ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.51
Committed: Wed Dec 24 01:37:23 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.50: +10 -10 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 /*
2 root 1.29 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 pippijn 1.19 *
4 root 1.30 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.26 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6     * Copyright (©) 1992,2007 Frank Tore Johansen
7 pippijn 1.19 *
8 root 1.29 * Deliantra is free software: you can redistribute it and/or modify
9 root 1.28 * it under the terms of the GNU General Public License as published by
10     * the Free Software Foundation, either version 3 of the License, or
11     * (at your option) any later version.
12 pippijn 1.19 *
13 root 1.28 * This program is distributed in the hope that it will be useful,
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     * GNU General Public License for more details.
17 pippijn 1.19 *
18 root 1.28 * You should have received a copy of the GNU General Public License
19     * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 root 1.26 *
21 root 1.29 * The authors can be reached via e-mail to <support@deliantra.net>
22 pippijn 1.19 */
23 elmex 1.1
24     #include <global.h>
25 root 1.41 #include <cmath>
26 elmex 1.1
27 root 1.51 #define SEE_IN_DARK_RADIUS 3
28    
29 root 1.49 // los flags
30 root 1.41 enum {
31 root 1.49 FLG_XI = 0x01, // we have an x-parent
32     FLG_YI = 0x02, // we have an y-parent
33     FLG_BLOCKED = 0x04, // this space blocks the view
34     FLG_QUEUED = 0x80 // already queued in queue, or border
35 root 1.41 };
36    
37     struct los_info
38     {
39 root 1.49 uint8 flags; // FLG_xxx
40     uint8 culled; // culled from "tree"
41     uint8 visible;
42     uint8 pad0;
43    
44 root 1.43 sint8 xo, yo; // obscure angle
45     sint8 xe, ye; // angle deviation
46 root 1.41 };
47    
48     // temporary storage for the los algorithm,
49     // one los_info for each lightable map space
50     static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
51    
52     struct point
53     {
54     sint8 x, y;
55     };
56    
57     // minimum size, but must be a power of two
58     #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
59    
60     // a queue of spaces to calculate
61     static point queue [QUEUE_LENGTH];
62     static int q1, q2; // queue start, end
63 elmex 1.1
64     /*
65 root 1.41 * Clears/initialises the los-array associated to the player
66     * controlling the object.
67 elmex 1.1 */
68 root 1.41 void
69 root 1.42 player::clear_los (sint8 value)
70 root 1.41 {
71 root 1.42 memset (los, value, sizeof (los));
72 root 1.41 }
73 elmex 1.1
74 root 1.41 // enqueue a single mapspace, but only if it hasn't
75     // been enqueued yet.
76 root 1.4 static void
77 root 1.41 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
78 root 1.4 {
79 root 1.41 sint8 x = LOS_X0 + dx;
80     sint8 y = LOS_Y0 + dy;
81    
82     los_info &l = los[x][y];
83    
84     l.flags |= flags;
85    
86 root 1.49 if (l.flags & FLG_QUEUED)
87 root 1.41 return;
88 elmex 1.1
89 root 1.49 l.flags |= FLG_QUEUED;
90 root 1.41
91     queue[q1].x = dx;
92     queue[q1].y = dy;
93 elmex 1.1
94 root 1.41 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
95 elmex 1.1 }
96    
97 root 1.41 // run the los algorithm
98     // this is a variant of a spiral los algorithm taken from
99     // http://www.geocities.com/temerra/los_rays.html
100     // which has been simplified and changed considerably, but
101     // still is basically the same algorithm.
102     static void
103 root 1.48 calculate_los (player *pl)
104 root 1.4 {
105 root 1.49 {
106     // we keep one line for ourselves, for the border flag
107     // so the client area is actually MAP_CLIENT_(X|Y) - 2
108     int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
109     int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
110    
111     // create borders, the corners are not touched
112     for (int dx = -half_x; dx <= half_x; ++dx)
113     los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
114     los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
115    
116     for (int dy = -half_y; dy <= half_y; ++dy)
117     los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
118     los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
119    
120     // now reset the los area and also add blocked flags
121     // which supposedly is faster than doing it inside the
122     // spiral path algorithm below, except when very little
123     // area is visible, in which case it is slower, evening
124     // out los calculation times between large and small los maps.
125     // apply_lights also iterates over this area, maybe these
126     // two passes could be combined somehow.
127     rectangular_mapspace_iterate_begin (pl->observe, -half_x, half_x, -half_y, half_y)
128     los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
129     l.flags = m && m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
130     rectangular_mapspace_iterate_end
131     }
132 root 1.4
133 root 1.41 q1 = 0; q2 = 0; // initialise queue, not strictly required
134     enqueue (0, 0); // enqueue center
135 root 1.4
136 root 1.41 // treat the origin specially
137     los[LOS_X0][LOS_Y0].visible = 1;
138     pl->los[LOS_X0][LOS_Y0] = 0;
139    
140     // loop over all enqueued points until the queue is empty
141     // the order in which this is done ensures that we
142     // never touch a mapspace whose input spaces we haven't checked
143     // yet.
144     while (q1 != q2)
145     {
146     sint8 dx = queue[q2].x;
147     sint8 dy = queue[q2].y;
148 root 1.4
149 root 1.41 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
150 root 1.4
151 root 1.41 sint8 x = LOS_X0 + dx;
152     sint8 y = LOS_Y0 + dy;
153 elmex 1.1
154 root 1.41 los_info &l = los[x][y];
155 elmex 1.1
156 root 1.49 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
157 root 1.41 {
158     l.culled = 1;
159 root 1.49 l.xo = l.yo = l.xe = l.ye = 0;
160 elmex 1.1
161 root 1.41 // check contributing spaces, first horizontal
162 root 1.49 if (expect_true (l.flags & FLG_XI))
163 root 1.41 {
164     los_info *xi = &los[x - sign (dx)][y];
165 elmex 1.1
166 root 1.41 // don't cull unless obscured
167     l.culled &= !xi->visible;
168 elmex 1.1
169 root 1.41 /* merge input space */
170     if (expect_false (xi->xo || xi->yo))
171     {
172     // The X input can provide two main pieces of information:
173     // 1. Progressive X obscurity.
174     // 2. Recessive Y obscurity.
175    
176     // Progressive X obscurity, favouring recessive input angle
177     if (xi->xe > 0 && l.xo == 0)
178     {
179     l.xe = xi->xe - xi->yo;
180     l.ye = xi->ye + xi->yo;
181     l.xo = xi->xo;
182     l.yo = xi->yo;
183     }
184 root 1.4
185 root 1.41 // Recessive Y obscurity
186     if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
187     {
188     l.ye = xi->yo + xi->ye;
189     l.xe = xi->xe - xi->yo;
190     l.xo = xi->xo;
191     l.yo = xi->yo;
192     }
193     }
194     }
195    
196     // check contributing spaces, last vertical, identical structure
197 root 1.49 if (expect_true (l.flags & FLG_YI))
198 root 1.41 {
199     los_info *yi = &los[x][y - sign (dy)];
200 elmex 1.1
201 root 1.41 // don't cull unless obscured
202     l.culled &= !yi->visible;
203 elmex 1.1
204 root 1.41 /* merge input space */
205     if (expect_false (yi->yo || yi->xo))
206     {
207     // The Y input can provide two main pieces of information:
208     // 1. Progressive Y obscurity.
209     // 2. Recessive X obscurity.
210    
211     // Progressive Y obscurity, favouring recessive input angle
212     if (yi->ye > 0 && l.yo == 0)
213     {
214     l.ye = yi->ye - yi->xo;
215     l.xe = yi->xe + yi->xo;
216     l.yo = yi->yo;
217     l.xo = yi->xo;
218     }
219 elmex 1.1
220 root 1.41 // Recessive X obscurity
221     if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
222     {
223     l.xe = yi->xo + yi->xe;
224     l.ye = yi->ye - yi->xo;
225     l.yo = yi->yo;
226     l.xo = yi->xo;
227     }
228     }
229     }
230 elmex 1.1
231 root 1.49 if (l.flags & FLG_BLOCKED)
232 root 1.41 {
233     l.xo = l.xe = abs (dx);
234     l.yo = l.ye = abs (dy);
235 elmex 1.1
236 root 1.41 // we obscure dependents, but might be visible
237     // copy the los from the square towards the player,
238     // so outward diagonal corners are lit.
239     pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
240 root 1.49
241 root 1.41 l.visible = false;
242     }
243     else
244     {
245     // we are not blocked, so calculate visibility, by checking
246     // whether we are inside or outside the shadow
247     l.visible = (l.xe <= 0 || l.xe > l.xo)
248     && (l.ye <= 0 || l.ye > l.yo);
249    
250     pl->los[x][y] = l.culled ? LOS_BLOCKED
251 root 1.49 : l.visible ? 0
252 root 1.41 : 3;
253 root 1.37 }
254 root 1.41
255 root 1.37 }
256 root 1.4
257 root 1.41 // Expands by the unit length in each component's current direction.
258     // If a component has no direction, then it is expanded in both of its
259     // positive and negative directions.
260     if (!l.culled)
261     {
262 root 1.49 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
263     if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
264     if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
265     if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
266 root 1.41 }
267     }
268 elmex 1.1 }
269    
270     /* returns true if op carries one or more lights
271     * This is a trivial function now days, but it used to
272     * be a bit longer. Probably better for callers to just
273     * check the op->glow_radius instead of calling this.
274     */
275 root 1.4 int
276     has_carried_lights (const object *op)
277     {
278     /* op may glow! */
279     if (op->glow_radius > 0)
280     return 1;
281    
282     return 0;
283     }
284    
285 root 1.32 /* radius, distance => lightness adjust */
286 root 1.44 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
287 root 1.51 static sint8 vision_atten[MAX_DARKNESS + SEE_IN_DARK_RADIUS + 1][(MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2 + 1];
288 root 1.32
289 root 1.44 static struct los_init
290 root 1.32 {
291 root 1.44 los_init ()
292 root 1.32 {
293 root 1.49 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
294     !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
295    
296 root 1.45 /* for lights */
297 root 1.32 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
298 root 1.35 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
299 root 1.32 {
300     // max intensity
301 root 1.36 int intensity = min (LOS_MAX, abs (radius) + 1);
302 root 1.32
303     // actual intensity
304     intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
305    
306 root 1.44 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
307 root 1.35 ? min (3, intensity)
308 root 1.36 : LOS_MAX - intensity;
309 root 1.32 }
310 root 1.45
311     /* for general vision */
312 root 1.51 for (int radius = 0; radius <= MAX_DARKNESS + SEE_IN_DARK_RADIUS; ++radius)
313     for (int distance = 0; distance <= (MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2; ++distance)
314     vision_atten [radius][distance] = distance <= radius ? 3 : 4;
315 root 1.32 }
316 root 1.44 } los_init;
317 root 1.32
318 root 1.39 sint8
319     los_brighten (sint8 b, sint8 l)
320     {
321     return b == LOS_BLOCKED ? b : min (b, l);
322     }
323    
324     sint8
325     los_darken (sint8 b, sint8 l)
326     {
327     return max (b, l);
328     }
329    
330     template<sint8 change_it (sint8, sint8)>
331     static void
332 root 1.48 apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
333 root 1.39 {
334 root 1.41 // min or max the circular area around basex, basey
335     dx += LOS_X0;
336     dy += LOS_Y0;
337    
338 root 1.48 int hx = pl->ns->mapx / 2;
339     int hy = pl->ns->mapy / 2;
340 root 1.41
341     int ax0 = max (LOS_X0 - hx, dx - light);
342     int ay0 = max (LOS_Y0 - hy, dy - light);
343     int ax1 = min (dx + light, LOS_X0 + hx);
344     int ay1 = min (dy + light, LOS_Y0 + hy);
345 root 1.39
346     for (int ax = ax0; ax <= ax1; ax++)
347     for (int ay = ay0; ay <= ay1; ay++)
348 root 1.41 pl->los[ax][ay] =
349 root 1.44 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
350 root 1.39 }
351    
352     /* add light, by finding all (non-null) nearby light sources, then
353     * mark those squares specially.
354     */
355 root 1.4 static void
356 root 1.48 apply_lights (player *pl)
357 root 1.4 {
358 root 1.48 object *op = pl->observe;
359     int darklevel = op->map->darklevel ();
360 root 1.4
361 root 1.48 int half_x = pl->ns->mapx / 2;
362     int half_y = pl->ns->mapy / 2;
363 root 1.32
364     int pass2 = 0; // negative lights have an extra pass
365    
366 root 1.48 if (!darklevel)
367 root 1.39 pass2 = 1;
368     else
369     {
370     /* first, make everything totally dark */
371 root 1.41 for (int dx = -half_x; dx <= half_x; dx++)
372     for (int dy = -half_x; dy <= half_y; dy++)
373 root 1.49 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
374 root 1.39
375     /*
376     * Only process the area of interest.
377 root 1.41 * the basex, basey values represent the position in the op->contr->los
378     * array. Its easier to just increment them here (and start with the right
379 root 1.39 * value) than to recalculate them down below.
380     */
381 root 1.49 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
382     if (m)
383 root 1.39 {
384     mapspace &ms = m->at (nx, ny);
385     ms.update ();
386     sint8 light = ms.light;
387    
388     if (expect_false (light))
389     if (light < 0)
390     pass2 = 1;
391     else
392 root 1.49 apply_light<los_brighten> (pl, dx, dy, light, light_atten [light + MAX_LIGHT_RADIUS]);
393 root 1.39 }
394 root 1.49 rectangular_mapspace_iterate_end
395 root 1.39
396     /* grant some vision to the player, based on the darklevel */
397 root 1.32 {
398 root 1.45 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
399 root 1.39
400 root 1.51 /* If the player can see in the dark, lower the darklevel for him */
401     if (op->flag [FLAG_SEE_IN_DARK])
402     light += SEE_IN_DARK_RADIUS;
403    
404 root 1.48 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
405 root 1.32 }
406 root 1.39 }
407 root 1.4
408 root 1.38 // possibly do 2nd pass for rare negative glow radii
409 root 1.39 // for effect, those are always considered to be stronger than anything else
410     // but they can't darken a place completely
411     if (pass2)
412 root 1.49 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
413     if (m)
414     {
415     mapspace &ms = m->at (nx, ny);
416     ms.update ();
417     sint8 light = ms.light;
418    
419     if (expect_false (light < 0))
420     apply_light<los_darken> (pl, dx, dy, -light, light_atten [light + MAX_LIGHT_RADIUS]);
421     }
422     rectangular_mapspace_iterate_end
423 elmex 1.1 }
424    
425 root 1.31 /* blinded_sight() - sets all viewable squares to blocked except
426 elmex 1.1 * for the one the central one that the player occupies. A little
427     * odd that you can see yourself (and what your standing on), but
428     * really need for any reasonable game play.
429     */
430 root 1.4 static void
431 root 1.48 blinded_sight (player *pl)
432 root 1.4 {
433 root 1.48 pl->los[LOS_X0][LOS_Y0] = 1;
434 elmex 1.1 }
435    
436     /*
437     * update_los() recalculates the array which specifies what is
438     * visible for the given player-object.
439     */
440 root 1.4 void
441 root 1.48 player::update_los ()
442 root 1.4 {
443 root 1.48 if (ob->flag [FLAG_REMOVED])//D really needed?
444 root 1.4 return;
445 elmex 1.1
446 root 1.48 if (ob->flag [FLAG_WIZLOOK])
447 root 1.49 clear_los (0);
448 root 1.48 else if (observe->flag [FLAG_BLIND]) /* player is blind */
449 root 1.49 {
450     clear_los ();
451     blinded_sight (this);
452     }
453 root 1.4 else
454 root 1.41 {
455 root 1.49 clear_los ();
456 root 1.48 calculate_los (this);
457     apply_lights (this);
458 root 1.41 }
459 root 1.4
460 root 1.48 if (observe->flag [FLAG_XRAYS])
461 root 1.41 for (int dx = -2; dx <= 2; dx++)
462     for (int dy = -2; dy <= 2; dy++)
463 root 1.49 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
464 elmex 1.1 }
465    
466     /* update all_map_los is like update_all_los below,
467     * but updates everyone on the map, no matter where they
468 root 1.12 * are. This generally should not be used, as a per
469 elmex 1.1 * specific map change doesn't make much sense when tiling
470     * is considered (lowering darkness would certainly be a
471     * strange effect if done on a tile map, as it makes
472     * the distinction between maps much more obvious to the
473     * players, which is should not be.
474     * Currently, this function is called from the
475     * change_map_light function
476     */
477 root 1.4 void
478 root 1.6 update_all_map_los (maptile *map)
479 root 1.4 {
480 root 1.46 for_all_players_on_map (pl, map)
481     pl->do_los = 1;
482 elmex 1.1 }
483    
484     /*
485     * This function makes sure that update_los() will be called for all
486     * players on the given map within the next frame.
487     * It is triggered by removal or inserting of objects which blocks
488     * the sight in the map.
489     * Modified by MSW 2001-07-12 to take a coordinate of the changed
490     * position, and to also take map tiling into account. This change
491     * means that just being on the same map is not sufficient - the
492     * space that changes must be withing your viewable area.
493     *
494     * map is the map that changed, x and y are the coordinates.
495     */
496 root 1.4 void
497 root 1.6 update_all_los (const maptile *map, int x, int y)
498 root 1.4 {
499 root 1.46 map->at (x, y).invalidate ();
500    
501 root 1.11 for_all_players (pl)
502 root 1.4 {
503     /* Player should not have a null map, but do this
504     * check as a safety
505     */
506 root 1.12 if (!pl->ob || !pl->ob->map || !pl->ns)
507 root 1.4 continue;
508    
509     /* Same map is simple case - see if pl is close enough.
510     * Note in all cases, we did the check for same map first,
511     * and then see if the player is close enough and update
512     * los if that is the case. If the player is on the
513     * corresponding map, but not close enough, then the
514     * player can't be on another map that may be closer,
515     * so by setting it up this way, we trim processing
516     * some.
517     */
518     if (pl->ob->map == map)
519     {
520 root 1.10 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
521 root 1.4 pl->do_los = 1;
522 root 1.2 }
523 root 1.12
524 root 1.4 /* Now we check to see if player is on adjacent
525     * maps to the one that changed and also within
526     * view. The tile_maps[] could be null, but in that
527     * case it should never match the pl->ob->map, so
528     * we want ever try to dereference any of the data in it.
529 root 1.12 *
530     * The logic for 0 and 3 is to see how far the player is
531 root 1.4 * from the edge of the map (height/width) - pl->ob->(x,y)
532     * and to add current position on this map - that gives a
533     * distance.
534     * For 1 and 2, we check to see how far the given
535     * coordinate (x,y) is from the corresponding edge,
536     * and then add the players location, which gives
537     * a distance.
538     */
539     else if (pl->ob->map == map->tile_map[0])
540     {
541 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
542 root 1.4 pl->do_los = 1;
543 root 1.2 }
544 root 1.4 else if (pl->ob->map == map->tile_map[2])
545     {
546 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
547 root 1.4 pl->do_los = 1;
548 root 1.2 }
549 root 1.4 else if (pl->ob->map == map->tile_map[1])
550     {
551 root 1.13 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
552 root 1.4 pl->do_los = 1;
553 root 1.2 }
554 root 1.4 else if (pl->ob->map == map->tile_map[3])
555     {
556 root 1.13 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
557 root 1.4 pl->do_los = 1;
558 root 1.2 }
559 elmex 1.1 }
560     }
561    
562 root 1.48 static const int season_darkness[5][HOURS_PER_DAY] = {
563     /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
564     { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
565     { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
566     { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
567     { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
568     { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
569 root 1.47 };
570    
571 root 1.48 /*
572     * Tell players the time and compute the darkness level for all maps in the game.
573     * MUST be called exactly once per hour.
574     */
575 root 1.47 void
576 root 1.48 maptile::adjust_daylight ()
577 root 1.47 {
578     timeofday_t tod;
579    
580     get_tod (&tod);
581    
582 root 1.48 // log the time to log-1 every hour, and to chat every day
583     {
584     char todbuf[512];
585 root 1.47
586 root 1.48 format_tod (todbuf, sizeof (todbuf), &tod);
587 root 1.47
588 root 1.48 for_all_players (pl)
589     pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
590     }
591 root 1.47
592     /* If the light level isn't changing, no reason to do all
593     * the work below.
594     */
595 root 1.48 sint8 new_darkness = season_darkness[tod.season][tod.hour];
596    
597     if (new_darkness == maptile::outdoor_darkness)
598 root 1.47 return;
599    
600 root 1.48 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
601     new_darkness > maptile::outdoor_darkness
602     ? "It becomes darker."
603     : "It becomes brighter.");
604 root 1.47
605 root 1.48 maptile::outdoor_darkness = new_darkness;
606 root 1.47
607 root 1.48 // we simply update the los for all players, which is unnecessarily
608     // costly, but should do for the moment.
609     for_all_players (pl)
610     pl->do_los = 1;
611 root 1.47 }
612    
613 elmex 1.1 /*
614     * make_sure_seen: The object is supposed to be visible through walls, thus
615     * check if any players are nearby, and edit their LOS array.
616     */
617 root 1.4 void
618     make_sure_seen (const object *op)
619     {
620 root 1.11 for_all_players (pl)
621 root 1.4 if (pl->ob->map == op->map &&
622 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
623     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
624 root 1.49 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
625 elmex 1.1 }
626    
627     /*
628     * make_sure_not_seen: The object which is supposed to be visible through
629     * walls has just been removed from the map, so update the los of any
630     * players within its range
631     */
632 root 1.4 void
633     make_sure_not_seen (const object *op)
634     {
635 root 1.11 for_all_players (pl)
636 root 1.4 if (pl->ob->map == op->map &&
637 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
638     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
639 root 1.4 pl->do_los = 1;
640 elmex 1.1 }