ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.49
Committed: Tue Dec 23 22:03:06 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.48: +78 -76 lines
Log Message:
improve los, fix bugs

File Contents

# User Rev Content
1 elmex 1.1 /*
2 root 1.29 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 pippijn 1.19 *
4 root 1.30 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.26 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6     * Copyright (©) 1992,2007 Frank Tore Johansen
7 pippijn 1.19 *
8 root 1.29 * Deliantra is free software: you can redistribute it and/or modify
9 root 1.28 * it under the terms of the GNU General Public License as published by
10     * the Free Software Foundation, either version 3 of the License, or
11     * (at your option) any later version.
12 pippijn 1.19 *
13 root 1.28 * This program is distributed in the hope that it will be useful,
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     * GNU General Public License for more details.
17 pippijn 1.19 *
18 root 1.28 * You should have received a copy of the GNU General Public License
19     * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 root 1.26 *
21 root 1.29 * The authors can be reached via e-mail to <support@deliantra.net>
22 pippijn 1.19 */
23 elmex 1.1
24 root 1.49 #include <bench.h>//D
25 elmex 1.1 #include <global.h>
26 root 1.41 #include <cmath>
27 elmex 1.1
28 root 1.49 // los flags
29 root 1.41 enum {
30 root 1.49 FLG_XI = 0x01, // we have an x-parent
31     FLG_YI = 0x02, // we have an y-parent
32     FLG_BLOCKED = 0x04, // this space blocks the view
33     FLG_QUEUED = 0x80 // already queued in queue, or border
34 root 1.41 };
35    
36     struct los_info
37     {
38 root 1.49 uint8 flags; // FLG_xxx
39     uint8 culled; // culled from "tree"
40     uint8 visible;
41     uint8 pad0;
42    
43 root 1.43 sint8 xo, yo; // obscure angle
44     sint8 xe, ye; // angle deviation
45 root 1.41 };
46    
47     // temporary storage for the los algorithm,
48     // one los_info for each lightable map space
49     static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
50    
51     struct point
52     {
53     sint8 x, y;
54     };
55    
56     // minimum size, but must be a power of two
57     #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
58    
59     // a queue of spaces to calculate
60     static point queue [QUEUE_LENGTH];
61     static int q1, q2; // queue start, end
62 elmex 1.1
63     /*
64 root 1.41 * Clears/initialises the los-array associated to the player
65     * controlling the object.
66 elmex 1.1 */
67 root 1.41 void
68 root 1.42 player::clear_los (sint8 value)
69 root 1.41 {
70 root 1.42 memset (los, value, sizeof (los));
71 root 1.41 }
72 elmex 1.1
73 root 1.41 // enqueue a single mapspace, but only if it hasn't
74     // been enqueued yet.
75 root 1.4 static void
76 root 1.41 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
77 root 1.4 {
78 root 1.41 sint8 x = LOS_X0 + dx;
79     sint8 y = LOS_Y0 + dy;
80    
81     los_info &l = los[x][y];
82    
83     l.flags |= flags;
84    
85 root 1.49 if (l.flags & FLG_QUEUED)
86 root 1.41 return;
87 elmex 1.1
88 root 1.49 l.flags |= FLG_QUEUED;
89 root 1.41
90     queue[q1].x = dx;
91     queue[q1].y = dy;
92 elmex 1.1
93 root 1.41 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
94 elmex 1.1 }
95    
96 root 1.41 // run the los algorithm
97     // this is a variant of a spiral los algorithm taken from
98     // http://www.geocities.com/temerra/los_rays.html
99     // which has been simplified and changed considerably, but
100     // still is basically the same algorithm.
101     static void
102 root 1.48 calculate_los (player *pl)
103 root 1.4 {
104 root 1.49 {
105     // we keep one line for ourselves, for the border flag
106     // so the client area is actually MAP_CLIENT_(X|Y) - 2
107     int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
108     int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
109    
110     // create borders, the corners are not touched
111     for (int dx = -half_x; dx <= half_x; ++dx)
112     los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
113     los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
114    
115     for (int dy = -half_y; dy <= half_y; ++dy)
116     los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
117     los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
118    
119     // now reset the los area and also add blocked flags
120     // which supposedly is faster than doing it inside the
121     // spiral path algorithm below, except when very little
122     // area is visible, in which case it is slower, evening
123     // out los calculation times between large and small los maps.
124     // apply_lights also iterates over this area, maybe these
125     // two passes could be combined somehow.
126     rectangular_mapspace_iterate_begin (pl->observe, -half_x, half_x, -half_y, half_y)
127     los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
128     l.flags = m && m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
129     rectangular_mapspace_iterate_end
130     }
131 root 1.4
132 root 1.41 q1 = 0; q2 = 0; // initialise queue, not strictly required
133     enqueue (0, 0); // enqueue center
134 root 1.4
135 root 1.41 // treat the origin specially
136     los[LOS_X0][LOS_Y0].visible = 1;
137     pl->los[LOS_X0][LOS_Y0] = 0;
138    
139     // loop over all enqueued points until the queue is empty
140     // the order in which this is done ensures that we
141     // never touch a mapspace whose input spaces we haven't checked
142     // yet.
143     while (q1 != q2)
144     {
145     sint8 dx = queue[q2].x;
146     sint8 dy = queue[q2].y;
147 root 1.4
148 root 1.41 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
149 root 1.4
150 root 1.41 sint8 x = LOS_X0 + dx;
151     sint8 y = LOS_Y0 + dy;
152 elmex 1.1
153 root 1.41 los_info &l = los[x][y];
154 elmex 1.1
155 root 1.49 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
156 root 1.41 {
157     l.culled = 1;
158 root 1.49 l.xo = l.yo = l.xe = l.ye = 0;
159 elmex 1.1
160 root 1.41 // check contributing spaces, first horizontal
161 root 1.49 if (expect_true (l.flags & FLG_XI))
162 root 1.41 {
163     los_info *xi = &los[x - sign (dx)][y];
164 elmex 1.1
165 root 1.41 // don't cull unless obscured
166     l.culled &= !xi->visible;
167 elmex 1.1
168 root 1.41 /* merge input space */
169     if (expect_false (xi->xo || xi->yo))
170     {
171     // The X input can provide two main pieces of information:
172     // 1. Progressive X obscurity.
173     // 2. Recessive Y obscurity.
174    
175     // Progressive X obscurity, favouring recessive input angle
176     if (xi->xe > 0 && l.xo == 0)
177     {
178     l.xe = xi->xe - xi->yo;
179     l.ye = xi->ye + xi->yo;
180     l.xo = xi->xo;
181     l.yo = xi->yo;
182     }
183 root 1.4
184 root 1.41 // Recessive Y obscurity
185     if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
186     {
187     l.ye = xi->yo + xi->ye;
188     l.xe = xi->xe - xi->yo;
189     l.xo = xi->xo;
190     l.yo = xi->yo;
191     }
192     }
193     }
194    
195     // check contributing spaces, last vertical, identical structure
196 root 1.49 if (expect_true (l.flags & FLG_YI))
197 root 1.41 {
198     los_info *yi = &los[x][y - sign (dy)];
199 elmex 1.1
200 root 1.41 // don't cull unless obscured
201     l.culled &= !yi->visible;
202 elmex 1.1
203 root 1.41 /* merge input space */
204     if (expect_false (yi->yo || yi->xo))
205     {
206     // The Y input can provide two main pieces of information:
207     // 1. Progressive Y obscurity.
208     // 2. Recessive X obscurity.
209    
210     // Progressive Y obscurity, favouring recessive input angle
211     if (yi->ye > 0 && l.yo == 0)
212     {
213     l.ye = yi->ye - yi->xo;
214     l.xe = yi->xe + yi->xo;
215     l.yo = yi->yo;
216     l.xo = yi->xo;
217     }
218 elmex 1.1
219 root 1.41 // Recessive X obscurity
220     if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
221     {
222     l.xe = yi->xo + yi->xe;
223     l.ye = yi->ye - yi->xo;
224     l.yo = yi->yo;
225     l.xo = yi->xo;
226     }
227     }
228     }
229 elmex 1.1
230 root 1.49 if (l.flags & FLG_BLOCKED)
231 root 1.41 {
232     l.xo = l.xe = abs (dx);
233     l.yo = l.ye = abs (dy);
234 elmex 1.1
235 root 1.41 // we obscure dependents, but might be visible
236     // copy the los from the square towards the player,
237     // so outward diagonal corners are lit.
238     pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
239 root 1.49
240 root 1.41 l.visible = false;
241     }
242     else
243     {
244     // we are not blocked, so calculate visibility, by checking
245     // whether we are inside or outside the shadow
246     l.visible = (l.xe <= 0 || l.xe > l.xo)
247     && (l.ye <= 0 || l.ye > l.yo);
248    
249     pl->los[x][y] = l.culled ? LOS_BLOCKED
250 root 1.49 : l.visible ? 0
251 root 1.41 : 3;
252 root 1.37 }
253 root 1.41
254 root 1.37 }
255 root 1.4
256 root 1.41 // Expands by the unit length in each component's current direction.
257     // If a component has no direction, then it is expanded in both of its
258     // positive and negative directions.
259     if (!l.culled)
260     {
261 root 1.49 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
262     if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
263     if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
264     if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
265 root 1.41 }
266     }
267 elmex 1.1 }
268    
269     /* returns true if op carries one or more lights
270     * This is a trivial function now days, but it used to
271     * be a bit longer. Probably better for callers to just
272     * check the op->glow_radius instead of calling this.
273     */
274 root 1.4 int
275     has_carried_lights (const object *op)
276     {
277     /* op may glow! */
278     if (op->glow_radius > 0)
279     return 1;
280    
281     return 0;
282     }
283    
284 root 1.32 /* radius, distance => lightness adjust */
285 root 1.44 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
286 root 1.45 static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
287 root 1.32
288 root 1.44 static struct los_init
289 root 1.32 {
290 root 1.44 los_init ()
291 root 1.32 {
292 root 1.49 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
293     !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
294    
295 root 1.45 /* for lights */
296 root 1.32 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
297 root 1.35 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
298 root 1.32 {
299     // max intensity
300 root 1.36 int intensity = min (LOS_MAX, abs (radius) + 1);
301 root 1.32
302     // actual intensity
303     intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
304    
305 root 1.44 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
306 root 1.35 ? min (3, intensity)
307 root 1.36 : LOS_MAX - intensity;
308 root 1.32 }
309 root 1.45
310     /* for general vision */
311     for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
312     for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
313     {
314     vision_atten [radius][distance] = distance <= radius ? 3 : 4;
315     }
316 root 1.32 }
317 root 1.44 } los_init;
318 root 1.32
319 root 1.39 sint8
320     los_brighten (sint8 b, sint8 l)
321     {
322     return b == LOS_BLOCKED ? b : min (b, l);
323     }
324    
325     sint8
326     los_darken (sint8 b, sint8 l)
327     {
328     return max (b, l);
329     }
330    
331     template<sint8 change_it (sint8, sint8)>
332     static void
333 root 1.48 apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
334 root 1.39 {
335 root 1.41 // min or max the circular area around basex, basey
336     dx += LOS_X0;
337     dy += LOS_Y0;
338    
339 root 1.48 int hx = pl->ns->mapx / 2;
340     int hy = pl->ns->mapy / 2;
341 root 1.41
342     int ax0 = max (LOS_X0 - hx, dx - light);
343     int ay0 = max (LOS_Y0 - hy, dy - light);
344     int ax1 = min (dx + light, LOS_X0 + hx);
345     int ay1 = min (dy + light, LOS_Y0 + hy);
346 root 1.39
347     for (int ax = ax0; ax <= ax1; ax++)
348     for (int ay = ay0; ay <= ay1; ay++)
349 root 1.41 pl->los[ax][ay] =
350 root 1.44 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
351 root 1.39 }
352    
353     /* add light, by finding all (non-null) nearby light sources, then
354     * mark those squares specially.
355     */
356 root 1.4 static void
357 root 1.48 apply_lights (player *pl)
358 root 1.4 {
359 root 1.48 object *op = pl->observe;
360     int darklevel = op->map->darklevel ();
361 root 1.4
362     /* If the player can see in the dark, lower the darklevel for him */
363 root 1.48 if (op->flag [FLAG_SEE_IN_DARK])
364     darklevel = max (0, darklevel - 2);
365 elmex 1.1
366 root 1.48 int half_x = pl->ns->mapx / 2;
367     int half_y = pl->ns->mapy / 2;
368 root 1.32
369     int pass2 = 0; // negative lights have an extra pass
370    
371 root 1.48 if (!darklevel)
372 root 1.39 pass2 = 1;
373     else
374     {
375     /* first, make everything totally dark */
376 root 1.41 for (int dx = -half_x; dx <= half_x; dx++)
377     for (int dy = -half_x; dy <= half_y; dy++)
378 root 1.49 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
379 root 1.39
380     /*
381     * Only process the area of interest.
382 root 1.41 * the basex, basey values represent the position in the op->contr->los
383     * array. Its easier to just increment them here (and start with the right
384 root 1.39 * value) than to recalculate them down below.
385     */
386 root 1.49 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
387     if (m)
388 root 1.39 {
389     mapspace &ms = m->at (nx, ny);
390     ms.update ();
391     sint8 light = ms.light;
392    
393     if (expect_false (light))
394     if (light < 0)
395     pass2 = 1;
396     else
397 root 1.49 apply_light<los_brighten> (pl, dx, dy, light, light_atten [light + MAX_LIGHT_RADIUS]);
398 root 1.39 }
399 root 1.49 rectangular_mapspace_iterate_end
400 root 1.39
401     /* grant some vision to the player, based on the darklevel */
402 root 1.32 {
403 root 1.45 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
404 root 1.39
405 root 1.48 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
406 root 1.32 }
407 root 1.39 }
408 root 1.4
409 root 1.38 // possibly do 2nd pass for rare negative glow radii
410 root 1.39 // for effect, those are always considered to be stronger than anything else
411     // but they can't darken a place completely
412     if (pass2)
413 root 1.49 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
414     if (m)
415     {
416     mapspace &ms = m->at (nx, ny);
417     ms.update ();
418     sint8 light = ms.light;
419    
420     if (expect_false (light < 0))
421     apply_light<los_darken> (pl, dx, dy, -light, light_atten [light + MAX_LIGHT_RADIUS]);
422     }
423     rectangular_mapspace_iterate_end
424 elmex 1.1 }
425    
426 root 1.31 /* blinded_sight() - sets all viewable squares to blocked except
427 elmex 1.1 * for the one the central one that the player occupies. A little
428     * odd that you can see yourself (and what your standing on), but
429     * really need for any reasonable game play.
430     */
431 root 1.4 static void
432 root 1.48 blinded_sight (player *pl)
433 root 1.4 {
434 root 1.48 pl->los[LOS_X0][LOS_Y0] = 1;
435 elmex 1.1 }
436    
437     /*
438     * update_los() recalculates the array which specifies what is
439     * visible for the given player-object.
440     */
441 root 1.4 void
442 root 1.48 player::update_los ()
443 root 1.4 {
444 root 1.48 if (ob->flag [FLAG_REMOVED])//D really needed?
445 root 1.4 return;
446 elmex 1.1
447 root 1.48 if (ob->flag [FLAG_WIZLOOK])
448 root 1.49 clear_los (0);
449 root 1.48 else if (observe->flag [FLAG_BLIND]) /* player is blind */
450 root 1.49 {
451     clear_los ();
452     blinded_sight (this);
453     }
454 root 1.4 else
455 root 1.41 {
456 root 1.49 clear_los ();
457 root 1.48 calculate_los (this);
458     apply_lights (this);
459 root 1.41 }
460 root 1.4
461 root 1.48 if (observe->flag [FLAG_XRAYS])
462 root 1.41 for (int dx = -2; dx <= 2; dx++)
463     for (int dy = -2; dy <= 2; dy++)
464 root 1.49 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
465 elmex 1.1 }
466    
467     /* update all_map_los is like update_all_los below,
468     * but updates everyone on the map, no matter where they
469 root 1.12 * are. This generally should not be used, as a per
470 elmex 1.1 * specific map change doesn't make much sense when tiling
471     * is considered (lowering darkness would certainly be a
472     * strange effect if done on a tile map, as it makes
473     * the distinction between maps much more obvious to the
474     * players, which is should not be.
475     * Currently, this function is called from the
476     * change_map_light function
477     */
478 root 1.4 void
479 root 1.6 update_all_map_los (maptile *map)
480 root 1.4 {
481 root 1.46 for_all_players_on_map (pl, map)
482     pl->do_los = 1;
483 elmex 1.1 }
484    
485     /*
486     * This function makes sure that update_los() will be called for all
487     * players on the given map within the next frame.
488     * It is triggered by removal or inserting of objects which blocks
489     * the sight in the map.
490     * Modified by MSW 2001-07-12 to take a coordinate of the changed
491     * position, and to also take map tiling into account. This change
492     * means that just being on the same map is not sufficient - the
493     * space that changes must be withing your viewable area.
494     *
495     * map is the map that changed, x and y are the coordinates.
496     */
497 root 1.4 void
498 root 1.6 update_all_los (const maptile *map, int x, int y)
499 root 1.4 {
500 root 1.46 map->at (x, y).invalidate ();
501    
502 root 1.11 for_all_players (pl)
503 root 1.4 {
504     /* Player should not have a null map, but do this
505     * check as a safety
506     */
507 root 1.12 if (!pl->ob || !pl->ob->map || !pl->ns)
508 root 1.4 continue;
509    
510     /* Same map is simple case - see if pl is close enough.
511     * Note in all cases, we did the check for same map first,
512     * and then see if the player is close enough and update
513     * los if that is the case. If the player is on the
514     * corresponding map, but not close enough, then the
515     * player can't be on another map that may be closer,
516     * so by setting it up this way, we trim processing
517     * some.
518     */
519     if (pl->ob->map == map)
520     {
521 root 1.10 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
522 root 1.4 pl->do_los = 1;
523 root 1.2 }
524 root 1.12
525 root 1.4 /* Now we check to see if player is on adjacent
526     * maps to the one that changed and also within
527     * view. The tile_maps[] could be null, but in that
528     * case it should never match the pl->ob->map, so
529     * we want ever try to dereference any of the data in it.
530 root 1.12 *
531     * The logic for 0 and 3 is to see how far the player is
532 root 1.4 * from the edge of the map (height/width) - pl->ob->(x,y)
533     * and to add current position on this map - that gives a
534     * distance.
535     * For 1 and 2, we check to see how far the given
536     * coordinate (x,y) is from the corresponding edge,
537     * and then add the players location, which gives
538     * a distance.
539     */
540     else if (pl->ob->map == map->tile_map[0])
541     {
542 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
543 root 1.4 pl->do_los = 1;
544 root 1.2 }
545 root 1.4 else if (pl->ob->map == map->tile_map[2])
546     {
547 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
548 root 1.4 pl->do_los = 1;
549 root 1.2 }
550 root 1.4 else if (pl->ob->map == map->tile_map[1])
551     {
552 root 1.13 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
553 root 1.4 pl->do_los = 1;
554 root 1.2 }
555 root 1.4 else if (pl->ob->map == map->tile_map[3])
556     {
557 root 1.13 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
558 root 1.4 pl->do_los = 1;
559 root 1.2 }
560 elmex 1.1 }
561     }
562    
563 root 1.48 static const int season_darkness[5][HOURS_PER_DAY] = {
564     /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
565     { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
566     { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
567     { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
568     { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
569     { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
570 root 1.47 };
571    
572 root 1.48 /*
573     * Tell players the time and compute the darkness level for all maps in the game.
574     * MUST be called exactly once per hour.
575     */
576 root 1.47 void
577 root 1.48 maptile::adjust_daylight ()
578 root 1.47 {
579     timeofday_t tod;
580    
581     get_tod (&tod);
582    
583 root 1.48 // log the time to log-1 every hour, and to chat every day
584     {
585     char todbuf[512];
586 root 1.47
587 root 1.48 format_tod (todbuf, sizeof (todbuf), &tod);
588 root 1.47
589 root 1.48 for_all_players (pl)
590     pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
591     }
592 root 1.47
593     /* If the light level isn't changing, no reason to do all
594     * the work below.
595     */
596 root 1.48 sint8 new_darkness = season_darkness[tod.season][tod.hour];
597    
598     if (new_darkness == maptile::outdoor_darkness)
599 root 1.47 return;
600    
601 root 1.48 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
602     new_darkness > maptile::outdoor_darkness
603     ? "It becomes darker."
604     : "It becomes brighter.");
605 root 1.47
606 root 1.48 maptile::outdoor_darkness = new_darkness;
607 root 1.47
608 root 1.48 // we simply update the los for all players, which is unnecessarily
609     // costly, but should do for the moment.
610     for_all_players (pl)
611     pl->do_los = 1;
612 root 1.47 }
613    
614 elmex 1.1 /*
615     * make_sure_seen: The object is supposed to be visible through walls, thus
616     * check if any players are nearby, and edit their LOS array.
617     */
618 root 1.4 void
619     make_sure_seen (const object *op)
620     {
621 root 1.11 for_all_players (pl)
622 root 1.4 if (pl->ob->map == op->map &&
623 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
624     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
625 root 1.49 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
626 elmex 1.1 }
627    
628     /*
629     * make_sure_not_seen: The object which is supposed to be visible through
630     * walls has just been removed from the map, so update the los of any
631     * players within its range
632     */
633 root 1.4 void
634     make_sure_not_seen (const object *op)
635     {
636 root 1.11 for_all_players (pl)
637 root 1.4 if (pl->ob->map == op->map &&
638 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
639     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
640 root 1.4 pl->do_los = 1;
641 elmex 1.1 }