ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.47
Committed: Tue Dec 23 01:51:27 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.46: +56 -3 lines
Log Message:
rmeove the last remnants of the weather code

File Contents

# User Rev Content
1 elmex 1.1 /*
2 root 1.29 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 pippijn 1.19 *
4 root 1.30 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.26 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6     * Copyright (©) 1992,2007 Frank Tore Johansen
7 pippijn 1.19 *
8 root 1.29 * Deliantra is free software: you can redistribute it and/or modify
9 root 1.28 * it under the terms of the GNU General Public License as published by
10     * the Free Software Foundation, either version 3 of the License, or
11     * (at your option) any later version.
12 pippijn 1.19 *
13 root 1.28 * This program is distributed in the hope that it will be useful,
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     * GNU General Public License for more details.
17 pippijn 1.19 *
18 root 1.28 * You should have received a copy of the GNU General Public License
19     * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 root 1.26 *
21 root 1.29 * The authors can be reached via e-mail to <support@deliantra.net>
22 pippijn 1.19 */
23 elmex 1.1
24     /* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
25    
26     #include <global.h>
27 root 1.41 #include <cmath>
28 elmex 1.1
29 root 1.41 static void expand_lighted_sight (object *op);
30 elmex 1.1
31 root 1.41 enum {
32     LOS_XI = 0x01,
33     LOS_YI = 0x02,
34     };
35    
36     struct los_info
37     {
38 root 1.43 sint8 xo, yo; // obscure angle
39     sint8 xe, ye; // angle deviation
40     uint8 culled; // culled from "tree"
41     uint8 queued; // already queued
42 root 1.41 uint8 visible;
43 root 1.43 uint8 flags; // LOS_XI/YI
44 root 1.41 };
45    
46     // temporary storage for the los algorithm,
47     // one los_info for each lightable map space
48     static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
49    
50     struct point
51     {
52     sint8 x, y;
53     };
54    
55     // minimum size, but must be a power of two
56     #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
57    
58     // a queue of spaces to calculate
59     static point queue [QUEUE_LENGTH];
60     static int q1, q2; // queue start, end
61 elmex 1.1
62     /*
63 root 1.41 * Clears/initialises the los-array associated to the player
64     * controlling the object.
65 elmex 1.1 */
66 root 1.41 void
67 root 1.42 player::clear_los (sint8 value)
68 root 1.41 {
69 root 1.42 memset (los, value, sizeof (los));
70 root 1.41 }
71 elmex 1.1
72 root 1.41 // enqueue a single mapspace, but only if it hasn't
73     // been enqueued yet.
74 root 1.4 static void
75 root 1.41 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
76 root 1.4 {
77 root 1.41 sint8 x = LOS_X0 + dx;
78     sint8 y = LOS_Y0 + dy;
79    
80     if (x < 0 || x >= MAP_CLIENT_X) return;
81     if (y < 0 || y >= MAP_CLIENT_Y) return;
82    
83     los_info &l = los[x][y];
84    
85     l.flags |= flags;
86    
87     if (l.queued)
88     return;
89 elmex 1.1
90 root 1.41 l.queued = 1;
91    
92     queue[q1].x = dx;
93     queue[q1].y = dy;
94 elmex 1.1
95 root 1.41 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
96 elmex 1.1 }
97    
98 root 1.41 // run the los algorithm
99     // this is a variant of a spiral los algorithm taken from
100     // http://www.geocities.com/temerra/los_rays.html
101     // which has been simplified and changed considerably, but
102     // still is basically the same algorithm.
103     static void
104     do_los (object *op)
105 root 1.4 {
106 root 1.41 player *pl = op->contr;
107 root 1.4
108 root 1.41 int max_radius = max (pl->ns->mapx, pl->ns->mapy) / 2;
109 root 1.4
110 root 1.41 memset (los, 0, sizeof (los));
111 root 1.4
112 root 1.41 q1 = 0; q2 = 0; // initialise queue, not strictly required
113     enqueue (0, 0); // enqueue center
114 root 1.4
115 root 1.41 // treat the origin specially
116     los[LOS_X0][LOS_Y0].visible = 1;
117     pl->los[LOS_X0][LOS_Y0] = 0;
118    
119     // loop over all enqueued points until the queue is empty
120     // the order in which this is done ensures that we
121     // never touch a mapspace whose input spaces we haven't checked
122     // yet.
123     while (q1 != q2)
124     {
125     sint8 dx = queue[q2].x;
126     sint8 dy = queue[q2].y;
127 root 1.4
128 root 1.41 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
129 root 1.4
130 root 1.41 sint8 x = LOS_X0 + dx;
131     sint8 y = LOS_Y0 + dy;
132 elmex 1.1
133 root 1.41 //int distance = idistance (dx, dy); if (distance > max_radius) continue;//D
134     int distance = 0;//D
135 root 1.4
136 root 1.41 los_info &l = los[x][y];
137 elmex 1.1
138 root 1.41 if (expect_true (l.flags & (LOS_XI | LOS_YI)))
139     {
140     l.culled = 1;
141 elmex 1.1
142 root 1.41 // check contributing spaces, first horizontal
143     if (expect_true (l.flags & LOS_XI))
144     {
145     los_info *xi = &los[x - sign (dx)][y];
146 elmex 1.1
147 root 1.41 // don't cull unless obscured
148     l.culled &= !xi->visible;
149 elmex 1.1
150 root 1.41 /* merge input space */
151     if (expect_false (xi->xo || xi->yo))
152     {
153     // The X input can provide two main pieces of information:
154     // 1. Progressive X obscurity.
155     // 2. Recessive Y obscurity.
156    
157     // Progressive X obscurity, favouring recessive input angle
158     if (xi->xe > 0 && l.xo == 0)
159     {
160     l.xe = xi->xe - xi->yo;
161     l.ye = xi->ye + xi->yo;
162     l.xo = xi->xo;
163     l.yo = xi->yo;
164     }
165 root 1.4
166 root 1.41 // Recessive Y obscurity
167     if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
168     {
169     l.ye = xi->yo + xi->ye;
170     l.xe = xi->xe - xi->yo;
171     l.xo = xi->xo;
172     l.yo = xi->yo;
173     }
174     }
175     }
176    
177     // check contributing spaces, last vertical, identical structure
178     if (expect_true (l.flags & LOS_YI))
179     {
180     los_info *yi = &los[x][y - sign (dy)];
181 elmex 1.1
182 root 1.41 // don't cull unless obscured
183     l.culled &= !yi->visible;
184 elmex 1.1
185 root 1.41 /* merge input space */
186     if (expect_false (yi->yo || yi->xo))
187     {
188     // The Y input can provide two main pieces of information:
189     // 1. Progressive Y obscurity.
190     // 2. Recessive X obscurity.
191    
192     // Progressive Y obscurity, favouring recessive input angle
193     if (yi->ye > 0 && l.yo == 0)
194     {
195     l.ye = yi->ye - yi->xo;
196     l.xe = yi->xe + yi->xo;
197     l.yo = yi->yo;
198     l.xo = yi->xo;
199     }
200 elmex 1.1
201 root 1.41 // Recessive X obscurity
202     if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
203     {
204     l.xe = yi->xo + yi->xe;
205     l.ye = yi->ye - yi->xo;
206     l.yo = yi->yo;
207     l.xo = yi->xo;
208     }
209     }
210     }
211 elmex 1.1
212 root 1.41 // check whether this space blocks the view
213     maptile *m = op->map;
214     sint16 nx = op->x + dx;
215     sint16 ny = op->y + dy;
216 elmex 1.1
217 root 1.41 if (expect_true (!xy_normalise (m, nx, ny))
218     || expect_false (m->at (nx, ny).flags () & P_BLOCKSVIEW))
219     {
220     l.xo = l.xe = abs (dx);
221     l.yo = l.ye = abs (dy);
222 elmex 1.1
223 root 1.41 // we obscure dependents, but might be visible
224     // copy the los from the square towards the player,
225     // so outward diagonal corners are lit.
226     pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
227     l.visible = false;
228     }
229     else
230     {
231     // we are not blocked, so calculate visibility, by checking
232     // whether we are inside or outside the shadow
233     l.visible = (l.xe <= 0 || l.xe > l.xo)
234     && (l.ye <= 0 || l.ye > l.yo);
235    
236     pl->los[x][y] = l.culled ? LOS_BLOCKED
237     : l.visible ? max (0, 2 - max_radius + distance)
238     : 3;
239 root 1.37 }
240 root 1.41
241 root 1.37 }
242 root 1.4
243 root 1.41 // Expands by the unit length in each component's current direction.
244     // If a component has no direction, then it is expanded in both of its
245     // positive and negative directions.
246     if (!l.culled)
247     {
248     if (dx >= 0) enqueue (dx + 1, dy, LOS_XI);
249     if (dx <= 0) enqueue (dx - 1, dy, LOS_XI);
250     if (dy >= 0) enqueue (dx, dy + 1, LOS_YI);
251     if (dy <= 0) enqueue (dx, dy - 1, LOS_YI);
252     }
253     }
254 elmex 1.1 }
255    
256     /* returns true if op carries one or more lights
257     * This is a trivial function now days, but it used to
258     * be a bit longer. Probably better for callers to just
259     * check the op->glow_radius instead of calling this.
260     */
261 root 1.4 int
262     has_carried_lights (const object *op)
263     {
264     /* op may glow! */
265     if (op->glow_radius > 0)
266     return 1;
267    
268     return 0;
269     }
270    
271 root 1.32 /* radius, distance => lightness adjust */
272 root 1.44 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
273 root 1.45 static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
274 root 1.32
275 root 1.44 static struct los_init
276 root 1.32 {
277 root 1.44 los_init ()
278 root 1.32 {
279 root 1.45 /* for lights */
280 root 1.32 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
281 root 1.35 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
282 root 1.32 {
283     // max intensity
284 root 1.36 int intensity = min (LOS_MAX, abs (radius) + 1);
285 root 1.32
286     // actual intensity
287     intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
288    
289 root 1.44 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
290 root 1.35 ? min (3, intensity)
291 root 1.36 : LOS_MAX - intensity;
292 root 1.32 }
293 root 1.45
294     /* for general vision */
295     for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
296     for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
297     {
298     vision_atten [radius][distance] = distance <= radius ? 3 : 4;
299     }
300 root 1.32 }
301 root 1.44 } los_init;
302 root 1.32
303 root 1.39 sint8
304     los_brighten (sint8 b, sint8 l)
305     {
306     return b == LOS_BLOCKED ? b : min (b, l);
307     }
308    
309     sint8
310     los_darken (sint8 b, sint8 l)
311     {
312     return max (b, l);
313     }
314    
315     template<sint8 change_it (sint8, sint8)>
316     static void
317 root 1.44 apply_light (object *op, int dx, int dy, int light, const sint8 *atten_table)
318 root 1.39 {
319 root 1.41 // min or max the circular area around basex, basey
320 root 1.39 player *pl = op->contr;
321    
322 root 1.41 dx += LOS_X0;
323     dy += LOS_Y0;
324    
325     int hx = op->contr->ns->mapx / 2;
326     int hy = op->contr->ns->mapy / 2;
327    
328     int ax0 = max (LOS_X0 - hx, dx - light);
329     int ay0 = max (LOS_Y0 - hy, dy - light);
330     int ax1 = min (dx + light, LOS_X0 + hx);
331     int ay1 = min (dy + light, LOS_Y0 + hy);
332 root 1.39
333     for (int ax = ax0; ax <= ax1; ax++)
334     for (int ay = ay0; ay <= ay1; ay++)
335 root 1.41 pl->los[ax][ay] =
336 root 1.44 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
337 root 1.39 }
338    
339     /* add light, by finding all (non-null) nearby light sources, then
340     * mark those squares specially.
341     */
342 root 1.4 static void
343 root 1.41 apply_lights (object *op)
344 root 1.4 {
345 root 1.39 int darklevel, mflags, light, x1, y1;
346 root 1.6 maptile *m = op->map;
347 root 1.4 sint16 nx, ny;
348    
349 root 1.47 darklevel = m->darklevel ();
350 root 1.4
351     /* If the player can see in the dark, lower the darklevel for him */
352     if (QUERY_FLAG (op, FLAG_SEE_IN_DARK))
353 root 1.47 darklevel -= 2;
354 root 1.4
355     /* Do a sanity check. If not valid, some code below may do odd
356     * things.
357     */
358     if (darklevel > MAX_DARKNESS)
359     {
360 root 1.15 LOG (llevError, "Map darkness for %s on %s is too high (%d)\n", &op->name, &op->map->path, darklevel);
361 root 1.4 darklevel = MAX_DARKNESS;
362 elmex 1.1 }
363    
364 root 1.32 int half_x = op->contr->ns->mapx / 2;
365     int half_y = op->contr->ns->mapy / 2;
366    
367     int min_x = op->x - half_x - MAX_LIGHT_RADIUS;
368     int min_y = op->y - half_y - MAX_LIGHT_RADIUS;
369     int max_x = op->x + half_x + MAX_LIGHT_RADIUS;
370     int max_y = op->y + half_y + MAX_LIGHT_RADIUS;
371    
372     int pass2 = 0; // negative lights have an extra pass
373    
374 root 1.39 if (darklevel < 1)
375     pass2 = 1;
376     else
377     {
378     /* first, make everything totally dark */
379 root 1.41 for (int dx = -half_x; dx <= half_x; dx++)
380     for (int dy = -half_x; dy <= half_y; dy++)
381     if (op->contr->los[dx + LOS_X0][dy + LOS_Y0] != LOS_BLOCKED)
382     op->contr->los[dx + LOS_X0][dy + LOS_Y0] = LOS_MAX;
383 root 1.39
384     /*
385     * Only process the area of interest.
386 root 1.41 * the basex, basey values represent the position in the op->contr->los
387     * array. Its easier to just increment them here (and start with the right
388 root 1.39 * value) than to recalculate them down below.
389     */
390 root 1.41 for (int x = min_x; x <= max_x; x++)
391     for (int y = min_y; y <= max_y; y++)
392 root 1.39 {
393     maptile *m = op->map;
394     sint16 nx = x;
395     sint16 ny = y;
396    
397     if (!xy_normalise (m, nx, ny))
398     continue;
399    
400     mapspace &ms = m->at (nx, ny);
401     ms.update ();
402     sint8 light = ms.light;
403    
404     if (expect_false (light))
405     if (light < 0)
406     pass2 = 1;
407     else
408 root 1.44 apply_light<los_brighten> (op, x - op->x, y - op->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
409 root 1.39 }
410    
411     /* grant some vision to the player, based on the darklevel */
412 root 1.32 {
413 root 1.45 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
414 root 1.39
415 root 1.45 apply_light<los_brighten> (op, 0, 0, light, vision_atten [light]);
416 root 1.32 }
417 root 1.39 }
418 root 1.4
419 root 1.38 // possibly do 2nd pass for rare negative glow radii
420 root 1.39 // for effect, those are always considered to be stronger than anything else
421     // but they can't darken a place completely
422     if (pass2)
423 root 1.41 for (int x = min_x; x <= max_x; x++)
424     for (int y = min_y; y <= max_y; y++)
425 root 1.4 {
426 root 1.32 maptile *m = op->map;
427     sint16 nx = x;
428     sint16 ny = y;
429 root 1.4
430 root 1.32 if (!xy_normalise (m, nx, ny))
431     continue;
432 root 1.4
433 root 1.32 mapspace &ms = m->at (nx, ny);
434     ms.update ();
435     sint8 light = ms.light;
436 root 1.4
437 root 1.32 if (expect_false (light < 0))
438 root 1.44 apply_light<los_darken> (op, x - op->x, y - op->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
439 root 1.18 }
440 elmex 1.1 }
441    
442 root 1.31 /* blinded_sight() - sets all viewable squares to blocked except
443 elmex 1.1 * for the one the central one that the player occupies. A little
444     * odd that you can see yourself (and what your standing on), but
445     * really need for any reasonable game play.
446     */
447 root 1.4 static void
448     blinded_sight (object *op)
449     {
450 root 1.45 op->contr->los[LOS_X0][LOS_Y0] = 1;
451 elmex 1.1 }
452    
453     /*
454     * update_los() recalculates the array which specifies what is
455     * visible for the given player-object.
456     */
457 root 1.4 void
458     update_los (object *op)
459     {
460     if (QUERY_FLAG (op, FLAG_REMOVED))
461     return;
462 elmex 1.1
463 root 1.42 op->contr->clear_los ();
464 root 1.27
465 root 1.4 if (QUERY_FLAG (op, FLAG_WIZ) /* ||XRAYS(op) */ )
466 root 1.41 memset (op->contr->los, 0, sizeof (op->contr->los));
467     else if (QUERY_FLAG (op, FLAG_BLIND)) /* player is blind */
468 root 1.4 blinded_sight (op);
469     else
470 root 1.41 {
471     do_los (op);
472     apply_lights (op);
473     }
474 root 1.4
475     if (QUERY_FLAG (op, FLAG_XRAYS))
476 root 1.41 for (int dx = -2; dx <= 2; dx++)
477     for (int dy = -2; dy <= 2; dy++)
478 root 1.47 min_it (op->contr->los[dx + LOS_X0][dy + LOS_X0], 1);
479 elmex 1.1 }
480    
481     /* update all_map_los is like update_all_los below,
482     * but updates everyone on the map, no matter where they
483 root 1.12 * are. This generally should not be used, as a per
484 elmex 1.1 * specific map change doesn't make much sense when tiling
485     * is considered (lowering darkness would certainly be a
486     * strange effect if done on a tile map, as it makes
487     * the distinction between maps much more obvious to the
488     * players, which is should not be.
489     * Currently, this function is called from the
490     * change_map_light function
491     */
492 root 1.4 void
493 root 1.6 update_all_map_los (maptile *map)
494 root 1.4 {
495 root 1.46 for_all_players_on_map (pl, map)
496     pl->do_los = 1;
497 elmex 1.1 }
498    
499     /*
500     * This function makes sure that update_los() will be called for all
501     * players on the given map within the next frame.
502     * It is triggered by removal or inserting of objects which blocks
503     * the sight in the map.
504     * Modified by MSW 2001-07-12 to take a coordinate of the changed
505     * position, and to also take map tiling into account. This change
506     * means that just being on the same map is not sufficient - the
507     * space that changes must be withing your viewable area.
508     *
509     * map is the map that changed, x and y are the coordinates.
510     */
511 root 1.4 void
512 root 1.6 update_all_los (const maptile *map, int x, int y)
513 root 1.4 {
514 root 1.46 map->at (x, y).invalidate ();
515    
516 root 1.11 for_all_players (pl)
517 root 1.4 {
518     /* Player should not have a null map, but do this
519     * check as a safety
520     */
521 root 1.12 if (!pl->ob || !pl->ob->map || !pl->ns)
522 root 1.4 continue;
523    
524     /* Same map is simple case - see if pl is close enough.
525     * Note in all cases, we did the check for same map first,
526     * and then see if the player is close enough and update
527     * los if that is the case. If the player is on the
528     * corresponding map, but not close enough, then the
529     * player can't be on another map that may be closer,
530     * so by setting it up this way, we trim processing
531     * some.
532     */
533     if (pl->ob->map == map)
534     {
535 root 1.10 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
536 root 1.4 pl->do_los = 1;
537 root 1.2 }
538 root 1.12
539 root 1.4 /* Now we check to see if player is on adjacent
540     * maps to the one that changed and also within
541     * view. The tile_maps[] could be null, but in that
542     * case it should never match the pl->ob->map, so
543     * we want ever try to dereference any of the data in it.
544 root 1.12 *
545     * The logic for 0 and 3 is to see how far the player is
546 root 1.4 * from the edge of the map (height/width) - pl->ob->(x,y)
547     * and to add current position on this map - that gives a
548     * distance.
549     * For 1 and 2, we check to see how far the given
550     * coordinate (x,y) is from the corresponding edge,
551     * and then add the players location, which gives
552     * a distance.
553     */
554     else if (pl->ob->map == map->tile_map[0])
555     {
556 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
557 root 1.4 pl->do_los = 1;
558 root 1.2 }
559 root 1.4 else if (pl->ob->map == map->tile_map[2])
560     {
561 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
562 root 1.4 pl->do_los = 1;
563 root 1.2 }
564 root 1.4 else if (pl->ob->map == map->tile_map[1])
565     {
566 root 1.13 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
567 root 1.4 pl->do_los = 1;
568 root 1.2 }
569 root 1.4 else if (pl->ob->map == map->tile_map[3])
570     {
571 root 1.13 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
572 root 1.4 pl->do_los = 1;
573 root 1.2 }
574 elmex 1.1 }
575     }
576    
577 root 1.47 static const int season_timechange[5][HOURS_PER_DAY] = {
578     /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
579     { 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1},
580     { 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0},
581     { 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0},
582     { 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0},
583     { 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0}
584     };
585    
586     void
587     maptile::set_darkness_map ()
588     {
589     timeofday_t tod;
590    
591     if (!outdoor)
592     return;
593    
594     get_tod (&tod);
595     darkness = 0;
596    
597     for (int i = HOURS_PER_DAY / 2; i < HOURS_PER_DAY; i++)
598     change_map_light (season_timechange[tod.season][i]);
599    
600     for (int i = 0; i <= tod.hour; i++)
601     change_map_light (season_timechange[tod.season][i]);
602     }
603    
604     /*
605     * Compute the darkness level for all maps in the game. Requires the
606     * time of day as an argument.
607     */
608    
609     static void
610     dawn_to_dusk (const timeofday_t * tod)
611     {
612     /* If the light level isn't changing, no reason to do all
613     * the work below.
614     */
615     if (season_timechange[tod->season][tod->hour] == 0)
616     return;
617    
618     maptile::change_all_map_light (season_timechange[tod->season][tod->hour]);
619     }
620    
621     void
622     adjust_daylight ()
623     {
624     timeofday_t tod;
625    
626     get_tod (&tod);
627     dawn_to_dusk (&tod);
628     }
629    
630 elmex 1.1 /*
631     * make_sure_seen: The object is supposed to be visible through walls, thus
632     * check if any players are nearby, and edit their LOS array.
633     */
634 root 1.4 void
635     make_sure_seen (const object *op)
636     {
637 root 1.11 for_all_players (pl)
638 root 1.4 if (pl->ob->map == op->map &&
639 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
640     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
641 root 1.41 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_X0] = 0;
642 elmex 1.1 }
643    
644     /*
645     * make_sure_not_seen: The object which is supposed to be visible through
646     * walls has just been removed from the map, so update the los of any
647     * players within its range
648     */
649 root 1.4 void
650     make_sure_not_seen (const object *op)
651     {
652 root 1.11 for_all_players (pl)
653 root 1.4 if (pl->ob->map == op->map &&
654 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
655     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
656 root 1.4 pl->do_los = 1;
657 elmex 1.1 }