ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.44
Committed: Sun Dec 21 21:20:35 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.43: +11 -12 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 /*
2 root 1.29 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 pippijn 1.19 *
4 root 1.30 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.26 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6     * Copyright (©) 1992,2007 Frank Tore Johansen
7 pippijn 1.19 *
8 root 1.29 * Deliantra is free software: you can redistribute it and/or modify
9 root 1.28 * it under the terms of the GNU General Public License as published by
10     * the Free Software Foundation, either version 3 of the License, or
11     * (at your option) any later version.
12 pippijn 1.19 *
13 root 1.28 * This program is distributed in the hope that it will be useful,
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     * GNU General Public License for more details.
17 pippijn 1.19 *
18 root 1.28 * You should have received a copy of the GNU General Public License
19     * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 root 1.26 *
21 root 1.29 * The authors can be reached via e-mail to <support@deliantra.net>
22 pippijn 1.19 */
23 elmex 1.1
24     /* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25    
26     #include <global.h>
27 root 1.41 #include <cmath>
28 elmex 1.1
29 root 1.41 static void expand_lighted_sight (object *op);
30 elmex 1.1
31 root 1.41 enum {
32     LOS_XI = 0x01,
33     LOS_YI = 0x02,
34     };
35    
36     struct los_info
37     {
38 root 1.43 sint8 xo, yo; // obscure angle
39     sint8 xe, ye; // angle deviation
40     uint8 culled; // culled from "tree"
41     uint8 queued; // already queued
42 root 1.41 uint8 visible;
43 root 1.43 uint8 flags; // LOS_XI/YI
44 root 1.41 };
45    
46     // temporary storage for the los algorithm,
47     // one los_info for each lightable map space
48     static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
49    
50     struct point
51     {
52     sint8 x, y;
53     };
54    
55     // minimum size, but must be a power of two
56     #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
57    
58     // a queue of spaces to calculate
59     static point queue [QUEUE_LENGTH];
60     static int q1, q2; // queue start, end
61 elmex 1.1
62     /*
63 root 1.41 * Clears/initialises the los-array associated to the player
64     * controlling the object.
65 elmex 1.1 */
66 root 1.41 void
67 root 1.42 player::clear_los (sint8 value)
68 root 1.41 {
69 root 1.42 memset (los, value, sizeof (los));
70 root 1.41 }
71 elmex 1.1
72 root 1.41 // enqueue a single mapspace, but only if it hasn't
73     // been enqueued yet.
74 root 1.4 static void
75 root 1.41 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
76 root 1.4 {
77 root 1.41 sint8 x = LOS_X0 + dx;
78     sint8 y = LOS_Y0 + dy;
79    
80     if (x < 0 || x >= MAP_CLIENT_X) return;
81     if (y < 0 || y >= MAP_CLIENT_Y) return;
82    
83     los_info &l = los[x][y];
84    
85     l.flags |= flags;
86    
87     if (l.queued)
88     return;
89 elmex 1.1
90 root 1.41 l.queued = 1;
91    
92     queue[q1].x = dx;
93     queue[q1].y = dy;
94 elmex 1.1
95 root 1.41 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96 elmex 1.1 }
97    
98 root 1.41 // run the los algorithm
99     // this is a variant of a spiral los algorithm taken from
100     // http://www.geocities.com/temerra/los_rays.html
101     // which has been simplified and changed considerably, but
102     // still is basically the same algorithm.
103     static void
104     do_los (object *op)
105 root 1.4 {
106 root 1.41 player *pl = op->contr;
107 root 1.4
108 root 1.41 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109 root 1.4
110 root 1.41 memset (los, 0, sizeof (los));
111 root 1.4
112 root 1.41 q1 = 0; q2 = 0; // initialise queue, not strictly required
113     enqueue (0, 0); // enqueue center
114 root 1.4
115 root 1.41 // treat the origin specially
116     los[LOS_X0][LOS_Y0].visible = 1;
117     pl->los[LOS_X0][LOS_Y0] = 0;
118    
119     // loop over all enqueued points until the queue is empty
120     // the order in which this is done ensures that we
121     // never touch a mapspace whose input spaces we haven't checked
122     // yet.
123     while (q1 != q2)
124     {
125     sint8 dx = queue[q2].x;
126     sint8 dy = queue[q2].y;
127 root 1.4
128 root 1.41 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129 root 1.4
130 root 1.41 sint8 x = LOS_X0 + dx;
131     sint8 y = LOS_Y0 + dy;
132 elmex 1.1
133 root 1.41 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134     int distance = 0;//D
135 root 1.4
136 root 1.41 los_info &l = los[x][y];
137 elmex 1.1
138 root 1.41 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
139     {
140     l.culled = 1;
141 elmex 1.1
142 root 1.41 // check contributing spaces, first horizontal
143     if (expect_true (l.flags & LOS_XI))
144     {
145     los_info *xi = &los[x - sign (dx)][y];
146 elmex 1.1
147 root 1.41 // don't cull unless obscured
148     l.culled &= !xi->visible;
149 elmex 1.1
150 root 1.41 /* merge input space */
151     if (expect_false (xi->xo || xi->yo))
152     {
153     // The X input can provide two main pieces of information:
154     // 1. Progressive X obscurity.
155     // 2. Recessive Y obscurity.
156    
157     // Progressive X obscurity, favouring recessive input angle
158     if (xi->xe > 0 && l.xo == 0)
159     {
160     l.xe = xi->xe - xi->yo;
161     l.ye = xi->ye + xi->yo;
162     l.xo = xi->xo;
163     l.yo = xi->yo;
164     }
165 root 1.4
166 root 1.41 // Recessive Y obscurity
167     if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168     {
169     l.ye = xi->yo + xi->ye;
170     l.xe = xi->xe - xi->yo;
171     l.xo = xi->xo;
172     l.yo = xi->yo;
173     }
174     }
175     }
176    
177     // check contributing spaces, last vertical, identical structure
178     if (expect_true (l.flags & LOS_YI))
179     {
180     los_info *yi = &los[x][y - sign (dy)];
181 elmex 1.1
182 root 1.41 // don't cull unless obscured
183     l.culled &= !yi->visible;
184 elmex 1.1
185 root 1.41 /* merge input space */
186     if (expect_false (yi->yo || yi->xo))
187     {
188     // The Y input can provide two main pieces of information:
189     // 1. Progressive Y obscurity.
190     // 2. Recessive X obscurity.
191    
192     // Progressive Y obscurity, favouring recessive input angle
193     if (yi->ye > 0 && l.yo == 0)
194     {
195     l.ye = yi->ye - yi->xo;
196     l.xe = yi->xe + yi->xo;
197     l.yo = yi->yo;
198     l.xo = yi->xo;
199     }
200 elmex 1.1
201 root 1.41 // Recessive X obscurity
202     if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203     {
204     l.xe = yi->xo + yi->xe;
205     l.ye = yi->ye - yi->xo;
206     l.yo = yi->yo;
207     l.xo = yi->xo;
208     }
209     }
210     }
211 elmex 1.1
212 root 1.41 // check whether this space blocks the view
213     maptile *m = op->map;
214     sint16 nx = op->x + dx;
215     sint16 ny = op->y + dy;
216 elmex 1.1
217 root 1.41 if (expect_true (!xy_normalise (m, nx, ny))
218     || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219     {
220     l.xo = l.xe = abs (dx);
221     l.yo = l.ye = abs (dy);
222 elmex 1.1
223 root 1.41 // we obscure dependents, but might be visible
224     // copy the los from the square towards the player,
225     // so outward diagonal corners are lit.
226     pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227     l.visible = false;
228     }
229     else
230     {
231     // we are not blocked, so calculate visibility, by checking
232     // whether we are inside or outside the shadow
233     l.visible = (l.xe <= 0 || l.xe > l.xo)
234     && (l.ye <= 0 || l.ye > l.yo);
235    
236     pl->los[x][y] = l.culled ? LOS_BLOCKED
237     : l.visible ? max (0, 2 - max_radius + distance)
238     : 3;
239 root 1.37 }
240 root 1.41
241 root 1.37 }
242 root 1.4
243 root 1.41 // Expands by the unit length in each component's current direction.
244     // If a component has no direction, then it is expanded in both of its
245     // positive and negative directions.
246     if (!l.culled)
247     {
248     if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
249     if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
250     if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
251     if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
252     }
253     }
254 elmex 1.1 }
255    
256     /* returns true if op carries one or more lights
257     * This is a trivial function now days, but it used to
258     * be a bit longer. Probably better for callers to just
259     * check the op->glow_radius instead of calling this.
260     */
261 root 1.4 int
262     has_carried_lights (const object *op)
263     {
264     /* op may glow! */
265     if (op->glow_radius > 0)
266     return 1;
267    
268     return 0;
269     }
270    
271 root 1.32 /* radius, distance => lightness adjust */
272 root 1.44 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
273 root 1.32
274 root 1.44 static struct los_init
275 root 1.32 {
276 root 1.44 los_init ()
277 root 1.32 {
278     for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
279 root 1.35 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
280 root 1.32 {
281     // max intensity
282 root 1.36 int intensity = min (LOS_MAX, abs (radius) + 1);
283 root 1.32
284     // actual intensity
285     intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
286    
287 root 1.44 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
288 root 1.35 ? min (3, intensity)
289 root 1.36 : LOS_MAX - intensity;
290 root 1.32 }
291     }
292 root 1.44 } los_init;
293 root 1.32
294 root 1.39 sint8
295     los_brighten (sint8 b, sint8 l)
296     {
297     return b == LOS_BLOCKED ? b : min (b, l);
298     }
299    
300     sint8
301     los_darken (sint8 b, sint8 l)
302     {
303     return max (b, l);
304     }
305    
306     template<sint8 change_it (sint8, sint8)>
307     static void
308 root 1.44 apply_light (object *op, int dx, int dy, int light, const sint8 *atten_table)
309 root 1.39 {
310 root 1.41 // min or max the circular area around basex, basey
311 root 1.39 player *pl = op->contr;
312    
313 root 1.41 dx += LOS_X0;
314     dy += LOS_Y0;
315    
316     int hx = op->contr->ns->mapx / 2;
317     int hy = op->contr->ns->mapy / 2;
318    
319     int ax0 = max (LOS_X0 - hx, dx - light);
320     int ay0 = max (LOS_Y0 - hy, dy - light);
321     int ax1 = min (dx + light, LOS_X0 + hx);
322     int ay1 = min (dy + light, LOS_Y0 + hy);
323 root 1.39
324     for (int ax = ax0; ax <= ax1; ax++)
325     for (int ay = ay0; ay <= ay1; ay++)
326 root 1.41 pl->los[ax][ay] =
327 root 1.44 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
328 root 1.39 }
329    
330     /* add light, by finding all (non-null) nearby light sources, then
331     * mark those squares specially.
332     */
333 root 1.4 static void
334 root 1.41 apply_lights (object *op)
335 root 1.4 {
336 root 1.39 int darklevel, mflags, light, x1, y1;
337 root 1.6 maptile *m = op->map;
338 root 1.4 sint16 nx, ny;
339    
340 root 1.14 darklevel = m->darkness;
341 root 1.4
342     /* If the player can see in the dark, lower the darklevel for him */
343     if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
344 root 1.36 darklevel -= LOS_MAX / 2;
345 root 1.4
346     /* Do a sanity check. If not valid, some code below may do odd
347     * things.
348     */
349     if (darklevel > MAX_DARKNESS)
350     {
351 root 1.15 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
352 root 1.4 darklevel = MAX_DARKNESS;
353 elmex 1.1 }
354    
355 root 1.32 int half_x = op->contr->ns->mapx / 2;
356     int half_y = op->contr->ns->mapy / 2;
357    
358     int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
359     int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
360     int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
361     int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
362    
363     int pass2 = 0; // negative lights have an extra pass
364    
365 root 1.39 if (darklevel < 1)
366     pass2 = 1;
367     else
368     {
369     /* first, make everything totally dark */
370 root 1.41 for (int dx = -half_x; dx <= half_x; dx++)
371     for (int dy = -half_x; dy <= half_y; dy++)
372     if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
373     op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
374 root 1.39
375     /*
376     * Only process the area of interest.
377 root 1.41 * the basex, basey values represent the position in the op->contr->los
378     * array. Its easier to just increment them here (and start with the right
379 root 1.39 * value) than to recalculate them down below.
380     */
381 root 1.41 for (int x = min_x; x <= max_x; x++)
382     for (int y = min_y; y <= max_y; y++)
383 root 1.39 {
384     maptile *m = op->map;
385     sint16 nx = x;
386     sint16 ny = y;
387    
388     if (!xy_normalise (m, nx, ny))
389     continue;
390    
391     mapspace &ms = m->at (nx, ny);
392     ms.update ();
393     sint8 light = ms.light;
394    
395     if (expect_false (light))
396     if (light < 0)
397     pass2 = 1;
398     else
399 root 1.44 apply_light<los_brighten> (op, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
400 root 1.39 }
401    
402     /* grant some vision to the player, based on the darklevel */
403 root 1.32 {
404 root 1.44 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_LIGHT_RADIUS);
405 root 1.39
406 root 1.44 apply_light<los_brighten> (op, 0, 0, light, light_atten [light + MAX_LIGHT_RADIUS]);
407 root 1.32 }
408 root 1.39 }
409 root 1.4
410 root 1.38 // possibly do 2nd pass for rare negative glow radii
411 root 1.39 // for effect, those are always considered to be stronger than anything else
412     // but they can't darken a place completely
413     if (pass2)
414 root 1.41 for (int x = min_x; x <= max_x; x++)
415     for (int y = min_y; y <= max_y; y++)
416 root 1.4 {
417 root 1.32 maptile *m = op->map;
418     sint16 nx = x;
419     sint16 ny = y;
420 root 1.4
421 root 1.32 if (!xy_normalise (m, nx, ny))
422     continue;
423 root 1.4
424 root 1.32 mapspace &ms = m->at (nx, ny);
425     ms.update ();
426     sint8 light = ms.light;
427 root 1.4
428 root 1.32 if (expect_false (light < 0))
429 root 1.44 apply_light<los_darken> (op, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
430 root 1.18 }
431 elmex 1.1 }
432    
433 root 1.31 /* blinded_sight() - sets all viewable squares to blocked except
434 elmex 1.1 * for the one the central one that the player occupies. A little
435     * odd that you can see yourself (and what your standing on), but
436     * really need for any reasonable game play.
437     */
438 root 1.4 static void
439     blinded_sight (object *op)
440     {
441 root 1.41 op->contr->los[LOS_X0][LOS_Y0] = 3;
442 elmex 1.1 }
443    
444     /*
445     * update_los() recalculates the array which specifies what is
446     * visible for the given player-object.
447     */
448 root 1.4 void
449     update_los (object *op)
450     {
451     if (QUERY_FLAG (op, FLAG_REMOVED))
452     return;
453 elmex 1.1
454 root 1.42 op->contr->clear_los ();
455 root 1.27
456 root 1.4 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
457 root 1.41 memset (op->contr->los, 0, sizeof (op->contr->los));
458     else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
459 root 1.4 blinded_sight (op);
460     else
461 root 1.41 {
462     do_los (op);
463     apply_lights (op);
464     }
465 root 1.4
466     if (QUERY_FLAG (op, FLAG_XRAYS))
467 root 1.41 for (int dx = -2; dx <= 2; dx++)
468     for (int dy = -2; dy <= 2; dy++)
469     op->contr->los[dx + LOS_X0][dy + LOS_X0] = 0;
470 elmex 1.1 }
471    
472     /* update all_map_los is like update_all_los below,
473     * but updates everyone on the map, no matter where they
474 root 1.12 * are. This generally should not be used, as a per
475 elmex 1.1 * specific map change doesn't make much sense when tiling
476     * is considered (lowering darkness would certainly be a
477     * strange effect if done on a tile map, as it makes
478     * the distinction between maps much more obvious to the
479     * players, which is should not be.
480     * Currently, this function is called from the
481     * change_map_light function
482     */
483 root 1.4 void
484 root 1.6 update_all_map_los (maptile *map)
485 root 1.4 {
486 root 1.11 for_all_players (pl)
487 root 1.12 if (pl->ob && pl->ob->map == map)
488 root 1.11 pl->do_los = 1;
489 elmex 1.1 }
490    
491     /*
492     * This function makes sure that update_los() will be called for all
493     * players on the given map within the next frame.
494     * It is triggered by removal or inserting of objects which blocks
495     * the sight in the map.
496     * Modified by MSW 2001-07-12 to take a coordinate of the changed
497     * position, and to also take map tiling into account. This change
498     * means that just being on the same map is not sufficient - the
499     * space that changes must be withing your viewable area.
500     *
501     * map is the map that changed, x and y are the coordinates.
502     */
503 root 1.4 void
504 root 1.6 update_all_los (const maptile *map, int x, int y)
505 root 1.4 {
506 root 1.11 for_all_players (pl)
507 root 1.4 {
508     /* Player should not have a null map, but do this
509     * check as a safety
510     */
511 root 1.12 if (!pl->ob || !pl->ob->map || !pl->ns)
512 root 1.4 continue;
513    
514     /* Same map is simple case - see if pl is close enough.
515     * Note in all cases, we did the check for same map first,
516     * and then see if the player is close enough and update
517     * los if that is the case. If the player is on the
518     * corresponding map, but not close enough, then the
519     * player can't be on another map that may be closer,
520     * so by setting it up this way, we trim processing
521     * some.
522     */
523     if (pl->ob->map == map)
524     {
525 root 1.10 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
526 root 1.4 pl->do_los = 1;
527 root 1.2 }
528 root 1.12
529 root 1.4 /* Now we check to see if player is on adjacent
530     * maps to the one that changed and also within
531     * view. The tile_maps[] could be null, but in that
532     * case it should never match the pl->ob->map, so
533     * we want ever try to dereference any of the data in it.
534 root 1.12 *
535     * The logic for 0 and 3 is to see how far the player is
536 root 1.4 * from the edge of the map (height/width) - pl->ob->(x,y)
537     * and to add current position on this map - that gives a
538     * distance.
539     * For 1 and 2, we check to see how far the given
540     * coordinate (x,y) is from the corresponding edge,
541     * and then add the players location, which gives
542     * a distance.
543     */
544     else if (pl->ob->map == map->tile_map[0])
545     {
546 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
547 root 1.4 pl->do_los = 1;
548 root 1.2 }
549 root 1.4 else if (pl->ob->map == map->tile_map[2])
550     {
551 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
552 root 1.4 pl->do_los = 1;
553 root 1.2 }
554 root 1.4 else if (pl->ob->map == map->tile_map[1])
555     {
556 root 1.13 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
557 root 1.4 pl->do_los = 1;
558 root 1.2 }
559 root 1.4 else if (pl->ob->map == map->tile_map[3])
560     {
561 root 1.13 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
562 root 1.4 pl->do_los = 1;
563 root 1.2 }
564 elmex 1.1 }
565     }
566    
567     /*
568     * make_sure_seen: The object is supposed to be visible through walls, thus
569     * check if any players are nearby, and edit their LOS array.
570     */
571 root 1.4 void
572     make_sure_seen (const object *op)
573     {
574 root 1.11 for_all_players (pl)
575 root 1.4 if (pl->ob->map == op->map &&
576 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
577     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
578 root 1.41 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
579 elmex 1.1 }
580    
581     /*
582     * make_sure_not_seen: The object which is supposed to be visible through
583     * walls has just been removed from the map, so update the los of any
584     * players within its range
585     */
586 root 1.4 void
587     make_sure_not_seen (const object *op)
588     {
589 root 1.11 for_all_players (pl)
590 root 1.4 if (pl->ob->map == op->map &&
591 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
592     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
593 root 1.4 pl->do_los = 1;
594 elmex 1.1 }