ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/README
Revision: 1.69
Committed: Tue Sep 6 10:56:12 2022 UTC (20 months, 1 week ago) by root
Branch: MAIN
CVS Tags: rel-4_78, rel-4_79
Changes since 1.68: +37 -0 lines
Log Message:
4.78

File Contents

# User Rev Content
1 root 1.1 NAME
2 root 1.59 IO::AIO - Asynchronous/Advanced Input/Output
3 root 1.1
4     SYNOPSIS
5     use IO::AIO;
6    
7 root 1.44 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
8 root 1.21 my $fh = shift
9     or die "/etc/passwd: $!";
10 root 1.5 ...
11     };
12    
13     aio_unlink "/tmp/file", sub { };
14    
15     aio_read $fh, 30000, 1024, $buffer, 0, sub {
16     $_[0] > 0 or die "read error: $!";
17     };
18    
19 root 1.18 # version 2+ has request and group objects
20     use IO::AIO 2;
21    
22     aioreq_pri 4; # give next request a very high priority
23     my $req = aio_unlink "/tmp/file", sub { };
24     $req->cancel; # cancel request if still in queue
25    
26     my $grp = aio_group sub { print "all stats done\n" };
27     add $grp aio_stat "..." for ...;
28    
29 root 1.1 DESCRIPTION
30     This module implements asynchronous I/O using whatever means your
31 root 1.38 operating system supports. It is implemented as an interface to "libeio"
32     (<http://software.schmorp.de/pkg/libeio.html>).
33 root 1.1
34 root 1.19 Asynchronous means that operations that can normally block your program
35     (e.g. reading from disk) will be done asynchronously: the operation will
36     still block, but you can do something else in the meantime. This is
37     extremely useful for programs that need to stay interactive even when
38     doing heavy I/O (GUI programs, high performance network servers etc.),
39     but can also be used to easily do operations in parallel that are
40     normally done sequentially, e.g. stat'ing many files, which is much
41     faster on a RAID volume or over NFS when you do a number of stat
42     operations concurrently.
43    
44 root 1.20 While most of this works on all types of file descriptors (for example
45     sockets), using these functions on file descriptors that support
46 root 1.24 nonblocking operation (again, sockets, pipes etc.) is very inefficient.
47 root 1.38 Use an event loop for that (such as the EV module): IO::AIO will
48 root 1.24 naturally fit into such an event loop itself.
49 root 1.19
50 root 1.18 In this version, a number of threads are started that execute your
51     requests and signal their completion. You don't need thread support in
52     perl, and the threads created by this module will not be visible to
53     perl. In the future, this module might make use of the native aio
54     functions available on many operating systems. However, they are often
55 root 1.19 not well-supported or restricted (GNU/Linux doesn't allow them on normal
56 root 1.18 files currently, for example), and they would only support aio_read and
57 root 1.2 aio_write, so the remaining functionality would have to be implemented
58     using threads anyway.
59 root 1.1
60 root 1.59 In addition to asynchronous I/O, this module also exports some rather
61     arcane interfaces, such as "madvise" or linux's "splice" system call,
62     which is why the "A" in "AIO" can also mean *advanced*.
63    
64 root 1.24 Although the module will work in the presence of other (Perl-) threads,
65     it is currently not reentrant in any way, so use appropriate locking
66     yourself, always call "poll_cb" from within the same thread, or never
67     call "poll_cb" (or other "aio_" functions) recursively.
68 root 1.18
69 root 1.19 EXAMPLE
70 root 1.38 This is a simple example that uses the EV module and loads /etc/passwd
71     asynchronously:
72 root 1.19
73 root 1.38 use EV;
74 root 1.19 use IO::AIO;
75    
76 root 1.38 # register the IO::AIO callback with EV
77     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
78 root 1.19
79     # queue the request to open /etc/passwd
80 root 1.44 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
81 root 1.21 my $fh = shift
82 root 1.19 or die "error while opening: $!";
83    
84     # stat'ing filehandles is generally non-blocking
85     my $size = -s $fh;
86    
87     # queue a request to read the file
88     my $contents;
89     aio_read $fh, 0, $size, $contents, 0, sub {
90     $_[0] == $size
91     or die "short read: $!";
92    
93     close $fh;
94    
95     # file contents now in $contents
96     print $contents;
97    
98     # exit event loop and program
99 root 1.57 EV::break;
100 root 1.19 };
101     };
102    
103     # possibly queue up other requests, or open GUI windows,
104     # check for sockets etc. etc.
105    
106     # process events as long as there are some:
107 root 1.57 EV::run;
108 root 1.19
109 root 1.18 REQUEST ANATOMY AND LIFETIME
110     Every "aio_*" function creates a request. which is a C data structure
111     not directly visible to Perl.
112    
113     If called in non-void context, every request function returns a Perl
114     object representing the request. In void context, nothing is returned,
115     which saves a bit of memory.
116    
117     The perl object is a fairly standard ref-to-hash object. The hash
118     contents are not used by IO::AIO so you are free to store anything you
119     like in it.
120    
121     During their existance, aio requests travel through the following
122     states, in order:
123    
124     ready
125     Immediately after a request is created it is put into the ready
126     state, waiting for a thread to execute it.
127    
128     execute
129     A thread has accepted the request for processing and is currently
130     executing it (e.g. blocking in read).
131    
132     pending
133     The request has been executed and is waiting for result processing.
134    
135     While request submission and execution is fully asynchronous, result
136     processing is not and relies on the perl interpreter calling
137     "poll_cb" (or another function with the same effect).
138    
139     result
140     The request results are processed synchronously by "poll_cb".
141    
142     The "poll_cb" function will process all outstanding aio requests by
143     calling their callbacks, freeing memory associated with them and
144     managing any groups they are contained in.
145    
146     done
147     Request has reached the end of its lifetime and holds no resources
148     anymore (except possibly for the Perl object, but its connection to
149     the actual aio request is severed and calling its methods will
150     either do nothing or result in a runtime error).
151 root 1.1
152 root 1.4 FUNCTIONS
153 root 1.43 QUICK OVERVIEW
154 root 1.53 This section simply lists the prototypes most of the functions for quick
155     reference. See the following sections for function-by-function
156 root 1.43 documentation.
157    
158 root 1.50 aio_wd $pathname, $callback->($wd)
159 root 1.43 aio_open $pathname, $flags, $mode, $callback->($fh)
160     aio_close $fh, $callback->($status)
161 root 1.51 aio_seek $fh,$offset,$whence, $callback->($offs)
162 root 1.43 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
163     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
164     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
165     aio_readahead $fh,$offset,$length, $callback->($retval)
166     aio_stat $fh_or_path, $callback->($status)
167     aio_lstat $fh, $callback->($status)
168     aio_statvfs $fh_or_path, $callback->($statvfs)
169     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
170     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
171 root 1.51 aio_chmod $fh_or_path, $mode, $callback->($status)
172 root 1.43 aio_truncate $fh_or_path, $offset, $callback->($status)
173 root 1.53 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
174     aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
175 root 1.43 aio_unlink $pathname, $callback->($status)
176 root 1.50 aio_mknod $pathname, $mode, $dev, $callback->($status)
177 root 1.43 aio_link $srcpath, $dstpath, $callback->($status)
178     aio_symlink $srcpath, $dstpath, $callback->($status)
179 root 1.50 aio_readlink $pathname, $callback->($link)
180 root 1.56 aio_realpath $pathname, $callback->($path)
181 root 1.43 aio_rename $srcpath, $dstpath, $callback->($status)
182 root 1.59 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
183 root 1.43 aio_mkdir $pathname, $mode, $callback->($status)
184     aio_rmdir $pathname, $callback->($status)
185     aio_readdir $pathname, $callback->($entries)
186     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
187     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
188     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
189 root 1.50 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
190     aio_load $pathname, $data, $callback->($status)
191 root 1.43 aio_copy $srcpath, $dstpath, $callback->($status)
192     aio_move $srcpath, $dstpath, $callback->($status)
193 root 1.50 aio_rmtree $pathname, $callback->($status)
194 root 1.58 aio_fcntl $fh, $cmd, $arg, $callback->($status)
195     aio_ioctl $fh, $request, $buf, $callback->($status)
196 root 1.43 aio_sync $callback->($status)
197 root 1.50 aio_syncfs $fh, $callback->($status)
198 root 1.43 aio_fsync $fh, $callback->($status)
199     aio_fdatasync $fh, $callback->($status)
200     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
201 root 1.50 aio_pathsync $pathname, $callback->($status)
202 root 1.59 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
203 root 1.43 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
204 root 1.44 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
205     aio_mlockall $flags, $callback->($status)
206 root 1.43 aio_group $callback->(...)
207     aio_nop $callback->()
208    
209     $prev_pri = aioreq_pri [$pri]
210     aioreq_nice $pri_adjust
211    
212     IO::AIO::poll_wait
213     IO::AIO::poll_cb
214     IO::AIO::poll
215     IO::AIO::flush
216     IO::AIO::max_poll_reqs $nreqs
217     IO::AIO::max_poll_time $seconds
218     IO::AIO::min_parallel $nthreads
219     IO::AIO::max_parallel $nthreads
220     IO::AIO::max_idle $nthreads
221 root 1.46 IO::AIO::idle_timeout $seconds
222 root 1.43 IO::AIO::max_outstanding $maxreqs
223     IO::AIO::nreqs
224     IO::AIO::nready
225     IO::AIO::npending
226 root 1.64 IO::AIO::reinit
227    
228 root 1.65 $nfd = IO::AIO::get_fdlimit
229     IO::AIO::min_fdlimit $nfd
230 root 1.43
231     IO::AIO::sendfile $ofh, $ifh, $offset, $count
232     IO::AIO::fadvise $fh, $offset, $len, $advice
233 root 1.68 IO::AIO::fexecve $fh, $argv, $envp
234 root 1.64
235 root 1.53 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
236     IO::AIO::munmap $scalar
237 root 1.60 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
238 root 1.44 IO::AIO::madvise $scalar, $offset, $length, $advice
239     IO::AIO::mprotect $scalar, $offset, $length, $protect
240     IO::AIO::munlock $scalar, $offset = 0, $length = undef
241 root 1.43 IO::AIO::munlockall
242    
243 root 1.64 # stat extensions
244     $counter = IO::AIO::st_gen
245     $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
246     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
247     $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
248     $seconds = IO::AIO::st_btimesec
249     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
250    
251     # very much unportable syscalls
252 root 1.65 IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_len, $flags
253 root 1.64 IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
254     IO::AIO::tee $r_fh, $w_fh, $length, $flags
255 root 1.68
256 root 1.64 $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
257     ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
258 root 1.68
259     $fh = IO::AIO::eventfd [$initval, [$flags]]
260 root 1.64 $fh = IO::AIO::memfd_create $pathname[, $flags]
261 root 1.68
262 root 1.64 $fh = IO::AIO::timerfd_create $clockid[, $flags]
263     ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
264     ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
265    
266 root 1.68 $fh = IO::AIO::pidfd_open $pid[, $flags]
267     $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
268     $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
269    
270 root 1.69 $retval = IO::AIO::mount $special, $path, $fstype, $flags = 0, $data = undef
271     $retval = IO::AIO::umount $path, $flags = 0
272    
273 root 1.51 API NOTES
274 root 1.20 All the "aio_*" calls are more or less thin wrappers around the syscall
275     with the same name (sans "aio_"). The arguments are similar or
276     identical, and they all accept an additional (and optional) $callback
277 root 1.50 argument which must be a code reference. This code reference will be
278     called after the syscall has been executed in an asynchronous fashion.
279     The results of the request will be passed as arguments to the callback
280     (and, if an error occured, in $!) - for most requests the syscall return
281     code (e.g. most syscalls return -1 on error, unlike perl, which usually
282     delivers "false").
283    
284     Some requests (such as "aio_readdir") pass the actual results and
285     communicate failures by passing "undef".
286 root 1.20
287     All functions expecting a filehandle keep a copy of the filehandle
288     internally until the request has finished.
289    
290     All functions return request objects of type IO::AIO::REQ that allow
291     further manipulation of those requests while they are in-flight.
292    
293 root 1.50 The pathnames you pass to these routines *should* be absolute. The
294     reason for this is that at the time the request is being executed, the
295     current working directory could have changed. Alternatively, you can
296     make sure that you never change the current working directory anywhere
297     in the program and then use relative paths. You can also take advantage
298     of IO::AIOs working directory abstraction, that lets you specify paths
299     relative to some previously-opened "working directory object" - see the
300     description of the "IO::AIO::WD" class later in this document.
301 root 1.20
302     To encode pathnames as octets, either make sure you either: a) always
303     pass in filenames you got from outside (command line, readdir etc.)
304 root 1.50 without tinkering, b) are in your native filesystem encoding, c) use the
305     Encode module and encode your pathnames to the locale (or other)
306     encoding in effect in the user environment, d) use
307     Glib::filename_from_unicode on unicode filenames or e) use something
308     else to ensure your scalar has the correct contents.
309 root 1.20
310     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
311 root 1.32 handles correctly whether it is set or not.
312 root 1.20
313 root 1.51 AIO REQUEST FUNCTIONS
314 root 1.20 $prev_pri = aioreq_pri [$pri]
315     Returns the priority value that would be used for the next request
316     and, if $pri is given, sets the priority for the next aio request.
317    
318     The default priority is 0, the minimum and maximum priorities are -4
319     and 4, respectively. Requests with higher priority will be serviced
320     first.
321    
322     The priority will be reset to 0 after each call to one of the
323     "aio_*" functions.
324    
325     Example: open a file with low priority, then read something from it
326     with higher priority so the read request is serviced before other
327     low priority open requests (potentially spamming the cache):
328    
329     aioreq_pri -3;
330     aio_open ..., sub {
331     return unless $_[0];
332    
333     aioreq_pri -2;
334     aio_read $_[0], ..., sub {
335     ...
336     };
337     };
338    
339     aioreq_nice $pri_adjust
340     Similar to "aioreq_pri", but subtracts the given value from the
341     current priority, so the effect is cumulative.
342    
343     aio_open $pathname, $flags, $mode, $callback->($fh)
344     Asynchronously open or create a file and call the callback with a
345 root 1.53 newly created filehandle for the file (or "undef" in case of an
346     error).
347 root 1.20
348     The pathname passed to "aio_open" must be absolute. See API NOTES,
349     above, for an explanation.
350    
351     The $flags argument is a bitmask. See the "Fcntl" module for a list.
352     They are the same as used by "sysopen".
353    
354     Likewise, $mode specifies the mode of the newly created file, if it
355     didn't exist and "O_CREAT" has been given, just like perl's
356     "sysopen", except that it is mandatory (i.e. use 0 if you don't
357 root 1.23 create new files, and 0666 or 0777 if you do). Note that the $mode
358     will be modified by the umask in effect then the request is being
359     executed, so better never change the umask.
360 root 1.20
361     Example:
362    
363 root 1.44 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
364 root 1.20 if ($_[0]) {
365     print "open successful, fh is $_[0]\n";
366     ...
367     } else {
368     die "open failed: $!\n";
369     }
370     };
371    
372 root 1.47 In addition to all the common open modes/flags ("O_RDONLY",
373     "O_WRONLY", "O_RDWR", "O_CREAT", "O_TRUNC", "O_EXCL" and
374     "O_APPEND"), the following POSIX and non-POSIX constants are
375     available (missing ones on your system are, as usual, 0):
376    
377     "O_ASYNC", "O_DIRECT", "O_NOATIME", "O_CLOEXEC", "O_NOCTTY",
378     "O_NOFOLLOW", "O_NONBLOCK", "O_EXEC", "O_SEARCH", "O_DIRECTORY",
379 root 1.60 "O_DSYNC", "O_RSYNC", "O_SYNC", "O_PATH", "O_TMPFILE", "O_TTY_INIT"
380     and "O_ACCMODE".
381 root 1.47
382 root 1.20 aio_close $fh, $callback->($status)
383     Asynchronously close a file and call the callback with the result
384 root 1.26 code.
385 root 1.20
386 root 1.27 Unfortunately, you can't do this to perl. Perl *insists* very
387     strongly on closing the file descriptor associated with the
388 root 1.29 filehandle itself.
389 root 1.27
390 root 1.29 Therefore, "aio_close" will not close the filehandle - instead it
391     will use dup2 to overwrite the file descriptor with the write-end of
392     a pipe (the pipe fd will be created on demand and will be cached).
393 root 1.27
394 root 1.29 Or in other words: the file descriptor will be closed, but it will
395     not be free for reuse until the perl filehandle is closed.
396 root 1.20
397 root 1.51 aio_seek $fh, $offset, $whence, $callback->($offs)
398     Seeks the filehandle to the new $offset, similarly to perl's
399     "sysseek". The $whence can use the traditional values (0 for
400     "IO::AIO::SEEK_SET", 1 for "IO::AIO::SEEK_CUR" or 2 for
401     "IO::AIO::SEEK_END").
402    
403     The resulting absolute offset will be passed to the callback, or -1
404     in case of an error.
405    
406     In theory, the $whence constants could be different than the
407     corresponding values from Fcntl, but perl guarantees they are the
408     same, so don't panic.
409    
410 root 1.52 As a GNU/Linux (and maybe Solaris) extension, also the constants
411     "IO::AIO::SEEK_DATA" and "IO::AIO::SEEK_HOLE" are available, if they
412     could be found. No guarantees about suitability for use in
413     "aio_seek" or Perl's "sysseek" can be made though, although I would
414     naively assume they "just work".
415    
416 root 1.20 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
417     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
418 root 1.35 Reads or writes $length bytes from or to the specified $fh and
419     $offset into the scalar given by $data and offset $dataoffset and
420 root 1.59 calls the callback with the actual number of bytes transferred (or
421     -1 on error, just like the syscall).
422 root 1.35
423     "aio_read" will, like "sysread", shrink or grow the $data scalar to
424     offset plus the actual number of bytes read.
425 root 1.24
426 root 1.25 If $offset is undefined, then the current file descriptor offset
427     will be used (and updated), otherwise the file descriptor offset
428     will not be changed by these calls.
429 root 1.24
430     If $length is undefined in "aio_write", use the remaining length of
431     $data.
432    
433     If $dataoffset is less than zero, it will be counted from the end of
434     $data.
435 root 1.20
436     The $data scalar *MUST NOT* be modified in any way while the request
437 root 1.24 is outstanding. Modifying it can result in segfaults or World War
438     III (if the necessary/optional hardware is installed).
439 root 1.20
440     Example: Read 15 bytes at offset 7 into scalar $buffer, starting at
441     offset 0 within the scalar:
442    
443     aio_read $fh, 7, 15, $buffer, 0, sub {
444     $_[0] > 0 or die "read error: $!";
445     print "read $_[0] bytes: <$buffer>\n";
446     };
447    
448     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
449     Tries to copy $length bytes from $in_fh to $out_fh. It starts
450     reading at byte offset $in_offset, and starts writing at the current
451     file offset of $out_fh. Because of that, it is not safe to issue
452     more than one "aio_sendfile" per $out_fh, as they will interfere
453 root 1.48 with each other. The same $in_fh works fine though, as this function
454     does not move or use the file offset of $in_fh.
455 root 1.20
456 root 1.45 Please note that "aio_sendfile" can read more bytes from $in_fh than
457 root 1.48 are written, and there is no way to find out how many more bytes
458     have been read from "aio_sendfile" alone, as "aio_sendfile" only
459     provides the number of bytes written to $out_fh. Only if the result
460     value equals $length one can assume that $length bytes have been
461     read.
462 root 1.45
463     Unlike with other "aio_" functions, it makes a lot of sense to use
464     "aio_sendfile" on non-blocking sockets, as long as one end
465     (typically the $in_fh) is a file - the file I/O will then be
466     asynchronous, while the socket I/O will be non-blocking. Note,
467     however, that you can run into a trap where "aio_sendfile" reads
468     some data with readahead, then fails to write all data, and when the
469     socket is ready the next time, the data in the cache is already
470     lost, forcing "aio_sendfile" to again hit the disk. Explicit
471 root 1.48 "aio_read" + "aio_write" let's you better control resource usage.
472 root 1.45
473 root 1.48 This call tries to make use of a native "sendfile"-like syscall to
474 root 1.20 provide zero-copy operation. For this to work, $out_fh should refer
475 root 1.43 to a socket, and $in_fh should refer to an mmap'able file.
476 root 1.20
477 root 1.41 If a native sendfile cannot be found or it fails with "ENOSYS",
478 root 1.48 "EINVAL", "ENOTSUP", "EOPNOTSUPP", "EAFNOSUPPORT", "EPROTOTYPE" or
479     "ENOTSOCK", it will be emulated, so you can call "aio_sendfile" on
480     any type of filehandle regardless of the limitations of the
481     operating system.
482    
483     As native sendfile syscalls (as practically any non-POSIX interface
484     hacked together in a hurry to improve benchmark numbers) tend to be
485     rather buggy on many systems, this implementation tries to work
486     around some known bugs in Linux and FreeBSD kernels (probably
487     others, too), but that might fail, so you really really should check
488 root 1.59 the return value of "aio_sendfile" - fewer bytes than expected might
489 root 1.48 have been transferred.
490 root 1.20
491     aio_readahead $fh,$offset,$length, $callback->($retval)
492     "aio_readahead" populates the page cache with data from a file so
493     that subsequent reads from that file will not block on disk I/O. The
494     $offset argument specifies the starting point from which data is to
495     be read and $length specifies the number of bytes to be read. I/O is
496     performed in whole pages, so that offset is effectively rounded down
497     to a page boundary and bytes are read up to the next page boundary
498     greater than or equal to (off-set+length). "aio_readahead" does not
499     read beyond the end of the file. The current file offset of the file
500     is left unchanged.
501    
502 root 1.59 If that syscall doesn't exist (likely if your kernel isn't Linux) it
503 root 1.20 will be emulated by simply reading the data, which would have a
504     similar effect.
505    
506     aio_stat $fh_or_path, $callback->($status)
507     aio_lstat $fh, $callback->($status)
508 root 1.62 Works almost exactly like perl's "stat" or "lstat" in void context.
509     The callback will be called after the stat and the results will be
510     available using "stat _" or "-s _" and other tests (with the
511     exception of "-B" and "-T").
512 root 1.20
513     The pathname passed to "aio_stat" must be absolute. See API NOTES,
514     above, for an explanation.
515    
516     Currently, the stats are always 64-bit-stats, i.e. instead of
517     returning an error when stat'ing a large file, the results will be
518     silently truncated unless perl itself is compiled with large file
519     support.
520    
521 root 1.46 To help interpret the mode and dev/rdev stat values, IO::AIO offers
522     the following constants and functions (if not implemented, the
523     constants will be 0 and the functions will either "croak" or fall
524     back on traditional behaviour).
525    
526     "S_IFMT", "S_IFIFO", "S_IFCHR", "S_IFBLK", "S_IFLNK", "S_IFREG",
527     "S_IFDIR", "S_IFWHT", "S_IFSOCK", "IO::AIO::major $dev_t",
528     "IO::AIO::minor $dev_t", "IO::AIO::makedev $major, $minor".
529    
530 root 1.61 To access higher resolution stat timestamps, see "SUBSECOND STAT
531     TIME ACCESS".
532    
533 root 1.20 Example: Print the length of /etc/passwd:
534    
535     aio_stat "/etc/passwd", sub {
536     $_[0] and die "stat failed: $!";
537     print "size is ", -s _, "\n";
538     };
539    
540 root 1.42 aio_statvfs $fh_or_path, $callback->($statvfs)
541     Works like the POSIX "statvfs" or "fstatvfs" syscalls, depending on
542     whether a file handle or path was passed.
543    
544     On success, the callback is passed a hash reference with the
545     following members: "bsize", "frsize", "blocks", "bfree", "bavail",
546     "files", "ffree", "favail", "fsid", "flag" and "namemax". On
547     failure, "undef" is passed.
548    
549     The following POSIX IO::AIO::ST_* constants are defined: "ST_RDONLY"
550     and "ST_NOSUID".
551    
552     The following non-POSIX IO::AIO::ST_* flag masks are defined to
553     their correct value when available, or to 0 on systems that do not
554     support them: "ST_NODEV", "ST_NOEXEC", "ST_SYNCHRONOUS",
555     "ST_MANDLOCK", "ST_WRITE", "ST_APPEND", "ST_IMMUTABLE",
556     "ST_NOATIME", "ST_NODIRATIME" and "ST_RELATIME".
557    
558     Example: stat "/wd" and dump out the data if successful.
559    
560     aio_statvfs "/wd", sub {
561     my $f = $_[0]
562     or die "statvfs: $!";
563    
564     use Data::Dumper;
565     say Dumper $f;
566     };
567    
568     # result:
569     {
570     bsize => 1024,
571     bfree => 4333064312,
572     blocks => 10253828096,
573     files => 2050765568,
574     flag => 4096,
575     favail => 2042092649,
576     bavail => 4333064312,
577     ffree => 2042092649,
578     namemax => 255,
579     frsize => 1024,
580     fsid => 1810
581     }
582    
583 root 1.24 aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
584     Works like perl's "utime" function (including the special case of
585     $atime and $mtime being undef). Fractional times are supported if
586     the underlying syscalls support them.
587    
588 root 1.62 When called with a pathname, uses utimensat(2) or utimes(2) if
589     available, otherwise utime(2). If called on a file descriptor, uses
590     futimens(2) or futimes(2) if available, otherwise returns ENOSYS, so
591     this is not portable.
592 root 1.24
593     Examples:
594    
595     # set atime and mtime to current time (basically touch(1)):
596     aio_utime "path", undef, undef;
597     # set atime to current time and mtime to beginning of the epoch:
598     aio_utime "path", time, undef; # undef==0
599    
600     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
601     Works like perl's "chown" function, except that "undef" for either
602     $uid or $gid is being interpreted as "do not change" (but -1 can
603     also be used).
604    
605     Examples:
606    
607     # same as "chown root path" in the shell:
608     aio_chown "path", 0, -1;
609     # same as above:
610     aio_chown "path", 0, undef;
611    
612     aio_truncate $fh_or_path, $offset, $callback->($status)
613     Works like truncate(2) or ftruncate(2).
614    
615 root 1.53 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
616 root 1.56 Allocates or frees disk space according to the $mode argument. See
617     the linux "fallocate" documentation for details.
618 root 1.53
619 root 1.57 $mode is usually 0 or "IO::AIO::FALLOC_FL_KEEP_SIZE" to allocate
620     space, or "IO::AIO::FALLOC_FL_PUNCH_HOLE |
621 root 1.53 IO::AIO::FALLOC_FL_KEEP_SIZE", to deallocate a file range.
622    
623 root 1.57 IO::AIO also supports "FALLOC_FL_COLLAPSE_RANGE", to remove a range
624 root 1.59 (without leaving a hole), "FALLOC_FL_ZERO_RANGE", to zero a range,
625     "FALLOC_FL_INSERT_RANGE" to insert a range and
626     "FALLOC_FL_UNSHARE_RANGE" to unshare shared blocks (see your
627     fallocate(2) manpage).
628 root 1.57
629 root 1.53 The file system block size used by "fallocate" is presumably the
630 root 1.59 "f_bsize" returned by "statvfs", but different filesystems and
631     filetypes can dictate other limitations.
632 root 1.53
633     If "fallocate" isn't available or cannot be emulated (currently no
634     emulation will be attempted), passes -1 and sets $! to "ENOSYS".
635    
636 root 1.24 aio_chmod $fh_or_path, $mode, $callback->($status)
637     Works like perl's "chmod" function.
638    
639 root 1.20 aio_unlink $pathname, $callback->($status)
640     Asynchronously unlink (delete) a file and call the callback with the
641     result code.
642    
643 root 1.50 aio_mknod $pathname, $mode, $dev, $callback->($status)
644 root 1.20 [EXPERIMENTAL]
645    
646     Asynchronously create a device node (or fifo). See mknod(2).
647    
648     The only (POSIX-) portable way of calling this function is:
649    
650 root 1.50 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
651 root 1.20
652 root 1.46 See "aio_stat" for info about some potentially helpful extra
653     constants and functions.
654    
655 root 1.20 aio_link $srcpath, $dstpath, $callback->($status)
656     Asynchronously create a new link to the existing object at $srcpath
657     at the path $dstpath and call the callback with the result code.
658    
659     aio_symlink $srcpath, $dstpath, $callback->($status)
660     Asynchronously create a new symbolic link to the existing object at
661     $srcpath at the path $dstpath and call the callback with the result
662     code.
663    
664 root 1.50 aio_readlink $pathname, $callback->($link)
665 root 1.20 Asynchronously read the symlink specified by $path and pass it to
666     the callback. If an error occurs, nothing or undef gets passed to
667     the callback.
668    
669 root 1.50 aio_realpath $pathname, $callback->($path)
670 root 1.49 Asynchronously make the path absolute and resolve any symlinks in
671 root 1.54 $path. The resulting path only consists of directories (same as
672 root 1.49 Cwd::realpath).
673    
674     This request can be used to get the absolute path of the current
675     working directory by passing it a path of . (a single dot).
676    
677 root 1.20 aio_rename $srcpath, $dstpath, $callback->($status)
678     Asynchronously rename the object at $srcpath to $dstpath, just as
679     rename(2) and call the callback with the result code.
680    
681 root 1.54 On systems that support the AIO::WD working directory abstraction
682     natively, the case "[$wd, "."]" as $srcpath is specialcased -
683     instead of failing, "rename" is called on the absolute path of $wd.
684    
685 root 1.59 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
686     Basically a version of "aio_rename" with an additional $flags
687     argument. Calling this with "$flags=0" is the same as calling
688     "aio_rename".
689    
690     Non-zero flags are currently only supported on GNU/Linux systems
691     that support renameat2. Other systems fail with "ENOSYS" in this
692     case.
693    
694     The following constants are available (missing ones are, as usual
695     0), see renameat2(2) for details:
696    
697     "IO::AIO::RENAME_NOREPLACE", "IO::AIO::RENAME_EXCHANGE" and
698     "IO::AIO::RENAME_WHITEOUT".
699    
700 root 1.23 aio_mkdir $pathname, $mode, $callback->($status)
701     Asynchronously mkdir (create) a directory and call the callback with
702     the result code. $mode will be modified by the umask at the time the
703     request is executed, so do not change your umask.
704    
705 root 1.20 aio_rmdir $pathname, $callback->($status)
706     Asynchronously rmdir (delete) a directory and call the callback with
707     the result code.
708    
709 root 1.54 On systems that support the AIO::WD working directory abstraction
710     natively, the case "[$wd, "."]" is specialcased - instead of
711     failing, "rmdir" is called on the absolute path of $wd.
712    
713 root 1.20 aio_readdir $pathname, $callback->($entries)
714     Unlike the POSIX call of the same name, "aio_readdir" reads an
715     entire directory (i.e. opendir + readdir + closedir). The entries
716     will not be sorted, and will NOT include the "." and ".." entries.
717    
718 root 1.36 The callback is passed a single argument which is either "undef" or
719     an array-ref with the filenames.
720    
721     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
722 root 1.50 Quite similar to "aio_readdir", but the $flags argument allows one
723     to tune behaviour and output format. In case of an error, $entries
724     will be "undef".
725 root 1.36
726     The flags are a combination of the following constants, ORed
727     together (the flags will also be passed to the callback, possibly
728     modified):
729    
730     IO::AIO::READDIR_DENTS
731 root 1.60 Normally the callback gets an arrayref consisting of names only
732     (as with "aio_readdir"). If this flag is set, then the callback
733 root 1.47 gets an arrayref with "[$name, $type, $inode]" arrayrefs, each
734 root 1.60 describing a single directory entry in more detail:
735 root 1.36
736     $name is the name of the entry.
737    
738     $type is one of the "IO::AIO::DT_xxx" constants:
739    
740     "IO::AIO::DT_UNKNOWN", "IO::AIO::DT_FIFO", "IO::AIO::DT_CHR",
741     "IO::AIO::DT_DIR", "IO::AIO::DT_BLK", "IO::AIO::DT_REG",
742     "IO::AIO::DT_LNK", "IO::AIO::DT_SOCK", "IO::AIO::DT_WHT".
743    
744     "IO::AIO::DT_UNKNOWN" means just that: readdir does not know. If
745 root 1.60 you need to know, you have to run stat yourself. Also, for
746     speed/memory reasons, the $type scalars are read-only: you must
747     not modify them.
748 root 1.36
749     $inode is the inode number (which might not be exact on systems
750 root 1.38 with 64 bit inode numbers and 32 bit perls). This field has
751     unspecified content on systems that do not deliver the inode
752     information.
753 root 1.36
754     IO::AIO::READDIR_DIRS_FIRST
755     When this flag is set, then the names will be returned in an
756 root 1.47 order where likely directories come first, in optimal stat
757     order. This is useful when you need to quickly find directories,
758     or you want to find all directories while avoiding to stat()
759     each entry.
760 root 1.36
761     If the system returns type information in readdir, then this is
762     used to find directories directly. Otherwise, likely directories
763 root 1.47 are names beginning with ".", or otherwise names with no dots,
764     of which names with short names are tried first.
765 root 1.36
766     IO::AIO::READDIR_STAT_ORDER
767     When this flag is set, then the names will be returned in an
768     order suitable for stat()'ing each one. That is, when you plan
769 root 1.60 to stat() most or all files in the given directory, then the
770     returned order will likely be faster.
771 root 1.36
772     If both this flag and "IO::AIO::READDIR_DIRS_FIRST" are
773     specified, then the likely dirs come first, resulting in a less
774 root 1.60 optimal stat order for stat'ing all entries, but likely a more
775     optimal order for finding subdirectories.
776 root 1.36
777     IO::AIO::READDIR_FOUND_UNKNOWN
778     This flag should not be set when calling "aio_readdirx".
779     Instead, it is being set by "aio_readdirx", when any of the
780 root 1.50 $type's found were "IO::AIO::DT_UNKNOWN". The absence of this
781 root 1.36 flag therefore indicates that all $type's are known, which can
782     be used to speed up some algorithms.
783 root 1.20
784 root 1.59 aio_slurp $pathname, $offset, $length, $data, $callback->($status)
785     Opens, reads and closes the given file. The data is put into $data,
786     which is resized as required.
787    
788     If $offset is negative, then it is counted from the end of the file.
789    
790     If $length is zero, then the remaining length of the file is used.
791     Also, in this case, the same limitations to modifying $data apply as
792     when IO::AIO::mmap is used, i.e. it must only be modified in-place
793     with "substr". If the size of the file is known, specifying a
794     non-zero $length results in a performance advantage.
795    
796     This request is similar to the older "aio_load" request, but since
797     it is a single request, it might be more efficient to use.
798    
799     Example: load /etc/passwd into $passwd.
800    
801     my $passwd;
802     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
803     $_[0] >= 0
804     or die "/etc/passwd: $!\n";
805    
806     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
807     print $passwd;
808     };
809     IO::AIO::flush;
810    
811 root 1.50 aio_load $pathname, $data, $callback->($status)
812 root 1.22 This is a composite request that tries to fully load the given file
813     into memory. Status is the same as with aio_read.
814    
815 root 1.59 Using "aio_slurp" might be more efficient, as it is a single
816     request.
817    
818 root 1.20 aio_copy $srcpath, $dstpath, $callback->($status)
819     Try to copy the *file* (directories not supported as either source
820     or destination) from $srcpath to $dstpath and call the callback with
821 root 1.40 a status of 0 (ok) or -1 (error, see $!).
822 root 1.20
823 root 1.59 Existing destination files will be truncated.
824    
825 root 1.32 This is a composite request that creates the destination file with
826     mode 0200 and copies the contents of the source file into it using
827     "aio_sendfile", followed by restoring atime, mtime, access mode and
828     uid/gid, in that order.
829 root 1.20
830     If an error occurs, the partial destination file will be unlinked,
831     if possible, except when setting atime, mtime, access mode and
832     uid/gid, where errors are being ignored.
833    
834     aio_move $srcpath, $dstpath, $callback->($status)
835     Try to move the *file* (directories not supported as either source
836     or destination) from $srcpath to $dstpath and call the callback with
837 root 1.40 a status of 0 (ok) or -1 (error, see $!).
838 root 1.20
839 root 1.33 This is a composite request that tries to rename(2) the file first;
840     if rename fails with "EXDEV", it copies the file with "aio_copy"
841     and, if that is successful, unlinks the $srcpath.
842 root 1.20
843 root 1.50 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
844 root 1.20 Scans a directory (similar to "aio_readdir") but additionally tries
845     to efficiently separate the entries of directory $path into two sets
846     of names, directories you can recurse into (directories), and ones
847     you cannot recurse into (everything else, including symlinks to
848     directories).
849    
850 root 1.59 "aio_scandir" is a composite request that generates many sub
851     requests. $maxreq specifies the maximum number of outstanding aio
852 root 1.20 requests that this function generates. If it is "<= 0", then a
853     suitable default will be chosen (currently 4).
854    
855     On error, the callback is called without arguments, otherwise it
856     receives two array-refs with path-relative entry names.
857    
858     Example:
859    
860     aio_scandir $dir, 0, sub {
861     my ($dirs, $nondirs) = @_;
862     print "real directories: @$dirs\n";
863     print "everything else: @$nondirs\n";
864     };
865    
866     Implementation notes.
867    
868     The "aio_readdir" cannot be avoided, but "stat()"'ing every entry
869     can.
870    
871 root 1.36 If readdir returns file type information, then this is used directly
872     to find directories.
873    
874     Otherwise, after reading the directory, the modification time, size
875     etc. of the directory before and after the readdir is checked, and
876     if they match (and isn't the current time), the link count will be
877     used to decide how many entries are directories (if >= 2).
878     Otherwise, no knowledge of the number of subdirectories will be
879     assumed.
880    
881     Then entries will be sorted into likely directories a non-initial
882     dot currently) and likely non-directories (see "aio_readdirx"). Then
883     every entry plus an appended "/." will be "stat"'ed, likely
884     directories first, in order of their inode numbers. If that
885     succeeds, it assumes that the entry is a directory or a symlink to
886 root 1.50 directory (which will be checked separately). This is often faster
887 root 1.36 than stat'ing the entry itself because filesystems might detect the
888     type of the entry without reading the inode data (e.g. ext2fs
889     filetype feature), even on systems that cannot return the filetype
890     information on readdir.
891 root 1.20
892     If the known number of directories (link count - 2) has been
893     reached, the rest of the entries is assumed to be non-directories.
894    
895     This only works with certainty on POSIX (= UNIX) filesystems, which
896     fortunately are the vast majority of filesystems around.
897    
898     It will also likely work on non-POSIX filesystems with reduced
899     efficiency as those tend to return 0 or 1 as link counts, which
900     disables the directory counting heuristic.
901    
902 root 1.50 aio_rmtree $pathname, $callback->($status)
903 root 1.23 Delete a directory tree starting (and including) $path, return the
904     status of the final "rmdir" only. This is a composite request that
905     uses "aio_scandir" to recurse into and rmdir directories, and unlink
906     everything else.
907    
908 root 1.58 aio_fcntl $fh, $cmd, $arg, $callback->($status)
909     aio_ioctl $fh, $request, $buf, $callback->($status)
910     These work just like the "fcntl" and "ioctl" built-in functions,
911     except they execute asynchronously and pass the return value to the
912     callback.
913    
914     Both calls can be used for a lot of things, some of which make more
915     sense to run asynchronously in their own thread, while some others
916     make less sense. For example, calls that block waiting for external
917     events, such as locking, will also lock down an I/O thread while it
918     is waiting, which can deadlock the whole I/O system. At the same
919     time, there might be no alternative to using a thread to wait.
920    
921     So in general, you should only use these calls for things that do
922     (filesystem) I/O, not for things that wait for other events
923     (network, other processes), although if you are careful and know
924     what you are doing, you still can.
925    
926 root 1.65 The following constants are available and can be used for normal
927     "ioctl" and "fcntl" as well (missing ones are, as usual 0):
928 root 1.59
929     "F_DUPFD_CLOEXEC",
930    
931     "F_OFD_GETLK", "F_OFD_SETLK", "F_OFD_GETLKW",
932    
933     "FIFREEZE", "FITHAW", "FITRIM", "FICLONE", "FICLONERANGE",
934     "FIDEDUPERANGE".
935    
936 root 1.65 "F_ADD_SEALS", "F_GET_SEALS", "F_SEAL_SEAL", "F_SEAL_SHRINK",
937     "F_SEAL_GROW" and "F_SEAL_WRITE".
938    
939 root 1.59 "FS_IOC_GETFLAGS", "FS_IOC_SETFLAGS", "FS_IOC_GETVERSION",
940     "FS_IOC_SETVERSION", "FS_IOC_FIEMAP".
941    
942     "FS_IOC_FSGETXATTR", "FS_IOC_FSSETXATTR",
943     "FS_IOC_SET_ENCRYPTION_POLICY", "FS_IOC_GET_ENCRYPTION_PWSALT",
944     "FS_IOC_GET_ENCRYPTION_POLICY", "FS_KEY_DESCRIPTOR_SIZE".
945    
946     "FS_SECRM_FL", "FS_UNRM_FL", "FS_COMPR_FL", "FS_SYNC_FL",
947     "FS_IMMUTABLE_FL", "FS_APPEND_FL", "FS_NODUMP_FL", "FS_NOATIME_FL",
948     "FS_DIRTY_FL", "FS_COMPRBLK_FL", "FS_NOCOMP_FL", "FS_ENCRYPT_FL",
949     "FS_BTREE_FL", "FS_INDEX_FL", "FS_JOURNAL_DATA_FL", "FS_NOTAIL_FL",
950     "FS_DIRSYNC_FL", "FS_TOPDIR_FL", "FS_FL_USER_MODIFIABLE".
951    
952     "FS_XFLAG_REALTIME", "FS_XFLAG_PREALLOC", "FS_XFLAG_IMMUTABLE",
953     "FS_XFLAG_APPEND", "FS_XFLAG_SYNC", "FS_XFLAG_NOATIME",
954     "FS_XFLAG_NODUMP", "FS_XFLAG_RTINHERIT", "FS_XFLAG_PROJINHERIT",
955     "FS_XFLAG_NOSYMLINKS", "FS_XFLAG_EXTSIZE", "FS_XFLAG_EXTSZINHERIT",
956     "FS_XFLAG_NODEFRAG", "FS_XFLAG_FILESTREAM", "FS_XFLAG_DAX",
957     "FS_XFLAG_HASATTR",
958    
959 root 1.69 "BLKROSET", "BLKROGET", "BLKRRPART", "BLKGETSIZE", "BLKFLSBUF",
960     "BLKRASET", "BLKRAGET", "BLKFRASET", "BLKFRAGET", "BLKSECTSET",
961     "BLKSECTGET", "BLKSSZGET", "BLKBSZGET", "BLKBSZSET", "BLKGETSIZE64",
962    
963 root 1.28 aio_sync $callback->($status)
964     Asynchronously call sync and call the callback when finished.
965    
966 root 1.20 aio_fsync $fh, $callback->($status)
967     Asynchronously call fsync on the given filehandle and call the
968     callback with the fsync result code.
969    
970     aio_fdatasync $fh, $callback->($status)
971     Asynchronously call fdatasync on the given filehandle and call the
972     callback with the fdatasync result code.
973    
974     If this call isn't available because your OS lacks it or it couldn't
975     be detected, it will be emulated by calling "fsync" instead.
976    
977 root 1.50 aio_syncfs $fh, $callback->($status)
978     Asynchronously call the syncfs syscall to sync the filesystem
979     associated to the given filehandle and call the callback with the
980     syncfs result code. If syncfs is not available, calls sync(), but
981     returns -1 and sets errno to "ENOSYS" nevertheless.
982    
983 root 1.34 aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
984     Sync the data portion of the file specified by $offset and $length
985     to disk (but NOT the metadata), by calling the Linux-specific
986     sync_file_range call. If sync_file_range is not available or it
987     returns ENOSYS, then fdatasync or fsync is being substituted.
988    
989     $flags can be a combination of
990     "IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE",
991     "IO::AIO::SYNC_FILE_RANGE_WRITE" and
992     "IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER": refer to the sync_file_range
993     manpage for details.
994    
995 root 1.50 aio_pathsync $pathname, $callback->($status)
996 root 1.28 This request tries to open, fsync and close the given path. This is
997 root 1.32 a composite request intended to sync directories after directory
998 root 1.28 operations (E.g. rename). This might not work on all operating
999     systems or have any specific effect, but usually it makes sure that
1000     directory changes get written to disc. It works for anything that
1001     can be opened for read-only, not just directories.
1002    
1003 root 1.39 Future versions of this function might fall back to other methods
1004     when "fsync" on the directory fails (such as calling "sync").
1005    
1006 root 1.28 Passes 0 when everything went ok, and -1 on error.
1007    
1008 root 1.59 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC,
1009 root 1.41 $callback->($status)
1010     This is a rather advanced IO::AIO call, which only works on
1011 root 1.43 mmap(2)ed scalars (see the "IO::AIO::mmap" function, although it
1012     also works on data scalars managed by the Sys::Mmap or Mmap modules,
1013     note that the scalar must only be modified in-place while an aio
1014     operation is pending on it).
1015 root 1.41
1016     It calls the "msync" function of your OS, if available, with the
1017     memory area starting at $offset in the string and ending $length
1018     bytes later. If $length is negative, counts from the end, and if
1019     $length is "undef", then it goes till the end of the string. The
1020 root 1.59 flags can be either "IO::AIO::MS_ASYNC" or "IO::AIO::MS_SYNC", plus
1021     an optional "IO::AIO::MS_INVALIDATE".
1022 root 1.41
1023     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0,
1024     $callback->($status)
1025     This is a rather advanced IO::AIO call, which works best on
1026     mmap(2)ed scalars.
1027    
1028     It touches (reads or writes) all memory pages in the specified range
1029     inside the scalar. All caveats and parameters are the same as for
1030     "aio_msync", above, except for flags, which must be either 0 (which
1031     reads all pages and ensures they are instantiated) or
1032 root 1.54 "IO::AIO::MT_MODIFY", which modifies the memory pages (by reading
1033 root 1.41 and writing an octet from it, which dirties the page).
1034    
1035 root 1.44 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1036     This is a rather advanced IO::AIO call, which works best on
1037     mmap(2)ed scalars.
1038    
1039     It reads in all the pages of the underlying storage into memory (if
1040     any) and locks them, so they are not getting swapped/paged out or
1041     removed.
1042    
1043     If $length is undefined, then the scalar will be locked till the
1044     end.
1045    
1046     On systems that do not implement "mlock", this function returns -1
1047     and sets errno to "ENOSYS".
1048    
1049     Note that the corresponding "munlock" is synchronous and is
1050     documented under "MISCELLANEOUS FUNCTIONS".
1051    
1052     Example: open a file, mmap and mlock it - both will be undone when
1053     $data gets destroyed.
1054    
1055     open my $fh, "<", $path or die "$path: $!";
1056     my $data;
1057     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1058     aio_mlock $data; # mlock in background
1059    
1060     aio_mlockall $flags, $callback->($status)
1061     Calls the "mlockall" function with the given $flags (a combination
1062 root 1.63 of "IO::AIO::MCL_CURRENT", "IO::AIO::MCL_FUTURE" and
1063     "IO::AIO::MCL_ONFAULT").
1064 root 1.44
1065     On systems that do not implement "mlockall", this function returns
1066 root 1.63 -1 and sets errno to "ENOSYS". Similarly, flag combinations not
1067     supported by the system result in a return value of -1 with errno
1068     being set to "EINVAL".
1069 root 1.44
1070     Note that the corresponding "munlockall" is synchronous and is
1071     documented under "MISCELLANEOUS FUNCTIONS".
1072    
1073     Example: asynchronously lock all current and future pages into
1074     memory.
1075    
1076     aio_mlockall IO::AIO::MCL_FUTURE;
1077    
1078 root 1.51 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1079 root 1.53 Queries the extents of the given file (by calling the Linux "FIEMAP"
1080 root 1.51 ioctl, see <http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for
1081 root 1.53 details). If the ioctl is not available on your OS, then this
1082     request will fail with "ENOSYS".
1083 root 1.51
1084     $start is the starting offset to query extents for, $length is the
1085     size of the range to query - if it is "undef", then the whole file
1086     will be queried.
1087    
1088     $flags is a combination of flags ("IO::AIO::FIEMAP_FLAG_SYNC" or
1089     "IO::AIO::FIEMAP_FLAG_XATTR" - "IO::AIO::FIEMAP_FLAGS_COMPAT" is
1090     also exported), and is normally 0 or "IO::AIO::FIEMAP_FLAG_SYNC" to
1091     query the data portion.
1092    
1093     $count is the maximum number of extent records to return. If it is
1094 root 1.53 "undef", then IO::AIO queries all extents of the range. As a very
1095 root 1.51 special case, if it is 0, then the callback receives the number of
1096 root 1.53 extents instead of the extents themselves (which is unreliable, see
1097     below).
1098 root 1.51
1099     If an error occurs, the callback receives no arguments. The special
1100     "errno" value "IO::AIO::EBADR" is available to test for flag errors.
1101    
1102     Otherwise, the callback receives an array reference with extent
1103     structures. Each extent structure is an array reference itself, with
1104     the following members:
1105    
1106     [$logical, $physical, $length, $flags]
1107    
1108     Flags is any combination of the following flag values (typically
1109 root 1.53 either 0 or "IO::AIO::FIEMAP_EXTENT_LAST" (1)):
1110 root 1.51
1111     "IO::AIO::FIEMAP_EXTENT_LAST", "IO::AIO::FIEMAP_EXTENT_UNKNOWN",
1112     "IO::AIO::FIEMAP_EXTENT_DELALLOC", "IO::AIO::FIEMAP_EXTENT_ENCODED",
1113     "IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED",
1114     "IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED",
1115     "IO::AIO::FIEMAP_EXTENT_DATA_INLINE",
1116     "IO::AIO::FIEMAP_EXTENT_DATA_TAIL",
1117     "IO::AIO::FIEMAP_EXTENT_UNWRITTEN", "IO::AIO::FIEMAP_EXTENT_MERGED"
1118     or "IO::AIO::FIEMAP_EXTENT_SHARED".
1119    
1120 root 1.59 At the time of this writing (Linux 3.2), this request is unreliable
1121 root 1.53 unless $count is "undef", as the kernel has all sorts of bugs
1122 root 1.59 preventing it to return all extents of a range for files with a
1123     large number of extents. The code (only) works around all these
1124     issues if $count is "undef".
1125 root 1.53
1126 root 1.20 aio_group $callback->(...)
1127     This is a very special aio request: Instead of doing something, it
1128     is a container for other aio requests, which is useful if you want
1129     to bundle many requests into a single, composite, request with a
1130     definite callback and the ability to cancel the whole request with
1131     its subrequests.
1132    
1133     Returns an object of class IO::AIO::GRP. See its documentation below
1134     for more info.
1135    
1136     Example:
1137    
1138     my $grp = aio_group sub {
1139     print "all stats done\n";
1140     };
1141    
1142     add $grp
1143     (aio_stat ...),
1144     (aio_stat ...),
1145     ...;
1146    
1147     aio_nop $callback->()
1148     This is a special request - it does nothing in itself and is only
1149     used for side effects, such as when you want to add a dummy request
1150     to a group so that finishing the requests in the group depends on
1151     executing the given code.
1152    
1153     While this request does nothing, it still goes through the execution
1154     phase and still requires a worker thread. Thus, the callback will
1155     not be executed immediately but only after other requests in the
1156     queue have entered their execution phase. This can be used to
1157     measure request latency.
1158    
1159     IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1160     Mainly used for debugging and benchmarking, this aio request puts
1161     one of the request workers to sleep for the given time.
1162    
1163     While it is theoretically handy to have simple I/O scheduling
1164     requests like sleep and file handle readable/writable, the overhead
1165     this creates is immense (it blocks a thread for a long time) so do
1166     not use this function except to put your application under
1167     artificial I/O pressure.
1168 root 1.18
1169 root 1.50 IO::AIO::WD - multiple working directories
1170     Your process only has one current working directory, which is used by
1171     all threads. This makes it hard to use relative paths (some other
1172     component could call "chdir" at any time, and it is hard to control when
1173     the path will be used by IO::AIO).
1174    
1175     One solution for this is to always use absolute paths. This usually
1176     works, but can be quite slow (the kernel has to walk the whole path on
1177     every access), and can also be a hassle to implement.
1178    
1179     Newer POSIX systems have a number of functions (openat, fdopendir,
1180     futimensat and so on) that make it possible to specify working
1181     directories per operation.
1182    
1183     For portability, and because the clowns who "designed", or shall I
1184     write, perpetrated this new interface were obviously half-drunk, this
1185     abstraction cannot be perfect, though.
1186    
1187     IO::AIO allows you to convert directory paths into a so-called
1188     IO::AIO::WD object. This object stores the canonicalised, absolute
1189     version of the path, and on systems that allow it, also a directory file
1190     descriptor.
1191    
1192     Everywhere where a pathname is accepted by IO::AIO (e.g. in "aio_stat"
1193     or "aio_unlink"), one can specify an array reference with an IO::AIO::WD
1194     object and a pathname instead (or the IO::AIO::WD object alone, which
1195     gets interpreted as "[$wd, "."]"). If the pathname is absolute, the
1196     IO::AIO::WD object is ignored, otherwise the pathname is resolved
1197     relative to that IO::AIO::WD object.
1198    
1199     For example, to get a wd object for /etc and then stat passwd inside,
1200     you would write:
1201    
1202     aio_wd "/etc", sub {
1203     my $etcdir = shift;
1204    
1205     # although $etcdir can be undef on error, there is generally no reason
1206     # to check for errors here, as aio_stat will fail with ENOENT
1207     # when $etcdir is undef.
1208    
1209     aio_stat [$etcdir, "passwd"], sub {
1210     # yay
1211     };
1212     };
1213    
1214 root 1.56 The fact that "aio_wd" is a request and not a normal function shows that
1215     creating an IO::AIO::WD object is itself a potentially blocking
1216     operation, which is why it is done asynchronously.
1217 root 1.50
1218     To stat the directory obtained with "aio_wd" above, one could write
1219     either of the following three request calls:
1220    
1221     aio_lstat "/etc" , sub { ... # pathname as normal string
1222     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1223     aio_lstat $wd , sub { ... # shorthand for the previous
1224    
1225     As with normal pathnames, IO::AIO keeps a copy of the working directory
1226     object and the pathname string, so you could write the following without
1227     causing any issues due to $path getting reused:
1228    
1229     my $path = [$wd, undef];
1230    
1231     for my $name (qw(abc def ghi)) {
1232     $path->[1] = $name;
1233     aio_stat $path, sub {
1234     # ...
1235     };
1236     }
1237    
1238     There are some caveats: when directories get renamed (or deleted), the
1239     pathname string doesn't change, so will point to the new directory (or
1240     nowhere at all), while the directory fd, if available on the system,
1241     will still point to the original directory. Most functions accepting a
1242     pathname will use the directory fd on newer systems, and the string on
1243 root 1.59 older systems. Some functions (such as "aio_realpath") will always rely
1244     on the string form of the pathname.
1245 root 1.50
1246 root 1.54 So this functionality is mainly useful to get some protection against
1247 root 1.50 "chdir", to easily get an absolute path out of a relative path for
1248     future reference, and to speed up doing many operations in the same
1249     directory (e.g. when stat'ing all files in a directory).
1250    
1251     The following functions implement this working directory abstraction:
1252    
1253     aio_wd $pathname, $callback->($wd)
1254     Asynchonously canonicalise the given pathname and convert it to an
1255     IO::AIO::WD object representing it. If possible and supported on the
1256     system, also open a directory fd to speed up pathname resolution
1257     relative to this working directory.
1258    
1259     If something goes wrong, then "undef" is passwd to the callback
1260     instead of a working directory object and $! is set appropriately.
1261     Since passing "undef" as working directory component of a pathname
1262     fails the request with "ENOENT", there is often no need for error
1263     checking in the "aio_wd" callback, as future requests using the
1264     value will fail in the expected way.
1265    
1266     IO::AIO::CWD
1267 root 1.65 This is a compile time constant (object) that represents the process
1268 root 1.50 current working directory.
1269    
1270     Specifying this object as working directory object for a pathname is
1271     as if the pathname would be specified directly, without a directory
1272 root 1.54 object. For example, these calls are functionally identical:
1273 root 1.50
1274     aio_stat "somefile", sub { ... };
1275     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1276    
1277 root 1.54 To recover the path associated with an IO::AIO::WD object, you can use
1278     "aio_realpath":
1279    
1280     aio_realpath $wd, sub {
1281     warn "path is $_[0]\n";
1282     };
1283    
1284     Currently, "aio_statvfs" always, and "aio_rename" and "aio_rmdir"
1285     sometimes, fall back to using an absolue path.
1286    
1287 root 1.18 IO::AIO::REQ CLASS
1288 root 1.20 All non-aggregate "aio_*" functions return an object of this class when
1289     called in non-void context.
1290 root 1.18
1291 root 1.20 cancel $req
1292     Cancels the request, if possible. Has the effect of skipping
1293     execution when entering the execute state and skipping calling the
1294     callback when entering the the result state, but will leave the
1295 root 1.37 request otherwise untouched (with the exception of readdir). That
1296     means that requests that currently execute will not be stopped and
1297     resources held by the request will not be freed prematurely.
1298 root 1.18
1299 root 1.20 cb $req $callback->(...)
1300     Replace (or simply set) the callback registered to the request.
1301 root 1.18
1302     IO::AIO::GRP CLASS
1303 root 1.20 This class is a subclass of IO::AIO::REQ, so all its methods apply to
1304     objects of this class, too.
1305 root 1.18
1306 root 1.20 A IO::AIO::GRP object is a special request that can contain multiple
1307     other aio requests.
1308 root 1.18
1309 root 1.20 You create one by calling the "aio_group" constructing function with a
1310     callback that will be called when all contained requests have entered
1311     the "done" state:
1312 root 1.18
1313 root 1.20 my $grp = aio_group sub {
1314     print "all requests are done\n";
1315     };
1316    
1317     You add requests by calling the "add" method with one or more
1318     "IO::AIO::REQ" objects:
1319    
1320     $grp->add (aio_unlink "...");
1321    
1322     add $grp aio_stat "...", sub {
1323     $_[0] or return $grp->result ("error");
1324 root 1.1
1325 root 1.20 # add another request dynamically, if first succeeded
1326     add $grp aio_open "...", sub {
1327     $grp->result ("ok");
1328     };
1329     };
1330 root 1.18
1331 root 1.20 This makes it very easy to create composite requests (see the source of
1332     "aio_move" for an application) that work and feel like simple requests.
1333 root 1.18
1334 root 1.28 * The IO::AIO::GRP objects will be cleaned up during calls to
1335     "IO::AIO::poll_cb", just like any other request.
1336    
1337     * They can be canceled like any other request. Canceling will cancel
1338     not only the request itself, but also all requests it contains.
1339    
1340     * They can also can also be added to other IO::AIO::GRP objects.
1341    
1342     * You must not add requests to a group from within the group callback
1343     (or any later time).
1344 root 1.20
1345     Their lifetime, simplified, looks like this: when they are empty, they
1346     will finish very quickly. If they contain only requests that are in the
1347     "done" state, they will also finish. Otherwise they will continue to
1348     exist.
1349    
1350 root 1.32 That means after creating a group you have some time to add requests
1351     (precisely before the callback has been invoked, which is only done
1352     within the "poll_cb"). And in the callbacks of those requests, you can
1353     add further requests to the group. And only when all those requests have
1354     finished will the the group itself finish.
1355 root 1.20
1356     add $grp ...
1357     $grp->add (...)
1358     Add one or more requests to the group. Any type of IO::AIO::REQ can
1359     be added, including other groups, as long as you do not create
1360     circular dependencies.
1361    
1362     Returns all its arguments.
1363    
1364     $grp->cancel_subs
1365     Cancel all subrequests and clears any feeder, but not the group
1366     request itself. Useful when you queued a lot of events but got a
1367     result early.
1368    
1369 root 1.41 The group request will finish normally (you cannot add requests to
1370     the group).
1371    
1372 root 1.20 $grp->result (...)
1373     Set the result value(s) that will be passed to the group callback
1374 root 1.28 when all subrequests have finished and set the groups errno to the
1375 root 1.20 current value of errno (just like calling "errno" without an error
1376     number). By default, no argument will be passed and errno is zero.
1377    
1378     $grp->errno ([$errno])
1379     Sets the group errno value to $errno, or the current value of errno
1380     when the argument is missing.
1381    
1382     Every aio request has an associated errno value that is restored
1383     when the callback is invoked. This method lets you change this value
1384     from its default (0).
1385    
1386     Calling "result" will also set errno, so make sure you either set $!
1387     before the call to "result", or call c<errno> after it.
1388    
1389     feed $grp $callback->($grp)
1390     Sets a feeder/generator on this group: every group can have an
1391     attached generator that generates requests if idle. The idea behind
1392     this is that, although you could just queue as many requests as you
1393     want in a group, this might starve other requests for a potentially
1394     long time. For example, "aio_scandir" might generate hundreds of
1395 root 1.50 thousands of "aio_stat" requests, delaying any later requests for a
1396 root 1.20 long time.
1397    
1398     To avoid this, and allow incremental generation of requests, you can
1399     instead a group and set a feeder on it that generates those
1400     requests. The feed callback will be called whenever there are few
1401     enough (see "limit", below) requests active in the group itself and
1402     is expected to queue more requests.
1403    
1404     The feed callback can queue as many requests as it likes (i.e. "add"
1405     does not impose any limits).
1406    
1407     If the feed does not queue more requests when called, it will be
1408     automatically removed from the group.
1409    
1410 root 1.33 If the feed limit is 0 when this method is called, it will be set to
1411     2 automatically.
1412 root 1.20
1413     Example:
1414    
1415     # stat all files in @files, but only ever use four aio requests concurrently:
1416    
1417     my $grp = aio_group sub { print "finished\n" };
1418     limit $grp 4;
1419     feed $grp sub {
1420     my $file = pop @files
1421     or return;
1422 root 1.18
1423 root 1.20 add $grp aio_stat $file, sub { ... };
1424 root 1.1 };
1425    
1426 root 1.20 limit $grp $num
1427     Sets the feeder limit for the group: The feeder will be called
1428     whenever the group contains less than this many requests.
1429 root 1.18
1430 root 1.20 Setting the limit to 0 will pause the feeding process.
1431 root 1.17
1432 root 1.33 The default value for the limit is 0, but note that setting a feeder
1433     automatically bumps it up to 2.
1434    
1435 root 1.18 SUPPORT FUNCTIONS
1436 root 1.19 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1437 root 1.20 $fileno = IO::AIO::poll_fileno
1438     Return the *request result pipe file descriptor*. This filehandle
1439     must be polled for reading by some mechanism outside this module
1440 root 1.38 (e.g. EV, Glib, select and so on, see below or the SYNOPSIS). If the
1441     pipe becomes readable you have to call "poll_cb" to check the
1442     results.
1443 root 1.20
1444     See "poll_cb" for an example.
1445    
1446     IO::AIO::poll_cb
1447 root 1.54 Process some requests that have reached the result phase (i.e. they
1448     have been executed but the results are not yet reported). You have
1449     to call this "regularly" to finish outstanding requests.
1450    
1451     Returns 0 if all events could be processed (or there were no events
1452     to process), or -1 if it returned earlier for whatever reason.
1453     Returns immediately when no events are outstanding. The amount of
1454     events processed depends on the settings of "IO::AIO::max_poll_req",
1455     "IO::AIO::max_poll_time" and "IO::AIO::max_outstanding".
1456    
1457     If not all requests were processed for whatever reason, the poll
1458     file descriptor will still be ready when "poll_cb" returns, so
1459     normally you don't have to do anything special to have it called
1460     later.
1461 root 1.20
1462 root 1.47 Apart from calling "IO::AIO::poll_cb" when the event filehandle
1463     becomes ready, it can be beneficial to call this function from loops
1464     which submit a lot of requests, to make sure the results get
1465     processed when they become available and not just when the loop is
1466     finished and the event loop takes over again. This function returns
1467     very fast when there are no outstanding requests.
1468    
1469 root 1.20 Example: Install an Event watcher that automatically calls
1470 root 1.38 IO::AIO::poll_cb with high priority (more examples can be found in
1471     the SYNOPSIS section, at the top of this document):
1472 root 1.20
1473     Event->io (fd => IO::AIO::poll_fileno,
1474     poll => 'r', async => 1,
1475     cb => \&IO::AIO::poll_cb);
1476    
1477 root 1.43 IO::AIO::poll_wait
1478 root 1.54 Wait until either at least one request is in the result phase or no
1479     requests are outstanding anymore.
1480    
1481     This is useful if you want to synchronously wait for some requests
1482     to become ready, without actually handling them.
1483 root 1.43
1484     See "nreqs" for an example.
1485    
1486     IO::AIO::poll
1487     Waits until some requests have been handled.
1488    
1489     Returns the number of requests processed, but is otherwise strictly
1490     equivalent to:
1491    
1492     IO::AIO::poll_wait, IO::AIO::poll_cb
1493    
1494     IO::AIO::flush
1495     Wait till all outstanding AIO requests have been handled.
1496    
1497     Strictly equivalent to:
1498    
1499     IO::AIO::poll_wait, IO::AIO::poll_cb
1500     while IO::AIO::nreqs;
1501    
1502 root 1.62 This function can be useful at program aborts, to make sure
1503     outstanding I/O has been done ("IO::AIO" uses an "END" block which
1504     already calls this function on normal exits), or when you are merely
1505     using "IO::AIO" for its more advanced functions, rather than for
1506     async I/O, e.g.:
1507    
1508     my ($dirs, $nondirs);
1509     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1510     IO::AIO::flush;
1511     # $dirs, $nondirs are now set
1512    
1513 root 1.20 IO::AIO::max_poll_reqs $nreqs
1514     IO::AIO::max_poll_time $seconds
1515     These set the maximum number of requests (default 0, meaning
1516     infinity) that are being processed by "IO::AIO::poll_cb" in one
1517     call, respectively the maximum amount of time (default 0, meaning
1518     infinity) spent in "IO::AIO::poll_cb" to process requests (more
1519     correctly the mininum amount of time "poll_cb" is allowed to use).
1520    
1521     Setting "max_poll_time" to a non-zero value creates an overhead of
1522     one syscall per request processed, which is not normally a problem
1523     unless your callbacks are really really fast or your OS is really
1524     really slow (I am not mentioning Solaris here). Using
1525     "max_poll_reqs" incurs no overhead.
1526    
1527     Setting these is useful if you want to ensure some level of
1528     interactiveness when perl is not fast enough to process all requests
1529     in time.
1530    
1531     For interactive programs, values such as 0.01 to 0.1 should be fine.
1532 root 1.4
1533 root 1.20 Example: Install an Event watcher that automatically calls
1534     IO::AIO::poll_cb with low priority, to ensure that other parts of
1535     the program get the CPU sometimes even under high AIO load.
1536 root 1.4
1537 root 1.20 # try not to spend much more than 0.1s in poll_cb
1538     IO::AIO::max_poll_time 0.1;
1539 root 1.4
1540 root 1.20 # use a low priority so other tasks have priority
1541     Event->io (fd => IO::AIO::poll_fileno,
1542     poll => 'r', nice => 1,
1543     cb => &IO::AIO::poll_cb);
1544    
1545 root 1.19 CONTROLLING THE NUMBER OF THREADS
1546 root 1.20 IO::AIO::min_parallel $nthreads
1547     Set the minimum number of AIO threads to $nthreads. The current
1548     default is 8, which means eight asynchronous operations can execute
1549     concurrently at any one time (the number of outstanding requests,
1550     however, is unlimited).
1551    
1552     IO::AIO starts threads only on demand, when an AIO request is queued
1553     and no free thread exists. Please note that queueing up a hundred
1554     requests can create demand for a hundred threads, even if it turns
1555     out that everything is in the cache and could have been processed
1556     faster by a single thread.
1557    
1558     It is recommended to keep the number of threads relatively low, as
1559     some Linux kernel versions will scale negatively with the number of
1560     threads (higher parallelity => MUCH higher latency). With current
1561     Linux 2.6 versions, 4-32 threads should be fine.
1562    
1563     Under most circumstances you don't need to call this function, as
1564     the module selects a default that is suitable for low to moderate
1565     load.
1566    
1567     IO::AIO::max_parallel $nthreads
1568     Sets the maximum number of AIO threads to $nthreads. If more than
1569     the specified number of threads are currently running, this function
1570     kills them. This function blocks until the limit is reached.
1571    
1572     While $nthreads are zero, aio requests get queued but not executed
1573     until the number of threads has been increased again.
1574    
1575     This module automatically runs "max_parallel 0" at program end, to
1576     ensure that all threads are killed and that there are no outstanding
1577     requests.
1578    
1579     Under normal circumstances you don't need to call this function.
1580    
1581     IO::AIO::max_idle $nthreads
1582     Limit the number of threads (default: 4) that are allowed to idle
1583 root 1.46 (i.e., threads that did not get a request to process within the idle
1584     timeout (default: 10 seconds). That means if a thread becomes idle
1585     while $nthreads other threads are also idle, it will free its
1586     resources and exit.
1587 root 1.20
1588     This is useful when you allow a large number of threads (e.g. 100 or
1589     1000) to allow for extremely high load situations, but want to free
1590     resources under normal circumstances (1000 threads can easily
1591     consume 30MB of RAM).
1592    
1593     The default is probably ok in most situations, especially if thread
1594     creation is fast. If thread creation is very slow on your system you
1595     might want to use larger values.
1596    
1597 root 1.46 IO::AIO::idle_timeout $seconds
1598     Sets the minimum idle timeout (default 10) after which worker
1599     threads are allowed to exit. SEe "IO::AIO::max_idle".
1600    
1601 root 1.30 IO::AIO::max_outstanding $maxreqs
1602 root 1.48 Sets the maximum number of outstanding requests to $nreqs. If you do
1603     queue up more than this number of requests, the next call to
1604     "IO::AIO::poll_cb" (and other functions calling "poll_cb", such as
1605     "IO::AIO::flush" or "IO::AIO::poll") will block until the limit is
1606     no longer exceeded.
1607    
1608     In other words, this setting does not enforce a queue limit, but can
1609     be used to make poll functions block if the limit is exceeded.
1610    
1611 root 1.68 This is a bad function to use in interactive programs because it
1612     blocks, and a bad way to reduce concurrency because it is inexact.
1613     If you need to issue many requests without being able to call a poll
1614     function on demand, it is better to use an "aio_group" together with
1615     a feed callback.
1616 root 1.20
1617 root 1.56 Its main use is in scripts without an event loop - when you want to
1618 root 1.59 stat a lot of files, you can write something like this:
1619 root 1.48
1620     IO::AIO::max_outstanding 32;
1621    
1622     for my $path (...) {
1623     aio_stat $path , ...;
1624     IO::AIO::poll_cb;
1625     }
1626    
1627     IO::AIO::flush;
1628    
1629     The call to "poll_cb" inside the loop will normally return
1630 root 1.68 instantly, allowing the loop to progress, but as soon as more than
1631     32 requests are in-flight, it will block until some requests have
1632     been handled. This keeps the loop from pushing a large number of
1633     "aio_stat" requests onto the queue (which, with many paths to stat,
1634     can use up a lot of memory).
1635 root 1.48
1636     The default value for "max_outstanding" is very large, so there is
1637     no practical limit on the number of outstanding requests.
1638 root 1.1
1639 root 1.19 STATISTICAL INFORMATION
1640 root 1.20 IO::AIO::nreqs
1641     Returns the number of requests currently in the ready, execute or
1642     pending states (i.e. for which their callback has not been invoked
1643     yet).
1644    
1645     Example: wait till there are no outstanding requests anymore:
1646    
1647     IO::AIO::poll_wait, IO::AIO::poll_cb
1648     while IO::AIO::nreqs;
1649    
1650     IO::AIO::nready
1651     Returns the number of requests currently in the ready state (not yet
1652     executed).
1653    
1654     IO::AIO::npending
1655     Returns the number of requests currently in the pending state
1656     (executed, but not yet processed by poll_cb).
1657 root 1.19
1658 root 1.61 SUBSECOND STAT TIME ACCESS
1659     Both "aio_stat"/"aio_lstat" and perl's "stat"/"lstat" functions can
1660     generally find access/modification and change times with subsecond time
1661     accuracy of the system supports it, but perl's built-in functions only
1662     return the integer part.
1663    
1664     The following functions return the timestamps of the most recent stat
1665     with subsecond precision on most systems and work both after
1666     "aio_stat"/"aio_lstat" and perl's "stat"/"lstat" calls. Their return
1667     value is only meaningful after a successful "stat"/"lstat" call, or
1668     during/after a successful "aio_stat"/"aio_lstat" callback.
1669    
1670     This is similar to the Time::HiRes "stat" functions, but can return full
1671     resolution without rounding and work with standard perl "stat",
1672     alleviating the need to call the special "Time::HiRes" functions, which
1673     do not act like their perl counterparts.
1674    
1675     On operating systems or file systems where subsecond time resolution is
1676     not supported or could not be detected, a fractional part of 0 is
1677     returned, so it is always safe to call these functions.
1678    
1679 root 1.62 $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime,
1680     IO::AIO::st_btime
1681     Return the access, modication, change or birth time, respectively,
1682 root 1.61 including fractional part. Due to the limited precision of floating
1683     point, the accuracy on most platforms is only a bit better than
1684     milliseconds for times around now - see the *nsec* function family,
1685     below, for full accuracy.
1686    
1687 root 1.62 File birth time is only available when the OS and perl support it
1688     (on FreeBSD and NetBSD at the time of this writing, although support
1689     is adaptive, so if your OS/perl gains support, IO::AIO can take
1690 root 1.64 advantage of it). On systems where it isn't available, 0 is
1691 root 1.62 currently returned, but this might change to "undef" in a future
1692     version.
1693    
1694     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
1695     Returns access, modification, change and birth time all in one go,
1696     and maybe more times in the future version.
1697 root 1.61
1698     $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec,
1699 root 1.62 IO::AIO::st_ctimensec, IO::AIO::st_btimensec
1700     Return the fractional access, modifcation, change or birth time, in
1701 root 1.61 nanoseconds, as an integer in the range 0 to 999999999.
1702    
1703 root 1.62 Note that no accessors are provided for access, modification and
1704     change times - you need to get those from "stat _" if required ("int
1705     IO::AIO::st_atime" and so on will *not* generally give you the
1706     correct value).
1707    
1708     $seconds = IO::AIO::st_btimesec
1709     The (integral) seconds part of the file birth time, if available.
1710    
1711     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
1712     Like the functions above, but returns all four times in one go (and
1713 root 1.61 maybe more in future versions).
1714    
1715 root 1.62 $counter = IO::AIO::st_gen
1716 root 1.63 Returns the generation counter (in practice this is just a random
1717     number) of the file. This is only available on platforms which have
1718     this member in their "struct stat" (most BSDs at the time of this
1719     writing) and generally only to the root usert. If unsupported, 0 is
1720     returned, but this might change to "undef" in a future version.
1721 root 1.62
1722 root 1.61 Example: print the high resolution modification time of /etc, using
1723     "stat", and "IO::AIO::aio_stat".
1724    
1725     if (stat "/etc") {
1726     printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
1727     }
1728    
1729     IO::AIO::aio_stat "/etc", sub {
1730     $_[0]
1731     and return;
1732    
1733     printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
1734     };
1735    
1736     IO::AIO::flush;
1737    
1738     Output of the awbove on my system, showing reduced and full accuracy:
1739    
1740     stat(/etc) mtime: 1534043702.020808
1741     aio_stat(/etc) mtime: 1534043702.020807792
1742    
1743 root 1.38 MISCELLANEOUS FUNCTIONS
1744 root 1.56 IO::AIO implements some functions that are useful when you want to use
1745     some "Advanced I/O" function not available to in Perl, without going the
1746     "Asynchronous I/O" route. Many of these have an asynchronous "aio_*"
1747     counterpart.
1748 root 1.38
1749 root 1.68 $retval = IO::AIO::fexecve $fh, $argv, $envp
1750     A more-or-less direct equivalent to the POSIX "fexecve" functions,
1751     which allows you to specify the program to be executed via a file
1752     descriptor (or handle). Returns -1 and sets errno to "ENOSYS" if not
1753     available.
1754    
1755 root 1.69 $retval = IO::AIO::mount $special, $path, $fstype, $flags = 0, $data =
1756     undef
1757     Calls the GNU/Linux mount syscall with the given arguments. All
1758     except $flags are strings, and if $data is "undef", a "NULL" will be
1759     passed.
1760    
1761     The following values for $flags are available:
1762    
1763     "IO::AIO::MS_RDONLY", "IO::AIO::MS_NOSUID", "IO::AIO::MS_NODEV",
1764     "IO::AIO::MS_NOEXEC", "IO::AIO::MS_SYNCHRONOUS",
1765     "IO::AIO::MS_REMOUNT", "IO::AIO::MS_MANDLOCK",
1766     "IO::AIO::MS_DIRSYNC", "IO::AIO::MS_NOATIME",
1767     "IO::AIO::MS_NODIRATIME", "IO::AIO::MS_BIND", "IO::AIO::MS_MOVE",
1768     "IO::AIO::MS_REC", "IO::AIO::MS_SILENT", "IO::AIO::MS_POSIXACL",
1769     "IO::AIO::MS_UNBINDABLE", "IO::AIO::MS_PRIVATE",
1770     "IO::AIO::MS_SLAVE", "IO::AIO::MS_SHARED", "IO::AIO::MS_RELATIME",
1771     "IO::AIO::MS_KERNMOUNT", "IO::AIO::MS_I_VERSION",
1772     "IO::AIO::MS_STRICTATIME", "IO::AIO::MS_LAZYTIME",
1773     "IO::AIO::MS_ACTIVE", "IO::AIO::MS_NOUSER", "IO::AIO::MS_RMT_MASK",
1774     "IO::AIO::MS_MGC_VAL" and "IO::AIO::MS_MGC_MSK".
1775    
1776     $retval = IO::AIO::umount $path, $flags = 0
1777     Invokes the GNU/Linux "umount" or "umount2" syscalls. Always calls
1778     "umount" if $flags is 0, otherwqise always tries to call "umount2".
1779    
1780     The following $flags are available:
1781    
1782     "IO::AIO::MNT_FORCE", "IO::AIO::MNT_DETACH", "IO::AIO::MNT_EXPIRE"
1783     and "IO::AIO::UMOUNT_NOFOLLOW".
1784    
1785 root 1.59 $numfd = IO::AIO::get_fdlimit
1786     Tries to find the current file descriptor limit and returns it, or
1787     "undef" and sets $! in case of an error. The limit is one larger
1788     than the highest valid file descriptor number.
1789    
1790     IO::AIO::min_fdlimit [$numfd]
1791     Try to increase the current file descriptor limit(s) to at least
1792     $numfd by changing the soft or hard file descriptor resource limit.
1793     If $numfd is missing, it will try to set a very high limit, although
1794     this is not recommended when you know the actual minimum that you
1795     require.
1796    
1797     If the limit cannot be raised enough, the function makes a
1798     best-effort attempt to increase the limit as much as possible, using
1799     various tricks, while still failing. You can query the resulting
1800     limit using "IO::AIO::get_fdlimit".
1801    
1802     If an error occurs, returns "undef" and sets $!, otherwise returns
1803     true.
1804    
1805 root 1.38 IO::AIO::sendfile $ofh, $ifh, $offset, $count
1806     Calls the "eio_sendfile_sync" function, which is like
1807     "aio_sendfile", but is blocking (this makes most sense if you know
1808     the input data is likely cached already and the output filehandle is
1809     set to non-blocking operations).
1810    
1811     Returns the number of bytes copied, or -1 on error.
1812    
1813     IO::AIO::fadvise $fh, $offset, $len, $advice
1814 root 1.44 Simply calls the "posix_fadvise" function (see its manpage for
1815 root 1.50 details). The following advice constants are available:
1816 root 1.38 "IO::AIO::FADV_NORMAL", "IO::AIO::FADV_SEQUENTIAL",
1817     "IO::AIO::FADV_RANDOM", "IO::AIO::FADV_NOREUSE",
1818     "IO::AIO::FADV_WILLNEED", "IO::AIO::FADV_DONTNEED".
1819    
1820     On systems that do not implement "posix_fadvise", this function
1821     returns ENOSYS, otherwise the return value of "posix_fadvise".
1822    
1823 root 1.44 IO::AIO::madvise $scalar, $offset, $len, $advice
1824     Simply calls the "posix_madvise" function (see its manpage for
1825 root 1.50 details). The following advice constants are available:
1826 root 1.44 "IO::AIO::MADV_NORMAL", "IO::AIO::MADV_SEQUENTIAL",
1827     "IO::AIO::MADV_RANDOM", "IO::AIO::MADV_WILLNEED",
1828     "IO::AIO::MADV_DONTNEED".
1829    
1830 root 1.59 If $offset is negative, counts from the end. If $length is negative,
1831     the remaining length of the $scalar is used. If possible, $length
1832     will be reduced to fit into the $scalar.
1833    
1834 root 1.44 On systems that do not implement "posix_madvise", this function
1835     returns ENOSYS, otherwise the return value of "posix_madvise".
1836    
1837     IO::AIO::mprotect $scalar, $offset, $len, $protect
1838     Simply calls the "mprotect" function on the preferably AIO::mmap'ed
1839     $scalar (see its manpage for details). The following protect
1840 root 1.50 constants are available: "IO::AIO::PROT_NONE", "IO::AIO::PROT_READ",
1841 root 1.44 "IO::AIO::PROT_WRITE", "IO::AIO::PROT_EXEC".
1842    
1843 root 1.59 If $offset is negative, counts from the end. If $length is negative,
1844     the remaining length of the $scalar is used. If possible, $length
1845     will be reduced to fit into the $scalar.
1846    
1847 root 1.44 On systems that do not implement "mprotect", this function returns
1848     ENOSYS, otherwise the return value of "mprotect".
1849    
1850 root 1.43 IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1851     Memory-maps a file (or anonymous memory range) and attaches it to
1852 root 1.53 the given $scalar, which will act like a string scalar. Returns true
1853     on success, and false otherwise.
1854 root 1.43
1855 root 1.59 The scalar must exist, but its contents do not matter - this means
1856     you cannot use a nonexistant array or hash element. When in doubt,
1857     "undef" the scalar first.
1858    
1859     The only operations allowed on the mmapped scalar are
1860     "substr"/"vec", which don't change the string length, and most
1861     read-only operations such as copying it or searching it with regexes
1862     and so on.
1863 root 1.43
1864     Anything else is unsafe and will, at best, result in memory leaks.
1865    
1866     The memory map associated with the $scalar is automatically removed
1867 root 1.59 when the $scalar is undef'd or destroyed, or when the
1868     "IO::AIO::mmap" or "IO::AIO::munmap" functions are called on it.
1869 root 1.43
1870     This calls the "mmap"(2) function internally. See your system's
1871     manual page for details on the $length, $prot and $flags parameters.
1872    
1873     The $length must be larger than zero and smaller than the actual
1874     filesize.
1875    
1876     $prot is a combination of "IO::AIO::PROT_NONE",
1877     "IO::AIO::PROT_EXEC", "IO::AIO::PROT_READ" and/or
1878     "IO::AIO::PROT_WRITE",
1879    
1880     $flags can be a combination of "IO::AIO::MAP_SHARED" or
1881     "IO::AIO::MAP_PRIVATE", or a number of system-specific flags (when
1882 root 1.57 not available, the are 0): "IO::AIO::MAP_ANONYMOUS" (which is set to
1883     "MAP_ANON" if your system only provides this constant),
1884 root 1.58 "IO::AIO::MAP_LOCKED", "IO::AIO::MAP_NORESERVE",
1885     "IO::AIO::MAP_POPULATE", "IO::AIO::MAP_NONBLOCK",
1886     "IO::AIO::MAP_FIXED", "IO::AIO::MAP_GROWSDOWN",
1887 root 1.67 "IO::AIO::MAP_32BIT", "IO::AIO::MAP_HUGETLB", "IO::AIO::MAP_STACK",
1888     "IO::AIO::MAP_FIXED_NOREPLACE", "IO::AIO::MAP_SHARED_VALIDATE",
1889     "IO::AIO::MAP_SYNC" or "IO::AIO::MAP_UNINITIALIZED".
1890 root 1.43
1891     If $fh is "undef", then a file descriptor of -1 is passed.
1892    
1893     $offset is the offset from the start of the file - it generally must
1894     be a multiple of "IO::AIO::PAGESIZE" and defaults to 0.
1895    
1896     Example:
1897    
1898     use Digest::MD5;
1899     use IO::AIO;
1900    
1901     open my $fh, "<verybigfile"
1902     or die "$!";
1903    
1904     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1905     or die "verybigfile: $!";
1906    
1907     my $fast_md5 = md5 $data;
1908    
1909     IO::AIO::munmap $scalar
1910     Removes a previous mmap and undefines the $scalar.
1911    
1912 root 1.60 IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[,
1913     $new_address = 0]
1914     Calls the Linux-specific mremap(2) system call. The $scalar must
1915     have been mapped by "IO::AIO::mmap", and $flags must currently
1916     either be 0 or "IO::AIO::MREMAP_MAYMOVE".
1917    
1918     Returns true if successful, and false otherwise. If the underlying
1919     mmapped region has changed address, then the true value has the
1920     numerical value 1, otherwise it has the numerical value 0:
1921    
1922     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
1923     or die "mremap: $!";
1924    
1925     if ($success*1) {
1926     warn "scalar has chanegd address in memory\n";
1927     }
1928    
1929     "IO::AIO::MREMAP_FIXED" and the $new_address argument are currently
1930     implemented, but not supported and might go away in a future
1931     version.
1932    
1933     On systems where this call is not supported or is not emulated, this
1934     call returns falls and sets $! to "ENOSYS".
1935    
1936 root 1.63 IO::AIO::mlockall $flags
1937     Calls the "eio_mlockall_sync" function, which is like
1938     "aio_mlockall", but is blocking.
1939    
1940 root 1.44 IO::AIO::munlock $scalar, $offset = 0, $length = undef
1941     Calls the "munlock" function, undoing the effects of a previous
1942     "aio_mlock" call (see its description for details).
1943 root 1.43
1944     IO::AIO::munlockall
1945     Calls the "munlockall" function.
1946    
1947     On systems that do not implement "munlockall", this function returns
1948     ENOSYS, otherwise the return value of "munlockall".
1949    
1950 root 1.65 $fh = IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_maxlen, $flags
1951     Uses the GNU/Linux accept4(2) syscall, if available, to accept a
1952     socket and return the new file handle on success, or sets $! and
1953     returns "undef" on error.
1954    
1955     The remote name of the new socket will be stored in $sockaddr, which
1956     will be extended to allow for at least $sockaddr_maxlen octets. If
1957     the socket name does not fit into $sockaddr_maxlen octets, this is
1958     signaled by returning a longer string in $sockaddr, which might or
1959     might not be truncated.
1960    
1961     To accept name-less sockets, use "undef" for $sockaddr and 0 for
1962     $sockaddr_maxlen.
1963    
1964 root 1.66 The main reasons to use this syscall rather than portable accept(2)
1965     are that you can specify "SOCK_NONBLOCK" and/or "SOCK_CLOEXEC" flags
1966     and you can accept name-less sockets by specifying 0 for
1967     $sockaddr_maxlen, which is sadly not possible with perl's interface
1968     to "accept".
1969 root 1.65
1970 root 1.52 IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
1971     Calls the GNU/Linux splice(2) syscall, if available. If $r_off or
1972     $w_off are "undef", then "NULL" is passed for these, otherwise they
1973     should be the file offset.
1974    
1975 root 1.53 $r_fh and $w_fh should not refer to the same file, as splice might
1976     silently corrupt the data in this case.
1977    
1978 root 1.52 The following symbol flag values are available:
1979     "IO::AIO::SPLICE_F_MOVE", "IO::AIO::SPLICE_F_NONBLOCK",
1980     "IO::AIO::SPLICE_F_MORE" and "IO::AIO::SPLICE_F_GIFT".
1981    
1982     See the splice(2) manpage for details.
1983    
1984     IO::AIO::tee $r_fh, $w_fh, $length, $flags
1985 root 1.56 Calls the GNU/Linux tee(2) syscall, see its manpage and the
1986 root 1.52 description for "IO::AIO::splice" above for details.
1987    
1988 root 1.55 $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
1989     Attempts to query or change the pipe buffer size. Obviously works
1990     only on pipes, and currently works only on GNU/Linux systems, and
1991     fails with -1/"ENOSYS" everywhere else. If anybody knows how to
1992     influence pipe buffer size on other systems, drop me a note.
1993    
1994 root 1.57 ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
1995     This is a direct interface to the Linux pipe2(2) system call. If
1996     $flags is missing or 0, then this should be the same as a call to
1997     perl's built-in "pipe" function and create a new pipe, and works on
1998     systems that lack the pipe2 syscall. On win32, this case invokes
1999     "_pipe (..., 4096, O_BINARY)".
2000    
2001     If $flags is non-zero, it tries to invoke the pipe2 system call with
2002     the given flags (Linux 2.6.27, glibc 2.9).
2003    
2004     On success, the read and write file handles are returned.
2005    
2006     On error, nothing will be returned. If the pipe2 syscall is missing
2007     and $flags is non-zero, fails with "ENOSYS".
2008    
2009     Please refer to pipe2(2) for more info on the $flags, but at the
2010     time of this writing, "IO::AIO::O_CLOEXEC", "IO::AIO::O_NONBLOCK"
2011     and "IO::AIO::O_DIRECT" (Linux 3.4, for packet-based pipes) were
2012     supported.
2013    
2014 root 1.59 Example: create a pipe race-free w.r.t. threads and fork:
2015    
2016     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2017     or die "pipe2: $!\n";
2018    
2019 root 1.64 $fh = IO::AIO::memfd_create $pathname[, $flags]
2020     This is a direct interface to the Linux memfd_create(2) system call.
2021     The (unhelpful) default for $flags is 0, but your default should be
2022     "IO::AIO::MFD_CLOEXEC".
2023    
2024     On success, the new memfd filehandle is returned, otherwise returns
2025     "undef". If the memfd_create syscall is missing, fails with
2026     "ENOSYS".
2027    
2028     Please refer to memfd_create(2) for more info on this call.
2029    
2030     The following $flags values are available: "IO::AIO::MFD_CLOEXEC",
2031 root 1.68 "IO::AIO::MFD_ALLOW_SEALING", "IO::AIO::MFD_HUGETLB",
2032     "IO::AIO::MFD_HUGETLB_2MB" and "IO::AIO::MFD_HUGETLB_1GB".
2033 root 1.64
2034     Example: create a new memfd.
2035    
2036     my $fh = IO::AIO::memfd_create "somenameforprocfd", IO::AIO::MFD_CLOEXEC
2037 root 1.66 or die "memfd_create: $!\n";
2038 root 1.64
2039 root 1.66 $fh = IO::AIO::pidfd_open $pid[, $flags]
2040     This is an interface to the Linux pidfd_open(2) system call. The
2041     default for $flags is 0.
2042    
2043     On success, a new pidfd filehandle is returned (that is already set
2044     to close-on-exec), otherwise returns "undef". If the syscall is
2045     missing, fails with "ENOSYS".
2046    
2047     Example: open pid 6341 as pidfd.
2048    
2049     my $fh = IO::AIO::pidfd_open 6341
2050     or die "pidfd_open: $!\n";
2051    
2052     $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[,
2053     $flags]]
2054     This is an interface to the Linux pidfd_send_signal system call. The
2055     default for $siginfo is "undef" and the default for $flags is 0.
2056    
2057     Returns the system call status. If the syscall is missing, fails
2058     with "ENOSYS".
2059    
2060     When specified, $siginfo must be a reference to a hash with one or
2061     more of the following members:
2062    
2063     code - the "si_code" member
2064     pid - the "si_pid" member
2065     uid - the "si_uid" member
2066     value_int - the "si_value.sival_int" member
2067     value_ptr - the "si_value.sival_ptr" member, specified as an integer
2068    
2069     Example: send a SIGKILL to the specified process.
2070    
2071     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, undef
2072     and die "pidfd_send_signal: $!\n";
2073    
2074     Example: send a SIGKILL to the specified process with extra data.
2075    
2076     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, { code => -1, value_int => 7 }
2077     and die "pidfd_send_signal: $!\n";
2078    
2079     $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
2080     This is an interface to the Linux pidfd_getfd system call. The
2081     default for $flags is 0.
2082    
2083     On success, returns a dup'ed copy of the target file descriptor
2084     (specified as an integer) returned (that is already set to
2085     close-on-exec), otherwise returns "undef". If the syscall is
2086     missing, fails with "ENOSYS".
2087    
2088     Example: get a copy of standard error of another process and print
2089     soemthing to it.
2090    
2091     my $errfh = IO::AIO::pidfd_getfd $pidfh, 2
2092     or die "pidfd_getfd: $!\n";
2093     print $errfh "stderr\n";
2094    
2095     $fh = IO::AIO::eventfd [$initval, [$flags]]
2096 root 1.59 This is a direct interface to the Linux eventfd(2) system call. The
2097     (unhelpful) defaults for $initval and $flags are 0 for both.
2098    
2099     On success, the new eventfd filehandle is returned, otherwise
2100     returns "undef". If the eventfd syscall is missing, fails with
2101     "ENOSYS".
2102    
2103     Please refer to eventfd(2) for more info on this call.
2104    
2105     The following symbol flag values are available:
2106     "IO::AIO::EFD_CLOEXEC", "IO::AIO::EFD_NONBLOCK" and
2107     "IO::AIO::EFD_SEMAPHORE" (Linux 2.6.30).
2108    
2109     Example: create a new eventfd filehandle:
2110    
2111 root 1.64 $fh = IO::AIO::eventfd 0, IO::AIO::EFD_CLOEXEC
2112 root 1.59 or die "eventfd: $!\n";
2113    
2114     $fh = IO::AIO::timerfd_create $clockid[, $flags]
2115     This is a direct interface to the Linux timerfd_create(2) system
2116 root 1.64 call. The (unhelpful) default for $flags is 0, but your default
2117     should be "IO::AIO::TFD_CLOEXEC".
2118 root 1.59
2119     On success, the new timerfd filehandle is returned, otherwise
2120 root 1.64 returns "undef". If the timerfd_create syscall is missing, fails
2121     with "ENOSYS".
2122 root 1.59
2123     Please refer to timerfd_create(2) for more info on this call.
2124    
2125     The following $clockid values are available:
2126     "IO::AIO::CLOCK_REALTIME", "IO::AIO::CLOCK_MONOTONIC"
2127     "IO::AIO::CLOCK_CLOCK_BOOTTIME" (Linux 3.15)
2128     "IO::AIO::CLOCK_CLOCK_REALTIME_ALARM" (Linux 3.11) and
2129     "IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM" (Linux 3.11).
2130    
2131     The following $flags values are available (Linux 2.6.27):
2132     "IO::AIO::TFD_NONBLOCK" and "IO::AIO::TFD_CLOEXEC".
2133    
2134     Example: create a new timerfd and set it to one-second repeated
2135     alarms, then wait for two alarms:
2136    
2137     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2138     or die "timerfd_create: $!\n";
2139    
2140     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2141     or die "timerfd_settime: $!\n";
2142    
2143     for (1..2) {
2144     8 == sysread $fh, my $buf, 8
2145     or die "timerfd read failure\n";
2146    
2147     printf "number of expirations (likely 1): %d\n",
2148     unpack "Q", $buf;
2149     }
2150    
2151     ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags,
2152     $new_interval, $nbw_value
2153     This is a direct interface to the Linux timerfd_settime(2) system
2154     call. Please refer to its manpage for more info on this call.
2155    
2156     The new itimerspec is specified using two (possibly fractional)
2157     second values, $new_interval and $new_value).
2158    
2159     On success, the current interval and value are returned (as per
2160     "timerfd_gettime"). On failure, the empty list is returned.
2161    
2162     The following $flags values are available:
2163     "IO::AIO::TFD_TIMER_ABSTIME" and "IO::AIO::TFD_TIMER_CANCEL_ON_SET".
2164    
2165     See "IO::AIO::timerfd_create" for a full example.
2166    
2167     ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2168     This is a direct interface to the Linux timerfd_gettime(2) system
2169     call. Please refer to its manpage for more info on this call.
2170    
2171     On success, returns the current values of interval and value for the
2172     given timerfd (as potentially fractional second values). On failure,
2173     the empty list is returned.
2174    
2175 root 1.43 EVENT LOOP INTEGRATION
2176     It is recommended to use AnyEvent::AIO to integrate IO::AIO
2177     automatically into many event loops:
2178    
2179     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2180     use AnyEvent::AIO;
2181    
2182     You can also integrate IO::AIO manually into many event loops, here are
2183     some examples of how to do this:
2184    
2185     # EV integration
2186     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2187    
2188     # Event integration
2189     Event->io (fd => IO::AIO::poll_fileno,
2190     poll => 'r',
2191     cb => \&IO::AIO::poll_cb);
2192    
2193     # Glib/Gtk2 integration
2194     add_watch Glib::IO IO::AIO::poll_fileno,
2195     in => sub { IO::AIO::poll_cb; 1 };
2196    
2197     # Tk integration
2198     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2199     readable => \&IO::AIO::poll_cb);
2200    
2201     # Danga::Socket integration
2202     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2203     \&IO::AIO::poll_cb);
2204    
2205 root 1.9 FORK BEHAVIOUR
2206 root 1.48 Usage of pthreads in a program changes the semantics of fork
2207     considerably. Specifically, only async-safe functions can be called
2208     after fork. Perl doesn't know about this, so in general, you cannot call
2209 root 1.49 fork with defined behaviour in perl if pthreads are involved. IO::AIO
2210     uses pthreads, so this applies, but many other extensions and (for
2211     inexplicable reasons) perl itself often is linked against pthreads, so
2212     this limitation applies to quite a lot of perls.
2213    
2214     This module no longer tries to fight your OS, or POSIX. That means
2215     IO::AIO only works in the process that loaded it. Forking is fully
2216     supported, but using IO::AIO in the child is not.
2217    
2218     You might get around by not *using* IO::AIO before (or after) forking.
2219     You could also try to call the IO::AIO::reinit function in the child:
2220    
2221     IO::AIO::reinit
2222 root 1.50 Abandons all current requests and I/O threads and simply
2223 root 1.49 reinitialises all data structures. This is not an operation
2224 root 1.50 supported by any standards, but happens to work on GNU/Linux and
2225 root 1.49 some newer BSD systems.
2226    
2227     The only reasonable use for this function is to call it after
2228     forking, if "IO::AIO" was used in the parent. Calling it while
2229     IO::AIO is active in the process will result in undefined behaviour.
2230     Calling it at any time will also result in any undefined (by POSIX)
2231     behaviour.
2232 root 1.18
2233 root 1.59 LINUX-SPECIFIC CALLS
2234     When a call is documented as "linux-specific" then this means it
2235     originated on GNU/Linux. "IO::AIO" will usually try to autodetect the
2236     availability and compatibility of such calls regardless of the platform
2237     it is compiled on, so platforms such as FreeBSD which often implement
2238     these calls will work. When in doubt, call them and see if they fail wth
2239     "ENOSYS".
2240    
2241 root 1.18 MEMORY USAGE
2242 root 1.20 Per-request usage:
2243 root 1.18
2244 root 1.20 Each aio request uses - depending on your architecture - around 100-200
2245     bytes of memory. In addition, stat requests need a stat buffer (possibly
2246     a few hundred bytes), readdir requires a result buffer and so on. Perl
2247     scalars and other data passed into aio requests will also be locked and
2248     will consume memory till the request has entered the done state.
2249    
2250 root 1.25 This is not awfully much, so queuing lots of requests is not usually a
2251 root 1.20 problem.
2252    
2253     Per-thread usage:
2254    
2255     In the execution phase, some aio requests require more memory for
2256     temporary buffers, and each thread requires a stack and other data
2257     structures (usually around 16k-128k, depending on the OS).
2258 root 1.18
2259     KNOWN BUGS
2260 root 1.59 Known bugs will be fixed in the next release :)
2261    
2262     KNOWN ISSUES
2263     Calls that try to "import" foreign memory areas (such as "IO::AIO::mmap"
2264     or "IO::AIO::aio_slurp") do not work with generic lvalues, such as
2265     non-created hash slots or other scalars I didn't think of. It's best to
2266     avoid such and either use scalar variables or making sure that the
2267     scalar exists (e.g. by storing "undef") and isn't "funny" (e.g. tied).
2268    
2269     I am not sure anything can be done about this, so this is considered a
2270     known issue, rather than a bug.
2271 root 1.9
2272 root 1.1 SEE ALSO
2273 root 1.30 AnyEvent::AIO for easy integration into event loops, Coro::AIO for a
2274 root 1.65 more natural syntax and IO::FDPass for file descriptor passing.
2275 root 1.1
2276     AUTHOR
2277 root 1.20 Marc Lehmann <schmorp@schmorp.de>
2278     http://home.schmorp.de/
2279 root 1.1