Note that the corresponding C<munlockall> is synchronous and is
1498     documented under L<MISCELLANEOUS FUNCTIONS>.
1499    
1500 root 1.183 Example: asynchronously lock all current and future pages into memory.
1501    
1502     aio_mlockall IO::AIO::MCL_FUTURE;
1503    
1504 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1505    
1506 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1507     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1508     the ioctl is not available on your OS, then this request will fail with
1509 root 1.223 C<ENOSYS>.
1510    
1511     C<$start> is the starting offset to query extents for, C<$length> is the
1512     size of the range to query - if it is C<undef>, then the whole file will
1513     be queried.
1514    
1515     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1516     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1517     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1518     the data portion.
1519    
1520     C<$count> is the maximum number of extent records to return. If it is
1521 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1522 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1523 root 1.232 instead of the extents themselves (which is unreliable, see below).
1524 root 1.223
1525     If an error occurs, the callback receives no arguments. The special
1526     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1527    
1528     Otherwise, the callback receives an array reference with extent
1529     structures. Each extent structure is an array reference itself, with the
1530     following members:
1531    
1532     [$logical, $physical, $length, $flags]
1533    
1534     Flags is any combination of the following flag values (typically either C<0>
1535 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1536 root 1.223
1537     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1538     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1539     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1540     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1541     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1542     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1543    
1544 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1545 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1546 root 1.278 it to return all extents of a range for files with a large number of
1547     extents. The code (only) works around all these issues if C<$count> is
1548     C<undef>.
1549 root 1.232
1550 root 1.58 =item aio_group $callback->(...)
1551 root 1.54
1552 root 1.55 This is a very special aio request: Instead of doing something, it is a
1553     container for other aio requests, which is useful if you want to bundle
1554 root 1.71 many requests into a single, composite, request with a definite callback
1555     and the ability to cancel the whole request with its subrequests.
1556 root 1.55
1557     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1558     for more info.
1559    
1560     Example:
1561    
1562     my $grp = aio_group sub {
1563     print "all stats done\n";
1564     };
1565    
1566     add $grp
1567     (aio_stat ...),
1568     (aio_stat ...),
1569     ...;
1570    
1571 root 1.63 =item aio_nop $callback->()
1572    
1573     This is a special request - it does nothing in itself and is only used for
1574     side effects, such as when you want to add a dummy request to a group so
1575     that finishing the requests in the group depends on executing the given
1576     code.
1577    
1578 root 1.64 While this request does nothing, it still goes through the execution
1579     phase and still requires a worker thread. Thus, the callback will not
1580     be executed immediately but only after other requests in the queue have
1581     entered their execution phase. This can be used to measure request
1582     latency.
1583    
1584 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1585 root 1.54
1586     Mainly used for debugging and benchmarking, this aio request puts one of
1587     the request workers to sleep for the given time.
1588    
1589 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1590 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1591     immense (it blocks a thread for a long time) so do not use this function
1592     except to put your application under artificial I/O pressure.
1593 root 1.56
1594 root 1.5 =back
1595    
1596 root 1.209
1597     =head2 IO::AIO::WD - multiple working directories
1598    
1599     Your process only has one current working directory, which is used by all
1600     threads. This makes it hard to use relative paths (some other component
1601     could call C<chdir> at any time, and it is hard to control when the path
1602     will be used by IO::AIO).
1603    
1604     One solution for this is to always use absolute paths. This usually works,
1605     but can be quite slow (the kernel has to walk the whole path on every
1606     access), and can also be a hassle to implement.
1607    
1608     Newer POSIX systems have a number of functions (openat, fdopendir,
1609     futimensat and so on) that make it possible to specify working directories
1610     per operation.
1611    
1612     For portability, and because the clowns who "designed", or shall I write,
1613     perpetrated this new interface were obviously half-drunk, this abstraction
1614     cannot be perfect, though.
1615    
1616     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1617     object. This object stores the canonicalised, absolute version of the
1618     path, and on systems that allow it, also a directory file descriptor.
1619    
1620     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1621     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1622 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1623     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1624 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1625 root 1.209 to that IO::AIO::WD object.
1626    
1627     For example, to get a wd object for F</etc> and then stat F<passwd>
1628     inside, you would write:
1629    
1630     aio_wd "/etc", sub {
1631     my $etcdir = shift;
1632    
1633     # although $etcdir can be undef on error, there is generally no reason
1634     # to check for errors here, as aio_stat will fail with ENOENT
1635     # when $etcdir is undef.
1636    
1637     aio_stat [$etcdir, "passwd"], sub {
1638     # yay
1639     };
1640     };
1641    
1642 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1643     creating an IO::AIO::WD object is itself a potentially blocking operation,
1644     which is why it is done asynchronously.
1645 root 1.214
1646     To stat the directory obtained with C<aio_wd> above, one could write
1647     either of the following three request calls:
1648    
1649     aio_lstat "/etc" , sub { ... # pathname as normal string
1650     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1651     aio_lstat $wd , sub { ... # shorthand for the previous
1652 root 1.209
1653     As with normal pathnames, IO::AIO keeps a copy of the working directory
1654     object and the pathname string, so you could write the following without
1655     causing any issues due to C<$path> getting reused:
1656    
1657     my $path = [$wd, undef];
1658    
1659     for my $name (qw(abc def ghi)) {
1660     $path->[1] = $name;
1661     aio_stat $path, sub {
1662     # ...
1663     };
1664     }
1665    
1666     There are some caveats: when directories get renamed (or deleted), the
1667     pathname string doesn't change, so will point to the new directory (or
1668     nowhere at all), while the directory fd, if available on the system,
1669     will still point to the original directory. Most functions accepting a
1670     pathname will use the directory fd on newer systems, and the string on
1671 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1672     the string form of the pathname.
1673 root 1.209
1674 root 1.239 So this functionality is mainly useful to get some protection against
1675 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1676     reference, and to speed up doing many operations in the same directory
1677     (e.g. when stat'ing all files in a directory).
1678    
1679     The following functions implement this working directory abstraction:
1680    
1681     =over 4
1682    
1683     =item aio_wd $pathname, $callback->($wd)
1684    
1685     Asynchonously canonicalise the given pathname and convert it to an
1686     IO::AIO::WD object representing it. If possible and supported on the
1687     system, also open a directory fd to speed up pathname resolution relative
1688     to this working directory.
1689    
1690     If something goes wrong, then C<undef> is passwd to the callback instead
1691     of a working directory object and C<$!> is set appropriately. Since
1692     passing C<undef> as working directory component of a pathname fails the
1693     request with C<ENOENT>, there is often no need for error checking in the
1694     C<aio_wd> callback, as future requests using the value will fail in the
1695     expected way.
1696    
1697     =item IO::AIO::CWD
1698    
1699 root 1.306 This is a compile time constant (object) that represents the process
1700 root 1.209 current working directory.
1701    
1702 root 1.239 Specifying this object as working directory object for a pathname is as if
1703     the pathname would be specified directly, without a directory object. For
1704     example, these calls are functionally identical:
1705 root 1.209
1706     aio_stat "somefile", sub { ... };
1707     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1708    
1709     =back
1710    
1711 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1712     C<aio_realpath>:
1713    
1714     aio_realpath $wd, sub {
1715     warn "path is $_[0]\n";
1716     };
1717    
1718 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1719     sometimes, fall back to using an absolue path.
1720 root 1.209
1721 root 1.53 =head2 IO::AIO::REQ CLASS
1722 root 1.52
1723     All non-aggregate C<aio_*> functions return an object of this class when
1724     called in non-void context.
1725    
1726     =over 4
1727    
1728 root 1.65 =item cancel $req
1729 root 1.52
1730     Cancels the request, if possible. Has the effect of skipping execution
1731     when entering the B<execute> state and skipping calling the callback when
1732     entering the the B<result> state, but will leave the request otherwise
1733 root 1.151 untouched (with the exception of readdir). That means that requests that
1734     currently execute will not be stopped and resources held by the request
1735     will not be freed prematurely.
1736 root 1.52
1737 root 1.65 =item cb $req $callback->(...)
1738    
1739     Replace (or simply set) the callback registered to the request.
1740    
1741 root 1.52 =back
1742    
1743 root 1.55 =head2 IO::AIO::GRP CLASS
1744    
1745     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1746     objects of this class, too.
1747    
1748     A IO::AIO::GRP object is a special request that can contain multiple other
1749     aio requests.
1750    
1751     You create one by calling the C<aio_group> constructing function with a
1752     callback that will be called when all contained requests have entered the
1753     C<done> state:
1754    
1755     my $grp = aio_group sub {
1756     print "all requests are done\n";
1757     };
1758    
1759     You add requests by calling the C<add> method with one or more
1760     C<IO::AIO::REQ> objects:
1761    
1762     $grp->add (aio_unlink "...");
1763    
1764 root 1.58 add $grp aio_stat "...", sub {
1765     $_[0] or return $grp->result ("error");
1766    
1767     # add another request dynamically, if first succeeded
1768     add $grp aio_open "...", sub {
1769     $grp->result ("ok");
1770     };
1771     };
1772 root 1.55
1773     This makes it very easy to create composite requests (see the source of
1774     C<aio_move> for an application) that work and feel like simple requests.
1775    
1776 root 1.62 =over 4
1777    
1778     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1779 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1780    
1781 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1782 root 1.59 only the request itself, but also all requests it contains.
1783 root 1.55
1784 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1785 root 1.55
1786 root 1.62 =item * You must not add requests to a group from within the group callback (or
1787 root 1.60 any later time).
1788    
1789 root 1.62 =back
1790    
1791 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1792     will finish very quickly. If they contain only requests that are in the
1793     C<done> state, they will also finish. Otherwise they will continue to
1794     exist.
1795    
1796 root 1.133 That means after creating a group you have some time to add requests
1797     (precisely before the callback has been invoked, which is only done within
1798     the C<poll_cb>). And in the callbacks of those requests, you can add
1799     further requests to the group. And only when all those requests have
1800     finished will the the group itself finish.
1801 root 1.57
1802 root 1.55 =over 4
1803    
1804 root 1.65 =item add $grp ...
1805    
1806 root 1.55 =item $grp->add (...)
1807    
1808 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1809     be added, including other groups, as long as you do not create circular
1810     dependencies.
1811    
1812     Returns all its arguments.
1813 root 1.55
1814 root 1.74 =item $grp->cancel_subs
1815    
1816     Cancel all subrequests and clears any feeder, but not the group request
1817     itself. Useful when you queued a lot of events but got a result early.
1818    
1819 root 1.168 The group request will finish normally (you cannot add requests to the
1820     group).
1821    
1822 root 1.58 =item $grp->result (...)
1823    
1824     Set the result value(s) that will be passed to the group callback when all
1825 root 1.120 subrequests have finished and set the groups errno to the current value
1826 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1827     no argument will be passed and errno is zero.
1828    
1829     =item $grp->errno ([$errno])
1830    
1831     Sets the group errno value to C<$errno>, or the current value of errno
1832     when the argument is missing.
1833    
1834     Every aio request has an associated errno value that is restored when
1835     the callback is invoked. This method lets you change this value from its
1836     default (0).
1837    
1838     Calling C<result> will also set errno, so make sure you either set C<$!>
1839     before the call to C<result>, or call c<errno> after it.
1840 root 1.58
1841 root 1.65 =item feed $grp $callback->($grp)
1842 root 1.60
1843     Sets a feeder/generator on this group: every group can have an attached
1844     generator that generates requests if idle. The idea behind this is that,
1845     although you could just queue as many requests as you want in a group,
1846 root 1.139 this might starve other requests for a potentially long time. For example,
1847 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1848     requests, delaying any later requests for a long time.
1849 root 1.60
1850     To avoid this, and allow incremental generation of requests, you can
1851     instead a group and set a feeder on it that generates those requests. The
1852 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1853 root 1.60 below) requests active in the group itself and is expected to queue more
1854     requests.
1855    
1856 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1857     not impose any limits).
1858 root 1.60
1859 root 1.65 If the feed does not queue more requests when called, it will be
1860 root 1.60 automatically removed from the group.
1861    
1862 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1863     C<2> automatically.
1864 root 1.60
1865     Example:
1866    
1867     # stat all files in @files, but only ever use four aio requests concurrently:
1868    
1869     my $grp = aio_group sub { print "finished\n" };
1870 root 1.68 limit $grp 4;
1871 root 1.65 feed $grp sub {
1872 root 1.60 my $file = pop @files
1873     or return;
1874    
1875     add $grp aio_stat $file, sub { ... };
1876 root 1.65 };
1877 root 1.60
1878 root 1.68 =item limit $grp $num
1879 root 1.60
1880     Sets the feeder limit for the group: The feeder will be called whenever
1881     the group contains less than this many requests.
1882    
1883     Setting the limit to C<0> will pause the feeding process.
1884    
1885 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1886     automatically bumps it up to C<2>.
1887    
1888 root 1.55 =back
1889    
1890 root 1.294
1891 root 1.5 =head2 SUPPORT FUNCTIONS
1892    
1893 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1894    
1895 root 1.5 =over 4
1896    
1897     =item $fileno = IO::AIO::poll_fileno
1898    
1899 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1900 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1901     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1902     you have to call C<poll_cb> to check the results.
1903 root 1.5
1904     See C<poll_cb> for an example.
1905    
1906     =item IO::AIO::poll_cb
1907    
1908 root 1.240 Process some requests that have reached the result phase (i.e. they have
1909     been executed but the results are not yet reported). You have to call
1910     this "regularly" to finish outstanding requests.
1911    
1912     Returns C<0> if all events could be processed (or there were no
1913     events to process), or C<-1> if it returned earlier for whatever
1914     reason. Returns immediately when no events are outstanding. The amount
1915     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1916     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1917    
1918     If not all requests were processed for whatever reason, the poll file
1919     descriptor will still be ready when C<poll_cb> returns, so normally you
1920     don't have to do anything special to have it called later.
1921 root 1.78
1922 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1923     ready, it can be beneficial to call this function from loops which submit
1924     a lot of requests, to make sure the results get processed when they become
1925     available and not just when the loop is finished and the event loop takes
1926     over again. This function returns very fast when there are no outstanding
1927     requests.
1928    
1929 root 1.20 Example: Install an Event watcher that automatically calls
1930 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1931     SYNOPSIS section, at the top of this document):
1932 root 1.5
1933     Event->io (fd => IO::AIO::poll_fileno,
1934     poll => 'r', async => 1,
1935     cb => \&IO::AIO::poll_cb);
1936    
1937 root 1.175 =item IO::AIO::poll_wait
1938    
1939 root 1.240 Wait until either at least one request is in the result phase or no
1940     requests are outstanding anymore.
1941    
1942     This is useful if you want to synchronously wait for some requests to
1943     become ready, without actually handling them.
1944 root 1.175
1945     See C<nreqs> for an example.
1946    
1947     =item IO::AIO::poll
1948    
1949     Waits until some requests have been handled.
1950    
1951     Returns the number of requests processed, but is otherwise strictly
1952     equivalent to:
1953    
1954     IO::AIO::poll_wait, IO::AIO::poll_cb
1955    
1956     =item IO::AIO::flush
1957    
1958     Wait till all outstanding AIO requests have been handled.
1959    
1960     Strictly equivalent to:
1961    
1962     IO::AIO::poll_wait, IO::AIO::poll_cb
1963     while IO::AIO::nreqs;
1964    
1965 root 1.294 This function can be useful at program aborts, to make sure outstanding
1966     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1967     this function on normal exits), or when you are merely using C<IO::AIO>
1968     for its more advanced functions, rather than for async I/O, e.g.:
1969    
1970     my ($dirs, $nondirs);
1971     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1972     IO::AIO::flush;
1973     # $dirs, $nondirs are now set
1974    
1975 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1976    
1977     =item IO::AIO::max_poll_time $seconds
1978    
1979     These set the maximum number of requests (default C<0>, meaning infinity)
1980     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1981     the maximum amount of time (default C<0>, meaning infinity) spent in
1982     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1983     of time C<poll_cb> is allowed to use).
1984 root 1.78
1985 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1986     syscall per request processed, which is not normally a problem unless your
1987     callbacks are really really fast or your OS is really really slow (I am
1988     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1989    
1990 root 1.86 Setting these is useful if you want to ensure some level of
1991     interactiveness when perl is not fast enough to process all requests in
1992     time.
1993 root 1.78
1994 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1995 root 1.78
1996     Example: Install an Event watcher that automatically calls
1997 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1998 root 1.78 program get the CPU sometimes even under high AIO load.
1999    
2000 root 1.86 # try not to spend much more than 0.1s in poll_cb
2001     IO::AIO::max_poll_time 0.1;
2002    
2003     # use a low priority so other tasks have priority
2004 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
2005     poll => 'r', nice => 1,
2006 root 1.86 cb => &IO::AIO::poll_cb);
2007 root 1.78
2008 root 1.104 =back
2009    
2010 root 1.294
2011 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
2012 root 1.13
2013 root 1.105 =over
2014    
2015 root 1.5 =item IO::AIO::min_parallel $nthreads
2016    
2017 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
2018     default is C<8>, which means eight asynchronous operations can execute
2019     concurrently at any one time (the number of outstanding requests,
2020     however, is unlimited).
2021 root 1.5
2022 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
2023 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
2024     create demand for a hundred threads, even if it turns out that everything
2025     is in the cache and could have been processed faster by a single thread.
2026 root 1.34
2027 root 1.61 It is recommended to keep the number of threads relatively low, as some
2028     Linux kernel versions will scale negatively with the number of threads
2029     (higher parallelity => MUCH higher latency). With current Linux 2.6
2030     versions, 4-32 threads should be fine.
2031 root 1.5
2032 root 1.34 Under most circumstances you don't need to call this function, as the
2033     module selects a default that is suitable for low to moderate load.
2034 root 1.5
2035     =item IO::AIO::max_parallel $nthreads
2036    
2037 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
2038     specified number of threads are currently running, this function kills
2039     them. This function blocks until the limit is reached.
2040    
2041     While C<$nthreads> are zero, aio requests get queued but not executed
2042     until the number of threads has been increased again.
2043 root 1.5
2044     This module automatically runs C<max_parallel 0> at program end, to ensure
2045     that all threads are killed and that there are no outstanding requests.
2046    
2047     Under normal circumstances you don't need to call this function.
2048    
2049 root 1.86 =item IO::AIO::max_idle $nthreads
2050    
2051 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
2052     (i.e., threads that did not get a request to process within the idle
2053     timeout (default: 10 seconds). That means if a thread becomes idle while
2054     C<$nthreads> other threads are also idle, it will free its resources and
2055     exit.
2056 root 1.86
2057     This is useful when you allow a large number of threads (e.g. 100 or 1000)
2058     to allow for extremely high load situations, but want to free resources
2059     under normal circumstances (1000 threads can easily consume 30MB of RAM).
2060    
2061     The default is probably ok in most situations, especially if thread
2062     creation is fast. If thread creation is very slow on your system you might
2063     want to use larger values.
2064    
2065 root 1.188 =item IO::AIO::idle_timeout $seconds
2066    
2067     Sets the minimum idle timeout (default 10) after which worker threads are
2068     allowed to exit. SEe C<IO::AIO::max_idle>.
2069    
2070 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2071 root 1.5
2072 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2073     you do queue up more than this number of requests, the next call to
2074     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2075     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2076     longer exceeded.
2077    
2078     In other words, this setting does not enforce a queue limit, but can be
2079     used to make poll functions block if the limit is exceeded.
2080    
2081 root 1.313 This is a bad function to use in interactive programs because it blocks,
2082     and a bad way to reduce concurrency because it is inexact. If you need to
2083     issue many requests without being able to call a poll function on demand,
2084     it is better to use an C<aio_group> together with a feed callback.
2085 root 1.79
2086 root 1.313 Its main use is in scripts without an event loop - when you want to stat a
2087     lot of files, you can write something like this:
2088 root 1.195
2089     IO::AIO::max_outstanding 32;
2090    
2091     for my $path (...) {
2092     aio_stat $path , ...;
2093     IO::AIO::poll_cb;
2094     }
2095    
2096     IO::AIO::flush;
2097    
2098 root 1.313 The call to C<poll_cb> inside the loop will normally return instantly,
2099     allowing the loop to progress, but as soon as more than C<32> requests
2100     are in-flight, it will block until some requests have been handled. This
2101     keeps the loop from pushing a large number of C<aio_stat> requests onto
2102     the queue (which, with many paths to stat, can use up a lot of memory).
2103 root 1.195
2104     The default value for C<max_outstanding> is very large, so there is no
2105     practical limit on the number of outstanding requests.
2106 root 1.5
2107 root 1.104 =back
2108    
2109 root 1.294
2110 root 1.86 =head3 STATISTICAL INFORMATION
2111    
2112 root 1.104 =over
2113    
2114 root 1.86 =item IO::AIO::nreqs
2115    
2116     Returns the number of requests currently in the ready, execute or pending
2117     states (i.e. for which their callback has not been invoked yet).
2118    
2119     Example: wait till there are no outstanding requests anymore:
2120    
2121     IO::AIO::poll_wait, IO::AIO::poll_cb
2122     while IO::AIO::nreqs;
2123    
2124     =item IO::AIO::nready
2125    
2126     Returns the number of requests currently in the ready state (not yet
2127     executed).
2128    
2129     =item IO::AIO::npending
2130    
2131     Returns the number of requests currently in the pending state (executed,
2132     but not yet processed by poll_cb).
2133    
2134 root 1.5 =back
2135    
2136 root 1.294
2137 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2138    
2139     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2140     generally find access/modification and change times with subsecond time
2141     accuracy of the system supports it, but perl's built-in functions only
2142     return the integer part.
2143    
2144     The following functions return the timestamps of the most recent
2145     stat with subsecond precision on most systems and work both after
2146     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2147     value is only meaningful after a successful C<stat>/C<lstat> call, or
2148     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2149    
2150     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2151     full resolution without rounding and work with standard perl C<stat>,
2152     alleviating the need to call the special C<Time::HiRes> functions, which
2153     do not act like their perl counterparts.
2154    
2155     On operating systems or file systems where subsecond time resolution is
2156     not supported or could not be detected, a fractional part of C<0> is
2157     returned, so it is always safe to call these functions.
2158    
2159     =over 4
2160    
2161 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2162 root 1.289
2163 root 1.294 Return the access, modication, change or birth time, respectively,
2164     including fractional part. Due to the limited precision of floating point,
2165     the accuracy on most platforms is only a bit better than milliseconds
2166     for times around now - see the I<nsec> function family, below, for full
2167 root 1.289 accuracy.
2168    
2169 root 1.294 File birth time is only available when the OS and perl support it (on
2170     FreeBSD and NetBSD at the time of this writing, although support is
2171 root 1.301 adaptive, so if your OS/perl gains support, IO::AIO can take advantage of
2172 root 1.294 it). On systems where it isn't available, C<0> is currently returned, but
2173     this might change to C<undef> in a future version.
2174 root 1.289
2175 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2176 root 1.289
2177 root 1.294 Returns access, modification, change and birth time all in one go, and
2178     maybe more times in the future version.
2179 root 1.289
2180 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2181    
2182     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2183 root 1.289 as an integer in the range C<0> to C<999999999>.
2184    
2185 root 1.294 Note that no accessors are provided for access, modification and
2186     change times - you need to get those from C<stat _> if required (C<int
2187     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2188     value).
2189    
2190     =item $seconds = IO::AIO::st_btimesec
2191    
2192     The (integral) seconds part of the file birth time, if available.
2193    
2194     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2195 root 1.290
2196 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2197 root 1.290 more in future versions).
2198    
2199 root 1.294 =item $counter = IO::AIO::st_gen
2200    
2201 root 1.296 Returns the generation counter (in practice this is just a random number)
2202     of the file. This is only available on platforms which have this member in
2203     their C<struct stat> (most BSDs at the time of this writing) and generally
2204     only to the root usert. If unsupported, C<0> is returned, but this might
2205     change to C<undef> in a future version.
2206 root 1.294
2207 root 1.289 =back
2208    
2209     Example: print the high resolution modification time of F</etc>, using
2210     C<stat>, and C<IO::AIO::aio_stat>.
2211    
2212     if (stat "/etc") {
2213 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2214 root 1.289 }
2215    
2216     IO::AIO::aio_stat "/etc", sub {
2217     $_[0]
2218     and return;
2219    
2220 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2221 root 1.289 };
2222    
2223     IO::AIO::flush;
2224    
2225     Output of the awbove on my system, showing reduced and full accuracy:
2226    
2227     stat(/etc) mtime: 1534043702.020808
2228     aio_stat(/etc) mtime: 1534043702.020807792
2229    
2230 root 1.294
2231 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2232    
2233 root 1.248 IO::AIO implements some functions that are useful when you want to use
2234     some "Advanced I/O" function not available to in Perl, without going the
2235     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2236     counterpart.
2237 root 1.157
2238     =over 4
2239    
2240 root 1.315 =item $retval = IO::AIO::fexecve $fh, $argv, $envp
2241    
2242     A more-or-less direct equivalent to the POSIX C<fexecve> functions, which
2243     allows you to specify the program to be executed via a file descriptor (or
2244     handle). Returns C<-1> and sets errno to C<ENOSYS> if not available.
2245    
2246 root 1.316 =item $retval = IO::AIO::mount $special, $path, $fstype, $flags = 0, $data = undef
2247    
2248     Calls the GNU/Linux mount syscall with the given arguments. All except
2249     C<$flags> are strings, and if C<$data> is C<undef>, a C<NULL> will be
2250     passed.
2251    
2252     The following values for C<$flags> are available:
2253    
2254     C<IO::AIO::MS_RDONLY>, C<IO::AIO::MS_NOSUID>, C<IO::AIO::MS_NODEV>, C<IO::AIO::MS_NOEXEC>, C<IO::AIO::MS_SYNCHRONOUS>,
2255     C<IO::AIO::MS_REMOUNT>, C<IO::AIO::MS_MANDLOCK>, C<IO::AIO::MS_DIRSYNC>, C<IO::AIO::MS_NOATIME>,
2256     C<IO::AIO::MS_NODIRATIME>, C<IO::AIO::MS_BIND>, C<IO::AIO::MS_MOVE>, C<IO::AIO::MS_REC>, C<IO::AIO::MS_SILENT>,
2257     C<IO::AIO::MS_POSIXACL>, C<IO::AIO::MS_UNBINDABLE>, C<IO::AIO::MS_PRIVATE>, C<IO::AIO::MS_SLAVE>, C<IO::AIO::MS_SHARED>,
2258     C<IO::AIO::MS_RELATIME>, C<IO::AIO::MS_KERNMOUNT>, C<IO::AIO::MS_I_VERSION>, C<IO::AIO::MS_STRICTATIME>,
2259     C<IO::AIO::MS_LAZYTIME>, C<IO::AIO::MS_ACTIVE>, C<IO::AIO::MS_NOUSER>, C<IO::AIO::MS_RMT_MASK>, C<IO::AIO::MS_MGC_VAL> and
2260     C<IO::AIO::MS_MGC_MSK>.
2261    
2262     =item $retval = IO::AIO::umount $path, $flags = 0
2263    
2264     Invokes the GNU/Linux C<umount> or C<umount2> syscalls. Always calls
2265     C<umount> if C<$flags> is C<0>, otherwqise always tries to call
2266     C<umount2>.
2267    
2268     The following C<$flags> are available:
2269    
2270     C<IO::AIO::MNT_FORCE>, C<IO::AIO::MNT_DETACH>, C<IO::AIO::MNT_EXPIRE> and C<IO::AIO::UMOUNT_NOFOLLOW>.
2271    
2272 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2273    
2274     Tries to find the current file descriptor limit and returns it, or
2275     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2276     the highest valid file descriptor number.
2277    
2278     =item IO::AIO::min_fdlimit [$numfd]
2279    
2280     Try to increase the current file descriptor limit(s) to at least C<$numfd>
2281     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2282     is missing, it will try to set a very high limit, although this is not
2283     recommended when you know the actual minimum that you require.
2284    
2285     If the limit cannot be raised enough, the function makes a best-effort
2286     attempt to increase the limit as much as possible, using various
2287     tricks, while still failing. You can query the resulting limit using
2288     C<IO::AIO::get_fdlimit>.
2289    
2290 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2291     true.
2292 root 1.275
2293 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2294    
2295     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2296     but is blocking (this makes most sense if you know the input data is
2297     likely cached already and the output filehandle is set to non-blocking
2298     operations).
2299    
2300     Returns the number of bytes copied, or C<-1> on error.
2301    
2302     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2303    
2304 root 1.184 Simply calls the C<posix_fadvise> function (see its
2305 root 1.157 manpage for details). The following advice constants are
2306 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2307 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2308     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2309    
2310     On systems that do not implement C<posix_fadvise>, this function returns
2311     ENOSYS, otherwise the return value of C<posix_fadvise>.
2312    
2313 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2314    
2315     Simply calls the C<posix_madvise> function (see its
2316     manpage for details). The following advice constants are
2317 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2318 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2319     C<IO::AIO::MADV_DONTNEED>.
2320 root 1.184
2321 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2322     the remaining length of the C<$scalar> is used. If possible, C<$length>
2323     will be reduced to fit into the C<$scalar>.
2324    
2325 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2326     ENOSYS, otherwise the return value of C<posix_madvise>.
2327    
2328     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2329    
2330     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2331     $scalar (see its manpage for details). The following protect
2332 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2333 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2334    
2335 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2336     the remaining length of the C<$scalar> is used. If possible, C<$length>
2337     will be reduced to fit into the C<$scalar>.
2338    
2339 root 1.184 On systems that do not implement C<mprotect>, this function returns
2340     ENOSYS, otherwise the return value of C<mprotect>.
2341    
2342 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2343    
2344     Memory-maps a file (or anonymous memory range) and attaches it to the
2345 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2346     success, and false otherwise.
2347 root 1.176
2348 root 1.268 The scalar must exist, but its contents do not matter - this means you
2349     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2350     the scalar first.
2351    
2352     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2353     which don't change the string length, and most read-only operations such
2354     as copying it or searching it with regexes and so on.
2355 root 1.176
2356     Anything else is unsafe and will, at best, result in memory leaks.
2357    
2358     The memory map associated with the C<$scalar> is automatically removed
2359 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2360     or C<IO::AIO::munmap> functions are called on it.
2361 root 1.176
2362     This calls the C<mmap>(2) function internally. See your system's manual
2363     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2364    
2365     The C<$length> must be larger than zero and smaller than the actual
2366     filesize.
2367    
2368     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2369     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2370    
2371 root 1.256 C<$flags> can be a combination of
2372     C<IO::AIO::MAP_SHARED> or
2373     C<IO::AIO::MAP_PRIVATE>,
2374     or a number of system-specific flags (when not available, the are C<0>):
2375     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2376     C<IO::AIO::MAP_LOCKED>,
2377     C<IO::AIO::MAP_NORESERVE>,
2378     C<IO::AIO::MAP_POPULATE>,
2379     C<IO::AIO::MAP_NONBLOCK>,
2380     C<IO::AIO::MAP_FIXED>,
2381     C<IO::AIO::MAP_GROWSDOWN>,
2382     C<IO::AIO::MAP_32BIT>,
2383 root 1.311 C<IO::AIO::MAP_HUGETLB>,
2384     C<IO::AIO::MAP_STACK>,
2385     C<IO::AIO::MAP_FIXED_NOREPLACE>,
2386     C<IO::AIO::MAP_SHARED_VALIDATE>,
2387     C<IO::AIO::MAP_SYNC> or
2388     C<IO::AIO::MAP_UNINITIALIZED>.
2389 root 1.176
2390     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2391    
2392 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2393     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2394    
2395 root 1.177 Example:
2396    
2397     use Digest::MD5;
2398     use IO::AIO;
2399    
2400     open my $fh, "<verybigfile"
2401     or die "$!";
2402    
2403     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2404     or die "verybigfile: $!";
2405    
2406     my $fast_md5 = md5 $data;
2407    
2408 root 1.176 =item IO::AIO::munmap $scalar
2409    
2410     Removes a previous mmap and undefines the C<$scalar>.
2411    
2412 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2413 root 1.285
2414     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2415     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2416     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2417    
2418     Returns true if successful, and false otherwise. If the underlying mmapped
2419     region has changed address, then the true value has the numerical value
2420     C<1>, otherwise it has the numerical value C<0>:
2421    
2422     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2423     or die "mremap: $!";
2424    
2425     if ($success*1) {
2426     warn "scalar has chanegd address in memory\n";
2427     }
2428    
2429     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2430     implemented, but not supported and might go away in a future version.
2431    
2432     On systems where this call is not supported or is not emulated, this call
2433     returns falls and sets C<$!> to C<ENOSYS>.
2434    
2435 root 1.298 =item IO::AIO::mlockall $flags
2436    
2437     Calls the C<eio_mlockall_sync> function, which is like C<aio_mlockall>,
2438     but is blocking.
2439    
2440 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2441 root 1.174
2442 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2443     C<aio_mlock> call (see its description for details).
2444 root 1.174
2445     =item IO::AIO::munlockall
2446    
2447     Calls the C<munlockall> function.
2448    
2449     On systems that do not implement C<munlockall>, this function returns
2450     ENOSYS, otherwise the return value of C<munlockall>.
2451    
2452 root 1.305 =item $fh = IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_maxlen, $flags
2453    
2454     Uses the GNU/Linux C<accept4(2)> syscall, if available, to accept a socket
2455     and return the new file handle on success, or sets C<$!> and returns
2456     C<undef> on error.
2457    
2458     The remote name of the new socket will be stored in C<$sockaddr>, which
2459     will be extended to allow for at least C<$sockaddr_maxlen> octets. If the
2460     socket name does not fit into C<$sockaddr_maxlen> octets, this is signaled
2461     by returning a longer string in C<$sockaddr>, which might or might not be
2462     truncated.
2463    
2464     To accept name-less sockets, use C<undef> for C<$sockaddr> and C<0> for
2465     C<$sockaddr_maxlen>.
2466    
2467 root 1.308 The main reasons to use this syscall rather than portable C<accept(2)>
2468 root 1.305 are that you can specify C<SOCK_NONBLOCK> and/or C<SOCK_CLOEXEC>
2469     flags and you can accept name-less sockets by specifying C<0> for
2470     C<$sockaddr_maxlen>, which is sadly not possible with perl's interface to
2471     C<accept>.
2472    
2473 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2474    
2475     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2476     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2477     should be the file offset.
2478    
2479 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2480     silently corrupt the data in this case.
2481    
2482 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2483     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2484     C<IO::AIO::SPLICE_F_GIFT>.
2485    
2486     See the C<splice(2)> manpage for details.
2487    
2488     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2489    
2490 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2491 root 1.225 description for C<IO::AIO::splice> above for details.
2492    
2493 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2494    
2495     Attempts to query or change the pipe buffer size. Obviously works only
2496     on pipes, and currently works only on GNU/Linux systems, and fails with
2497     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2498     size on other systems, drop me a note.
2499    
2500 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2501    
2502     This is a direct interface to the Linux L<pipe2(2)> system call. If
2503     C<$flags> is missing or C<0>, then this should be the same as a call to
2504 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2505     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2506     (..., 4096, O_BINARY)>.
2507 root 1.253
2508     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2509     the given flags (Linux 2.6.27, glibc 2.9).
2510    
2511     On success, the read and write file handles are returned.
2512    
2513     On error, nothing will be returned. If the pipe2 syscall is missing and
2514     C<$flags> is non-zero, fails with C<ENOSYS>.
2515    
2516     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2517     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2518     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2519    
2520 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2521    
2522     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2523     or die "pipe2: $!\n";
2524    
2525 root 1.302 =item $fh = IO::AIO::memfd_create $pathname[, $flags]
2526    
2527     This is a direct interface to the Linux L<memfd_create(2)> system
2528     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2529     should be C<IO::AIO::MFD_CLOEXEC>.
2530    
2531     On success, the new memfd filehandle is returned, otherwise returns
2532     C<undef>. If the memfd_create syscall is missing, fails with C<ENOSYS>.
2533    
2534     Please refer to L<memfd_create(2)> for more info on this call.
2535    
2536     The following C<$flags> values are available: C<IO::AIO::MFD_CLOEXEC>,
2537 root 1.314 C<IO::AIO::MFD_ALLOW_SEALING>, C<IO::AIO::MFD_HUGETLB>,
2538     C<IO::AIO::MFD_HUGETLB_2MB> and C<IO::AIO::MFD_HUGETLB_1GB>.
2539 root 1.302
2540     Example: create a new memfd.
2541    
2542     my $fh = IO::AIO::memfd_create "somenameforprocfd", IO::AIO::MFD_CLOEXEC
2543 root 1.308 or die "memfd_create: $!\n";
2544    
2545     =item $fh = IO::AIO::pidfd_open $pid[, $flags]
2546    
2547     This is an interface to the Linux L<pidfd_open(2)> system call. The
2548     default for C<$flags> is C<0>.
2549    
2550     On success, a new pidfd filehandle is returned (that is already set to
2551     close-on-exec), otherwise returns C<undef>. If the syscall is missing,
2552     fails with C<ENOSYS>.
2553    
2554     Example: open pid 6341 as pidfd.
2555    
2556     my $fh = IO::AIO::pidfd_open 6341
2557     or die "pidfd_open: $!\n";
2558    
2559     =item $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
2560    
2561     This is an interface to the Linux L<pidfd_send_signal> system call. The
2562     default for C<$siginfo> is C<undef> and the default for C<$flags> is C<0>.
2563    
2564     Returns the system call status. If the syscall is missing, fails with
2565     C<ENOSYS>.
2566    
2567     When specified, C<$siginfo> must be a reference to a hash with one or more
2568     of the following members:
2569    
2570     =over
2571    
2572     =item code - the C<si_code> member
2573    
2574     =item pid - the C<si_pid> member
2575    
2576     =item uid - the C<si_uid> member
2577    
2578     =item value_int - the C<si_value.sival_int> member
2579    
2580     =item value_ptr - the C<si_value.sival_ptr> member, specified as an integer
2581    
2582     =back
2583    
2584     Example: send a SIGKILL to the specified process.
2585    
2586     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, undef
2587     and die "pidfd_send_signal: $!\n";
2588    
2589     Example: send a SIGKILL to the specified process with extra data.
2590    
2591     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, { code => -1, value_int => 7 }
2592     and die "pidfd_send_signal: $!\n";
2593    
2594     =item $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
2595    
2596     This is an interface to the Linux L<pidfd_getfd> system call. The default
2597     for C<$flags> is C<0>.
2598    
2599     On success, returns a dup'ed copy of the target file descriptor (specified
2600     as an integer) returned (that is already set to close-on-exec), otherwise
2601     returns C<undef>. If the syscall is missing, fails with C<ENOSYS>.
2602    
2603     Example: get a copy of standard error of another process and print soemthing to it.
2604    
2605     my $errfh = IO::AIO::pidfd_getfd $pidfh, 2
2606     or die "pidfd_getfd: $!\n";
2607     print $errfh "stderr\n";
2608    
2609 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2610 root 1.281
2611     This is a direct interface to the Linux L<eventfd(2)> system call. The
2612     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2613    
2614     On success, the new eventfd filehandle is returned, otherwise returns
2615     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2616    
2617     Please refer to L<eventfd(2)> for more info on this call.
2618    
2619     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2620     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2621    
2622 root 1.282 Example: create a new eventfd filehandle:
2623    
2624 root 1.302 $fh = IO::AIO::eventfd 0, IO::AIO::EFD_CLOEXEC
2625 root 1.282 or die "eventfd: $!\n";
2626    
2627     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2628    
2629 root 1.302 This is a direct interface to the Linux L<timerfd_create(2)> system
2630     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2631     should be C<IO::AIO::TFD_CLOEXEC>.
2632 root 1.282
2633     On success, the new timerfd filehandle is returned, otherwise returns
2634 root 1.302 C<undef>. If the timerfd_create syscall is missing, fails with C<ENOSYS>.
2635 root 1.282
2636     Please refer to L<timerfd_create(2)> for more info on this call.
2637    
2638     The following C<$clockid> values are
2639     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2640     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2641     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2642     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2643    
2644     The following C<$flags> values are available (Linux
2645     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2646    
2647     Example: create a new timerfd and set it to one-second repeated alarms,
2648     then wait for two alarms:
2649    
2650     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2651     or die "timerfd_create: $!\n";
2652    
2653     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2654     or die "timerfd_settime: $!\n";
2655    
2656     for (1..2) {
2657     8 == sysread $fh, my $buf, 8
2658     or die "timerfd read failure\n";
2659    
2660     printf "number of expirations (likely 1): %d\n",
2661     unpack "Q", $buf;
2662     }
2663    
2664     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2665    
2666     This is a direct interface to the Linux L<timerfd_settime(2)> system
2667     call. Please refer to its manpage for more info on this call.
2668    
2669     The new itimerspec is specified using two (possibly fractional) second
2670     values, C<$new_interval> and C<$new_value>).
2671    
2672     On success, the current interval and value are returned (as per
2673     C<timerfd_gettime>). On failure, the empty list is returned.
2674    
2675     The following C<$flags> values are
2676     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2677     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2678    
2679     See C<IO::AIO::timerfd_create> for a full example.
2680    
2681     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2682    
2683     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2684     call. Please refer to its manpage for more info on this call.
2685    
2686     On success, returns the current values of interval and value for the given
2687     timerfd (as potentially fractional second values). On failure, the empty
2688     list is returned.
2689    
2690 root 1.157 =back
2691    
2692 root 1.1 =cut
2693    
2694 root 1.61 min_parallel 8;
2695 root 1.1
2696 root 1.95 END { flush }
2697 root 1.82
2698 root 1.1 1;
2699    
2700 root 1.175 =head1 EVENT LOOP INTEGRATION
2701    
2702     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2703     automatically into many event loops:
2704    
2705     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2706     use AnyEvent::AIO;
2707    
2708     You can also integrate IO::AIO manually into many event loops, here are
2709     some examples of how to do this:
2710    
2711     # EV integration
2712     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2713    
2714     # Event integration
2715     Event->io (fd => IO::AIO::poll_fileno,
2716     poll => 'r',
2717     cb => \&IO::AIO::poll_cb);
2718    
2719     # Glib/Gtk2 integration
2720     add_watch Glib::IO IO::AIO::poll_fileno,
2721     in => sub { IO::AIO::poll_cb; 1 };
2722    
2723     # Tk integration
2724     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2725     readable => \&IO::AIO::poll_cb);
2726    
2727     # Danga::Socket integration
2728     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2729     \&IO::AIO::poll_cb);
2730    
2731 root 1.27 =head2 FORK BEHAVIOUR
2732    
2733 root 1.197 Usage of pthreads in a program changes the semantics of fork
2734     considerably. Specifically, only async-safe functions can be called after
2735     fork. Perl doesn't know about this, so in general, you cannot call fork
2736 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2737     pthreads, so this applies, but many other extensions and (for inexplicable
2738     reasons) perl itself often is linked against pthreads, so this limitation
2739     applies to quite a lot of perls.
2740    
2741     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2742     only works in the process that loaded it. Forking is fully supported, but
2743     using IO::AIO in the child is not.
2744    
2745     You might get around by not I<using> IO::AIO before (or after)
2746     forking. You could also try to call the L<IO::AIO::reinit> function in the
2747     child:
2748    
2749     =over 4
2750    
2751     =item IO::AIO::reinit
2752    
2753 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2754     data structures. This is not an operation supported by any standards, but
2755 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2756    
2757     The only reasonable use for this function is to call it after forking, if
2758     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2759     the process will result in undefined behaviour. Calling it at any time
2760     will also result in any undefined (by POSIX) behaviour.
2761    
2762     =back
2763 root 1.52
2764 root 1.282 =head2 LINUX-SPECIFIC CALLS
2765    
2766     When a call is documented as "linux-specific" then this means it
2767     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2768     availability and compatibility of such calls regardless of the platform
2769     it is compiled on, so platforms such as FreeBSD which often implement
2770     these calls will work. When in doubt, call them and see if they fail wth
2771     C<ENOSYS>.
2772    
2773 root 1.60 =head2 MEMORY USAGE
2774    
2775 root 1.72 Per-request usage:
2776    
2777     Each aio request uses - depending on your architecture - around 100-200
2778     bytes of memory. In addition, stat requests need a stat buffer (possibly
2779     a few hundred bytes), readdir requires a result buffer and so on. Perl
2780     scalars and other data passed into aio requests will also be locked and
2781     will consume memory till the request has entered the done state.
2782 root 1.60
2783 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2784 root 1.60 problem.
2785    
2786 root 1.72 Per-thread usage:
2787    
2788     In the execution phase, some aio requests require more memory for
2789     temporary buffers, and each thread requires a stack and other data
2790     structures (usually around 16k-128k, depending on the OS).
2791    
2792     =head1 KNOWN BUGS
2793    
2794 root 1.283 Known bugs will be fixed in the next release :)
2795    
2796     =head1 KNOWN ISSUES
2797    
2798     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2799     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2800     non-created hash slots or other scalars I didn't think of. It's best to
2801     avoid such and either use scalar variables or making sure that the scalar
2802     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2803    
2804     I am not sure anything can be done about this, so this is considered a
2805     known issue, rather than a bug.
2806 root 1.60
2807 root 1.1 =head1 SEE ALSO
2808    
2809 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2810 root 1.304 more natural syntax and L<IO::FDPass> for file descriptor passing.
2811 root 1.1
2812     =head1 AUTHOR
2813    
2814     Marc Lehmann <schmorp@schmorp.de>
2815     http://home.schmorp.de/
2816    
2817     =cut
2818