ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.56
Committed: Thu Jan 8 19:23:44 2009 UTC (15 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.55: +1 -1 lines
Log Message:
mapscript changes

File Contents

# User Rev Content
1 elmex 1.1 /*
2 root 1.29 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 pippijn 1.19 *
4 root 1.30 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.26 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6     * Copyright (©) 1992,2007 Frank Tore Johansen
7 pippijn 1.19 *
8 root 1.29 * Deliantra is free software: you can redistribute it and/or modify
9 root 1.28 * it under the terms of the GNU General Public License as published by
10     * the Free Software Foundation, either version 3 of the License, or
11     * (at your option) any later version.
12 pippijn 1.19 *
13 root 1.28 * This program is distributed in the hope that it will be useful,
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     * GNU General Public License for more details.
17 pippijn 1.19 *
18 root 1.28 * You should have received a copy of the GNU General Public License
19     * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 root 1.26 *
21 root 1.29 * The authors can be reached via e-mail to <support@deliantra.net>
22 pippijn 1.19 */
23 elmex 1.1
24     #include <global.h>
25 root 1.41 #include <cmath>
26 elmex 1.1
27 root 1.56 #define SEE_IN_DARK_RADIUS 2
28 root 1.51
29 root 1.49 // los flags
30 root 1.41 enum {
31 root 1.49 FLG_XI = 0x01, // we have an x-parent
32     FLG_YI = 0x02, // we have an y-parent
33     FLG_BLOCKED = 0x04, // this space blocks the view
34     FLG_QUEUED = 0x80 // already queued in queue, or border
35 root 1.41 };
36    
37     struct los_info
38     {
39 root 1.49 uint8 flags; // FLG_xxx
40     uint8 culled; // culled from "tree"
41     uint8 visible;
42     uint8 pad0;
43    
44 root 1.43 sint8 xo, yo; // obscure angle
45     sint8 xe, ye; // angle deviation
46 root 1.41 };
47    
48     // temporary storage for the los algorithm,
49     // one los_info for each lightable map space
50     static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
51    
52     struct point
53     {
54     sint8 x, y;
55     };
56    
57     // minimum size, but must be a power of two
58     #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
59    
60     // a queue of spaces to calculate
61     static point queue [QUEUE_LENGTH];
62     static int q1, q2; // queue start, end
63 elmex 1.1
64     /*
65 root 1.41 * Clears/initialises the los-array associated to the player
66     * controlling the object.
67 elmex 1.1 */
68 root 1.41 void
69 root 1.42 player::clear_los (sint8 value)
70 root 1.41 {
71 root 1.42 memset (los, value, sizeof (los));
72 root 1.41 }
73 elmex 1.1
74 root 1.41 // enqueue a single mapspace, but only if it hasn't
75     // been enqueued yet.
76 root 1.4 static void
77 root 1.41 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
78 root 1.4 {
79 root 1.41 sint8 x = LOS_X0 + dx;
80     sint8 y = LOS_Y0 + dy;
81    
82     los_info &l = los[x][y];
83    
84     l.flags |= flags;
85    
86 root 1.49 if (l.flags & FLG_QUEUED)
87 root 1.41 return;
88 elmex 1.1
89 root 1.49 l.flags |= FLG_QUEUED;
90 root 1.41
91     queue[q1].x = dx;
92     queue[q1].y = dy;
93 elmex 1.1
94 root 1.41 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
95 elmex 1.1 }
96    
97 root 1.41 // run the los algorithm
98     // this is a variant of a spiral los algorithm taken from
99     // http://www.geocities.com/temerra/los_rays.html
100     // which has been simplified and changed considerably, but
101     // still is basically the same algorithm.
102     static void
103 root 1.48 calculate_los (player *pl)
104 root 1.4 {
105 root 1.49 {
106 root 1.52 memset (los, 0, sizeof (los));
107    
108 root 1.49 // we keep one line for ourselves, for the border flag
109     // so the client area is actually MAP_CLIENT_(X|Y) - 2
110     int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
111     int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
112    
113     // create borders, the corners are not touched
114     for (int dx = -half_x; dx <= half_x; ++dx)
115     los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
116     los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
117    
118     for (int dy = -half_y; dy <= half_y; ++dy)
119     los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
120     los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
121    
122     // now reset the los area and also add blocked flags
123     // which supposedly is faster than doing it inside the
124     // spiral path algorithm below, except when very little
125 root 1.54 // area is visible, in which case it is slower. which evens
126 root 1.49 // out los calculation times between large and small los maps.
127     // apply_lights also iterates over this area, maybe these
128     // two passes could be combined somehow.
129 root 1.52 unordered_mapwalk (pl->observe, -half_x, -half_y, half_x, half_y)
130     {
131     los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
132     l.flags = m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
133     }
134 root 1.49 }
135 root 1.4
136 root 1.41 q1 = 0; q2 = 0; // initialise queue, not strictly required
137     enqueue (0, 0); // enqueue center
138 root 1.4
139 root 1.41 // treat the origin specially
140     los[LOS_X0][LOS_Y0].visible = 1;
141     pl->los[LOS_X0][LOS_Y0] = 0;
142    
143     // loop over all enqueued points until the queue is empty
144     // the order in which this is done ensures that we
145     // never touch a mapspace whose input spaces we haven't checked
146     // yet.
147     while (q1 != q2)
148     {
149     sint8 dx = queue[q2].x;
150     sint8 dy = queue[q2].y;
151 root 1.4
152 root 1.41 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
153 root 1.4
154 root 1.41 sint8 x = LOS_X0 + dx;
155     sint8 y = LOS_Y0 + dy;
156 elmex 1.1
157 root 1.41 los_info &l = los[x][y];
158 elmex 1.1
159 root 1.49 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
160 root 1.41 {
161     l.culled = 1;
162 root 1.49 l.xo = l.yo = l.xe = l.ye = 0;
163 elmex 1.1
164 root 1.41 // check contributing spaces, first horizontal
165 root 1.49 if (expect_true (l.flags & FLG_XI))
166 root 1.41 {
167     los_info *xi = &los[x - sign (dx)][y];
168 elmex 1.1
169 root 1.41 // don't cull unless obscured
170     l.culled &= !xi->visible;
171 elmex 1.1
172 root 1.41 /* merge input space */
173     if (expect_false (xi->xo || xi->yo))
174     {
175     // The X input can provide two main pieces of information:
176     // 1. Progressive X obscurity.
177     // 2. Recessive Y obscurity.
178    
179     // Progressive X obscurity, favouring recessive input angle
180     if (xi->xe > 0 && l.xo == 0)
181     {
182     l.xe = xi->xe - xi->yo;
183     l.ye = xi->ye + xi->yo;
184     l.xo = xi->xo;
185     l.yo = xi->yo;
186     }
187 root 1.4
188 root 1.41 // Recessive Y obscurity
189     if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
190     {
191     l.ye = xi->yo + xi->ye;
192     l.xe = xi->xe - xi->yo;
193     l.xo = xi->xo;
194     l.yo = xi->yo;
195     }
196     }
197     }
198    
199     // check contributing spaces, last vertical, identical structure
200 root 1.49 if (expect_true (l.flags & FLG_YI))
201 root 1.41 {
202     los_info *yi = &los[x][y - sign (dy)];
203 elmex 1.1
204 root 1.41 // don't cull unless obscured
205     l.culled &= !yi->visible;
206 elmex 1.1
207 root 1.41 /* merge input space */
208     if (expect_false (yi->yo || yi->xo))
209     {
210     // The Y input can provide two main pieces of information:
211     // 1. Progressive Y obscurity.
212     // 2. Recessive X obscurity.
213    
214     // Progressive Y obscurity, favouring recessive input angle
215     if (yi->ye > 0 && l.yo == 0)
216     {
217     l.ye = yi->ye - yi->xo;
218     l.xe = yi->xe + yi->xo;
219     l.yo = yi->yo;
220     l.xo = yi->xo;
221     }
222 elmex 1.1
223 root 1.41 // Recessive X obscurity
224     if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
225     {
226     l.xe = yi->xo + yi->xe;
227     l.ye = yi->ye - yi->xo;
228     l.yo = yi->yo;
229     l.xo = yi->xo;
230     }
231     }
232     }
233 elmex 1.1
234 root 1.49 if (l.flags & FLG_BLOCKED)
235 root 1.41 {
236     l.xo = l.xe = abs (dx);
237     l.yo = l.ye = abs (dy);
238 elmex 1.1
239 root 1.41 // we obscure dependents, but might be visible
240     // copy the los from the square towards the player,
241     // so outward diagonal corners are lit.
242     pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
243 root 1.49
244 root 1.41 l.visible = false;
245     }
246     else
247     {
248     // we are not blocked, so calculate visibility, by checking
249     // whether we are inside or outside the shadow
250     l.visible = (l.xe <= 0 || l.xe > l.xo)
251     && (l.ye <= 0 || l.ye > l.yo);
252    
253     pl->los[x][y] = l.culled ? LOS_BLOCKED
254 root 1.49 : l.visible ? 0
255 root 1.41 : 3;
256 root 1.37 }
257 root 1.41
258 root 1.37 }
259 root 1.4
260 root 1.41 // Expands by the unit length in each component's current direction.
261     // If a component has no direction, then it is expanded in both of its
262     // positive and negative directions.
263     if (!l.culled)
264     {
265 root 1.49 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
266     if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
267     if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
268     if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
269 root 1.41 }
270     }
271 elmex 1.1 }
272    
273 root 1.32 /* radius, distance => lightness adjust */
274 root 1.44 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
275 root 1.51 static sint8 vision_atten[MAX_DARKNESS + SEE_IN_DARK_RADIUS + 1][(MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2 + 1];
276 root 1.32
277 root 1.44 static struct los_init
278 root 1.32 {
279 root 1.44 los_init ()
280 root 1.32 {
281 root 1.49 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
282     !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
283    
284 root 1.45 /* for lights */
285 root 1.32 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
286 root 1.35 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
287 root 1.32 {
288     // max intensity
289 root 1.36 int intensity = min (LOS_MAX, abs (radius) + 1);
290 root 1.32
291     // actual intensity
292     intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
293    
294 root 1.44 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
295 root 1.35 ? min (3, intensity)
296 root 1.36 : LOS_MAX - intensity;
297 root 1.32 }
298 root 1.45
299     /* for general vision */
300 root 1.51 for (int radius = 0; radius <= MAX_DARKNESS + SEE_IN_DARK_RADIUS; ++radius)
301     for (int distance = 0; distance <= (MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2; ++distance)
302     vision_atten [radius][distance] = distance <= radius ? 3 : 4;
303 root 1.32 }
304 root 1.44 } los_init;
305 root 1.32
306 root 1.39 sint8
307     los_brighten (sint8 b, sint8 l)
308     {
309     return b == LOS_BLOCKED ? b : min (b, l);
310     }
311    
312     sint8
313     los_darken (sint8 b, sint8 l)
314     {
315     return max (b, l);
316     }
317    
318     template<sint8 change_it (sint8, sint8)>
319     static void
320 root 1.48 apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
321 root 1.39 {
322 root 1.41 // min or max the circular area around basex, basey
323     dx += LOS_X0;
324     dy += LOS_Y0;
325    
326 root 1.48 int hx = pl->ns->mapx / 2;
327     int hy = pl->ns->mapy / 2;
328 root 1.41
329     int ax0 = max (LOS_X0 - hx, dx - light);
330     int ay0 = max (LOS_Y0 - hy, dy - light);
331     int ax1 = min (dx + light, LOS_X0 + hx);
332     int ay1 = min (dy + light, LOS_Y0 + hy);
333 root 1.39
334     for (int ax = ax0; ax <= ax1; ax++)
335     for (int ay = ay0; ay <= ay1; ay++)
336 root 1.41 pl->los[ax][ay] =
337 root 1.44 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
338 root 1.39 }
339    
340     /* add light, by finding all (non-null) nearby light sources, then
341     * mark those squares specially.
342     */
343 root 1.4 static void
344 root 1.48 apply_lights (player *pl)
345 root 1.4 {
346 root 1.48 object *op = pl->observe;
347     int darklevel = op->map->darklevel ();
348 root 1.4
349 root 1.48 int half_x = pl->ns->mapx / 2;
350     int half_y = pl->ns->mapy / 2;
351 root 1.32
352     int pass2 = 0; // negative lights have an extra pass
353    
354 root 1.52 maprect *rects = pl->observe->map->split_to_tiles (
355     pl->observe->x - half_x - MAX_LIGHT_RADIUS,
356     pl->observe->y - half_y - MAX_LIGHT_RADIUS,
357     pl->observe->x + half_x + MAX_LIGHT_RADIUS + 1,
358     pl->observe->y + half_y + MAX_LIGHT_RADIUS + 1
359     );
360    
361 root 1.48 if (!darklevel)
362 root 1.39 pass2 = 1;
363     else
364     {
365     /* first, make everything totally dark */
366 root 1.41 for (int dx = -half_x; dx <= half_x; dx++)
367     for (int dy = -half_x; dy <= half_y; dy++)
368 root 1.49 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
369 root 1.39
370     /*
371     * Only process the area of interest.
372 root 1.41 * the basex, basey values represent the position in the op->contr->los
373     * array. Its easier to just increment them here (and start with the right
374 root 1.39 * value) than to recalculate them down below.
375     */
376 root 1.52 for (maprect *r = rects; r->m; ++r)
377     rect_mapwalk (r, 0, 0)
378 root 1.39 {
379     mapspace &ms = m->at (nx, ny);
380     ms.update ();
381     sint8 light = ms.light;
382    
383     if (expect_false (light))
384     if (light < 0)
385     pass2 = 1;
386     else
387 root 1.52 apply_light<los_brighten> (pl, dx - pl->observe->x, dy - pl->observe->y, light, light_atten [light + MAX_LIGHT_RADIUS]);
388 root 1.39 }
389    
390     /* grant some vision to the player, based on the darklevel */
391 root 1.32 {
392 root 1.45 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
393 root 1.39
394 root 1.51 /* If the player can see in the dark, lower the darklevel for him */
395     if (op->flag [FLAG_SEE_IN_DARK])
396     light += SEE_IN_DARK_RADIUS;
397    
398 root 1.48 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
399 root 1.32 }
400 root 1.39 }
401 root 1.4
402 root 1.38 // possibly do 2nd pass for rare negative glow radii
403 root 1.39 // for effect, those are always considered to be stronger than anything else
404     // but they can't darken a place completely
405     if (pass2)
406 root 1.52 for (maprect *r = rects; r->m; ++r)
407     rect_mapwalk (r, 0, 0)
408     {
409     mapspace &ms = m->at (nx, ny);
410     ms.update ();
411     sint8 light = ms.light;
412    
413     if (expect_false (light < 0))
414     apply_light<los_darken> (pl, dx - pl->observe->x, dy - pl->observe->y, -light, light_atten [light + MAX_LIGHT_RADIUS]);
415     }
416 elmex 1.1 }
417    
418 root 1.31 /* blinded_sight() - sets all viewable squares to blocked except
419 elmex 1.1 * for the one the central one that the player occupies. A little
420     * odd that you can see yourself (and what your standing on), but
421     * really need for any reasonable game play.
422     */
423 root 1.4 static void
424 root 1.48 blinded_sight (player *pl)
425 root 1.4 {
426 root 1.48 pl->los[LOS_X0][LOS_Y0] = 1;
427 elmex 1.1 }
428    
429     /*
430     * update_los() recalculates the array which specifies what is
431     * visible for the given player-object.
432     */
433 root 1.4 void
434 root 1.48 player::update_los ()
435 root 1.4 {
436 root 1.48 if (ob->flag [FLAG_REMOVED])//D really needed?
437 root 1.4 return;
438 elmex 1.1
439 root 1.48 if (ob->flag [FLAG_WIZLOOK])
440 root 1.49 clear_los (0);
441 root 1.48 else if (observe->flag [FLAG_BLIND]) /* player is blind */
442 root 1.49 {
443     clear_los ();
444     blinded_sight (this);
445     }
446 root 1.4 else
447 root 1.41 {
448 root 1.49 clear_los ();
449 root 1.48 calculate_los (this);
450     apply_lights (this);
451 root 1.41 }
452 root 1.4
453 root 1.48 if (observe->flag [FLAG_XRAYS])
454 root 1.41 for (int dx = -2; dx <= 2; dx++)
455     for (int dy = -2; dy <= 2; dy++)
456 root 1.49 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
457 elmex 1.1 }
458    
459     /* update all_map_los is like update_all_los below,
460     * but updates everyone on the map, no matter where they
461 root 1.12 * are. This generally should not be used, as a per
462 elmex 1.1 * specific map change doesn't make much sense when tiling
463     * is considered (lowering darkness would certainly be a
464     * strange effect if done on a tile map, as it makes
465     * the distinction between maps much more obvious to the
466     * players, which is should not be.
467     * Currently, this function is called from the
468     * change_map_light function
469     */
470 root 1.4 void
471 root 1.6 update_all_map_los (maptile *map)
472 root 1.4 {
473 root 1.46 for_all_players_on_map (pl, map)
474     pl->do_los = 1;
475 elmex 1.1 }
476    
477     /*
478     * This function makes sure that update_los() will be called for all
479     * players on the given map within the next frame.
480     * It is triggered by removal or inserting of objects which blocks
481     * the sight in the map.
482     * Modified by MSW 2001-07-12 to take a coordinate of the changed
483     * position, and to also take map tiling into account. This change
484     * means that just being on the same map is not sufficient - the
485     * space that changes must be withing your viewable area.
486     *
487     * map is the map that changed, x and y are the coordinates.
488     */
489 root 1.4 void
490 root 1.6 update_all_los (const maptile *map, int x, int y)
491 root 1.4 {
492 root 1.53 // no need to do anything if we don't have darkness
493     if (map->darklevel () <= 0)
494     return;
495    
496 root 1.46 map->at (x, y).invalidate ();
497    
498 root 1.11 for_all_players (pl)
499 root 1.4 {
500     /* Player should not have a null map, but do this
501     * check as a safety
502     */
503 root 1.12 if (!pl->ob || !pl->ob->map || !pl->ns)
504 root 1.4 continue;
505    
506     /* Same map is simple case - see if pl is close enough.
507     * Note in all cases, we did the check for same map first,
508     * and then see if the player is close enough and update
509     * los if that is the case. If the player is on the
510     * corresponding map, but not close enough, then the
511     * player can't be on another map that may be closer,
512     * so by setting it up this way, we trim processing
513     * some.
514     */
515     if (pl->ob->map == map)
516 root 1.53 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
517     pl->do_los = 1;
518 root 1.12
519 root 1.4 /* Now we check to see if player is on adjacent
520     * maps to the one that changed and also within
521     * view. The tile_maps[] could be null, but in that
522     * case it should never match the pl->ob->map, so
523     * we want ever try to dereference any of the data in it.
524 root 1.12 *
525     * The logic for 0 and 3 is to see how far the player is
526 root 1.4 * from the edge of the map (height/width) - pl->ob->(x,y)
527     * and to add current position on this map - that gives a
528     * distance.
529     * For 1 and 2, we check to see how far the given
530     * coordinate (x,y) is from the corresponding edge,
531     * and then add the players location, which gives
532     * a distance.
533     */
534     else if (pl->ob->map == map->tile_map[0])
535     {
536 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
537 root 1.4 pl->do_los = 1;
538 root 1.2 }
539 root 1.4 else if (pl->ob->map == map->tile_map[2])
540     {
541 root 1.13 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
542 root 1.4 pl->do_los = 1;
543 root 1.2 }
544 root 1.4 else if (pl->ob->map == map->tile_map[1])
545     {
546 root 1.13 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
547 root 1.4 pl->do_los = 1;
548 root 1.2 }
549 root 1.4 else if (pl->ob->map == map->tile_map[3])
550     {
551 root 1.13 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
552 root 1.4 pl->do_los = 1;
553 root 1.2 }
554 elmex 1.1 }
555     }
556    
557 root 1.48 static const int season_darkness[5][HOURS_PER_DAY] = {
558     /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
559     { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
560     { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
561     { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
562     { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
563     { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
564 root 1.47 };
565    
566 root 1.48 /*
567     * Tell players the time and compute the darkness level for all maps in the game.
568     * MUST be called exactly once per hour.
569     */
570 root 1.47 void
571 root 1.48 maptile::adjust_daylight ()
572 root 1.47 {
573     timeofday_t tod;
574    
575     get_tod (&tod);
576    
577 root 1.48 // log the time to log-1 every hour, and to chat every day
578     {
579     char todbuf[512];
580 root 1.47
581 root 1.48 format_tod (todbuf, sizeof (todbuf), &tod);
582 root 1.47
583 root 1.48 for_all_players (pl)
584     pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
585     }
586 root 1.47
587     /* If the light level isn't changing, no reason to do all
588     * the work below.
589     */
590 root 1.48 sint8 new_darkness = season_darkness[tod.season][tod.hour];
591    
592     if (new_darkness == maptile::outdoor_darkness)
593 root 1.47 return;
594    
595 root 1.48 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
596     new_darkness > maptile::outdoor_darkness
597     ? "It becomes darker."
598     : "It becomes brighter.");
599 root 1.47
600 root 1.48 maptile::outdoor_darkness = new_darkness;
601 root 1.47
602 root 1.48 // we simply update the los for all players, which is unnecessarily
603     // costly, but should do for the moment.
604     for_all_players (pl)
605     pl->do_los = 1;
606 root 1.47 }
607    
608 elmex 1.1 /*
609     * make_sure_seen: The object is supposed to be visible through walls, thus
610     * check if any players are nearby, and edit their LOS array.
611     */
612 root 1.4 void
613     make_sure_seen (const object *op)
614     {
615 root 1.11 for_all_players (pl)
616 root 1.4 if (pl->ob->map == op->map &&
617 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
618     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
619 root 1.49 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
620 elmex 1.1 }
621    
622     /*
623     * make_sure_not_seen: The object which is supposed to be visible through
624     * walls has just been removed from the map, so update the los of any
625     * players within its range
626     */
627 root 1.4 void
628     make_sure_not_seen (const object *op)
629     {
630 root 1.11 for_all_players (pl)
631 root 1.4 if (pl->ob->map == op->map &&
632 root 1.10 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
633     pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
634 root 1.4 pl->do_los = 1;
635 elmex 1.1 }
636 root 1.52