ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.49
Committed: Tue Dec 23 22:03:06 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.48: +78 -76 lines
Log Message:
improve los, fix bugs

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 *
8 * Deliantra is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 #include <bench.h>//D
25 #include <global.h>
26 #include <cmath>
27
28 // los flags
29 enum {
30 FLG_XI = 0x01, // we have an x-parent
31 FLG_YI = 0x02, // we have an y-parent
32 FLG_BLOCKED = 0x04, // this space blocks the view
33 FLG_QUEUED = 0x80 // already queued in queue, or border
34 };
35
36 struct los_info
37 {
38 uint8 flags; // FLG_xxx
39 uint8 culled; // culled from "tree"
40 uint8 visible;
41 uint8 pad0;
42
43 sint8 xo, yo; // obscure angle
44 sint8 xe, ye; // angle deviation
45 };
46
47 // temporary storage for the los algorithm,
48 // one los_info for each lightable map space
49 static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
50
51 struct point
52 {
53 sint8 x, y;
54 };
55
56 // minimum size, but must be a power of two
57 #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
58
59 // a queue of spaces to calculate
60 static point queue [QUEUE_LENGTH];
61 static int q1, q2; // queue start, end
62
63 /*
64 * Clears/initialises the los-array associated to the player
65 * controlling the object.
66 */
67 void
68 player::clear_los (sint8 value)
69 {
70 memset (los, value, sizeof (los));
71 }
72
73 // enqueue a single mapspace, but only if it hasn't
74 // been enqueued yet.
75 static void
76 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
77 {
78 sint8 x = LOS_X0 + dx;
79 sint8 y = LOS_Y0 + dy;
80
81 los_info &l = los[x][y];
82
83 l.flags |= flags;
84
85 if (l.flags & FLG_QUEUED)
86 return;
87
88 l.flags |= FLG_QUEUED;
89
90 queue[q1].x = dx;
91 queue[q1].y = dy;
92
93 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
94 }
95
96 // run the los algorithm
97 // this is a variant of a spiral los algorithm taken from
98 // http://www.geocities.com/temerra/los_rays.html
99 // which has been simplified and changed considerably, but
100 // still is basically the same algorithm.
101 static void
102 calculate_los (player *pl)
103 {
104 {
105 // we keep one line for ourselves, for the border flag
106 // so the client area is actually MAP_CLIENT_(X|Y) - 2
107 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
108 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
109
110 // create borders, the corners are not touched
111 for (int dx = -half_x; dx <= half_x; ++dx)
112 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
113 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
114
115 for (int dy = -half_y; dy <= half_y; ++dy)
116 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
117 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
118
119 // now reset the los area and also add blocked flags
120 // which supposedly is faster than doing it inside the
121 // spiral path algorithm below, except when very little
122 // area is visible, in which case it is slower, evening
123 // out los calculation times between large and small los maps.
124 // apply_lights also iterates over this area, maybe these
125 // two passes could be combined somehow.
126 rectangular_mapspace_iterate_begin (pl->observe, -half_x, half_x, -half_y, half_y)
127 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
128 l.flags = m && m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
129 rectangular_mapspace_iterate_end
130 }
131
132 q1 = 0; q2 = 0; // initialise queue, not strictly required
133 enqueue (0, 0); // enqueue center
134
135 // treat the origin specially
136 los[LOS_X0][LOS_Y0].visible = 1;
137 pl->los[LOS_X0][LOS_Y0] = 0;
138
139 // loop over all enqueued points until the queue is empty
140 // the order in which this is done ensures that we
141 // never touch a mapspace whose input spaces we haven't checked
142 // yet.
143 while (q1 != q2)
144 {
145 sint8 dx = queue[q2].x;
146 sint8 dy = queue[q2].y;
147
148 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
149
150 sint8 x = LOS_X0 + dx;
151 sint8 y = LOS_Y0 + dy;
152
153 los_info &l = los[x][y];
154
155 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
156 {
157 l.culled = 1;
158 l.xo = l.yo = l.xe = l.ye = 0;
159
160 // check contributing spaces, first horizontal
161 if (expect_true (l.flags & FLG_XI))
162 {
163 los_info *xi = &los[x - sign (dx)][y];
164
165 // don't cull unless obscured
166 l.culled &= !xi->visible;
167
168 /* merge input space */
169 if (expect_false (xi->xo || xi->yo))
170 {
171 // The X input can provide two main pieces of information:
172 // 1. Progressive X obscurity.
173 // 2. Recessive Y obscurity.
174
175 // Progressive X obscurity, favouring recessive input angle
176 if (xi->xe > 0 && l.xo == 0)
177 {
178 l.xe = xi->xe - xi->yo;
179 l.ye = xi->ye + xi->yo;
180 l.xo = xi->xo;
181 l.yo = xi->yo;
182 }
183
184 // Recessive Y obscurity
185 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
186 {
187 l.ye = xi->yo + xi->ye;
188 l.xe = xi->xe - xi->yo;
189 l.xo = xi->xo;
190 l.yo = xi->yo;
191 }
192 }
193 }
194
195 // check contributing spaces, last vertical, identical structure
196 if (expect_true (l.flags & FLG_YI))
197 {
198 los_info *yi = &los[x][y - sign (dy)];
199
200 // don't cull unless obscured
201 l.culled &= !yi->visible;
202
203 /* merge input space */
204 if (expect_false (yi->yo || yi->xo))
205 {
206 // The Y input can provide two main pieces of information:
207 // 1. Progressive Y obscurity.
208 // 2. Recessive X obscurity.
209
210 // Progressive Y obscurity, favouring recessive input angle
211 if (yi->ye > 0 && l.yo == 0)
212 {
213 l.ye = yi->ye - yi->xo;
214 l.xe = yi->xe + yi->xo;
215 l.yo = yi->yo;
216 l.xo = yi->xo;
217 }
218
219 // Recessive X obscurity
220 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
221 {
222 l.xe = yi->xo + yi->xe;
223 l.ye = yi->ye - yi->xo;
224 l.yo = yi->yo;
225 l.xo = yi->xo;
226 }
227 }
228 }
229
230 if (l.flags & FLG_BLOCKED)
231 {
232 l.xo = l.xe = abs (dx);
233 l.yo = l.ye = abs (dy);
234
235 // we obscure dependents, but might be visible
236 // copy the los from the square towards the player,
237 // so outward diagonal corners are lit.
238 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
239
240 l.visible = false;
241 }
242 else
243 {
244 // we are not blocked, so calculate visibility, by checking
245 // whether we are inside or outside the shadow
246 l.visible = (l.xe <= 0 || l.xe > l.xo)
247 && (l.ye <= 0 || l.ye > l.yo);
248
249 pl->los[x][y] = l.culled ? LOS_BLOCKED
250 : l.visible ? 0
251 : 3;
252 }
253
254 }
255
256 // Expands by the unit length in each component's current direction.
257 // If a component has no direction, then it is expanded in both of its
258 // positive and negative directions.
259 if (!l.culled)
260 {
261 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
262 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
263 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
264 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
265 }
266 }
267 }
268
269 /* returns true if op carries one or more lights
270 * This is a trivial function now days, but it used to
271 * be a bit longer. Probably better for callers to just
272 * check the op->glow_radius instead of calling this.
273 */
274 int
275 has_carried_lights (const object *op)
276 {
277 /* op may glow! */
278 if (op->glow_radius > 0)
279 return 1;
280
281 return 0;
282 }
283
284 /* radius, distance => lightness adjust */
285 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
286 static sint8 vision_atten[MAX_DARKNESS + 1][MAX_DARKNESS * 3 / 2 + 1];
287
288 static struct los_init
289 {
290 los_init ()
291 {
292 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
293 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
294
295 /* for lights */
296 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
297 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
298 {
299 // max intensity
300 int intensity = min (LOS_MAX, abs (radius) + 1);
301
302 // actual intensity
303 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
304
305 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
306 ? min (3, intensity)
307 : LOS_MAX - intensity;
308 }
309
310 /* for general vision */
311 for (int radius = 0; radius <= MAX_DARKNESS; ++radius)
312 for (int distance = 0; distance <= MAX_DARKNESS * 3 / 2; ++distance)
313 {
314 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
315 }
316 }
317 } los_init;
318
319 sint8
320 los_brighten (sint8 b, sint8 l)
321 {
322 return b == LOS_BLOCKED ? b : min (b, l);
323 }
324
325 sint8
326 los_darken (sint8 b, sint8 l)
327 {
328 return max (b, l);
329 }
330
331 template<sint8 change_it (sint8, sint8)>
332 static void
333 apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
334 {
335 // min or max the circular area around basex, basey
336 dx += LOS_X0;
337 dy += LOS_Y0;
338
339 int hx = pl->ns->mapx / 2;
340 int hy = pl->ns->mapy / 2;
341
342 int ax0 = max (LOS_X0 - hx, dx - light);
343 int ay0 = max (LOS_Y0 - hy, dy - light);
344 int ax1 = min (dx + light, LOS_X0 + hx);
345 int ay1 = min (dy + light, LOS_Y0 + hy);
346
347 for (int ax = ax0; ax <= ax1; ax++)
348 for (int ay = ay0; ay <= ay1; ay++)
349 pl->los[ax][ay] =
350 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
351 }
352
353 /* add light, by finding all (non-null) nearby light sources, then
354 * mark those squares specially.
355 */
356 static void
357 apply_lights (player *pl)
358 {
359 object *op = pl->observe;
360 int darklevel = op->map->darklevel ();
361
362 /* If the player can see in the dark, lower the darklevel for him */
363 if (op->flag [FLAG_SEE_IN_DARK])
364 darklevel = max (0, darklevel - 2);
365
366 int half_x = pl->ns->mapx / 2;
367 int half_y = pl->ns->mapy / 2;
368
369 int pass2 = 0; // negative lights have an extra pass
370
371 if (!darklevel)
372 pass2 = 1;
373 else
374 {
375 /* first, make everything totally dark */
376 for (int dx = -half_x; dx <= half_x; dx++)
377 for (int dy = -half_x; dy <= half_y; dy++)
378 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
379
380 /*
381 * Only process the area of interest.
382 * the basex, basey values represent the position in the op->contr->los
383 * array. Its easier to just increment them here (and start with the right
384 * value) than to recalculate them down below.
385 */
386 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
387 if (m)
388 {
389 mapspace &ms = m->at (nx, ny);
390 ms.update ();
391 sint8 light = ms.light;
392
393 if (expect_false (light))
394 if (light < 0)
395 pass2 = 1;
396 else
397 apply_light<los_brighten> (pl, dx, dy, light, light_atten [light + MAX_LIGHT_RADIUS]);
398 }
399 rectangular_mapspace_iterate_end
400
401 /* grant some vision to the player, based on the darklevel */
402 {
403 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
404
405 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
406 }
407 }
408
409 // possibly do 2nd pass for rare negative glow radii
410 // for effect, those are always considered to be stronger than anything else
411 // but they can't darken a place completely
412 if (pass2)
413 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
414 if (m)
415 {
416 mapspace &ms = m->at (nx, ny);
417 ms.update ();
418 sint8 light = ms.light;
419
420 if (expect_false (light < 0))
421 apply_light<los_darken> (pl, dx, dy, -light, light_atten [light + MAX_LIGHT_RADIUS]);
422 }
423 rectangular_mapspace_iterate_end
424 }
425
426 /* blinded_sight() - sets all viewable squares to blocked except
427 * for the one the central one that the player occupies. A little
428 * odd that you can see yourself (and what your standing on), but
429 * really need for any reasonable game play.
430 */
431 static void
432 blinded_sight (player *pl)
433 {
434 pl->los[LOS_X0][LOS_Y0] = 1;
435 }
436
437 /*
438 * update_los() recalculates the array which specifies what is
439 * visible for the given player-object.
440 */
441 void
442 player::update_los ()
443 {
444 if (ob->flag [FLAG_REMOVED])//D really needed?
445 return;
446
447 if (ob->flag [FLAG_WIZLOOK])
448 clear_los (0);
449 else if (observe->flag [FLAG_BLIND]) /* player is blind */
450 {
451 clear_los ();
452 blinded_sight (this);
453 }
454 else
455 {
456 clear_los ();
457 calculate_los (this);
458 apply_lights (this);
459 }
460
461 if (observe->flag [FLAG_XRAYS])
462 for (int dx = -2; dx <= 2; dx++)
463 for (int dy = -2; dy <= 2; dy++)
464 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
465 }
466
467 /* update all_map_los is like update_all_los below,
468 * but updates everyone on the map, no matter where they
469 * are. This generally should not be used, as a per
470 * specific map change doesn't make much sense when tiling
471 * is considered (lowering darkness would certainly be a
472 * strange effect if done on a tile map, as it makes
473 * the distinction between maps much more obvious to the
474 * players, which is should not be.
475 * Currently, this function is called from the
476 * change_map_light function
477 */
478 void
479 update_all_map_los (maptile *map)
480 {
481 for_all_players_on_map (pl, map)
482 pl->do_los = 1;
483 }
484
485 /*
486 * This function makes sure that update_los() will be called for all
487 * players on the given map within the next frame.
488 * It is triggered by removal or inserting of objects which blocks
489 * the sight in the map.
490 * Modified by MSW 2001-07-12 to take a coordinate of the changed
491 * position, and to also take map tiling into account. This change
492 * means that just being on the same map is not sufficient - the
493 * space that changes must be withing your viewable area.
494 *
495 * map is the map that changed, x and y are the coordinates.
496 */
497 void
498 update_all_los (const maptile *map, int x, int y)
499 {
500 map->at (x, y).invalidate ();
501
502 for_all_players (pl)
503 {
504 /* Player should not have a null map, but do this
505 * check as a safety
506 */
507 if (!pl->ob || !pl->ob->map || !pl->ns)
508 continue;
509
510 /* Same map is simple case - see if pl is close enough.
511 * Note in all cases, we did the check for same map first,
512 * and then see if the player is close enough and update
513 * los if that is the case. If the player is on the
514 * corresponding map, but not close enough, then the
515 * player can't be on another map that may be closer,
516 * so by setting it up this way, we trim processing
517 * some.
518 */
519 if (pl->ob->map == map)
520 {
521 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
522 pl->do_los = 1;
523 }
524
525 /* Now we check to see if player is on adjacent
526 * maps to the one that changed and also within
527 * view. The tile_maps[] could be null, but in that
528 * case it should never match the pl->ob->map, so
529 * we want ever try to dereference any of the data in it.
530 *
531 * The logic for 0 and 3 is to see how far the player is
532 * from the edge of the map (height/width) - pl->ob->(x,y)
533 * and to add current position on this map - that gives a
534 * distance.
535 * For 1 and 2, we check to see how far the given
536 * coordinate (x,y) is from the corresponding edge,
537 * and then add the players location, which gives
538 * a distance.
539 */
540 else if (pl->ob->map == map->tile_map[0])
541 {
542 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
543 pl->do_los = 1;
544 }
545 else if (pl->ob->map == map->tile_map[2])
546 {
547 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
548 pl->do_los = 1;
549 }
550 else if (pl->ob->map == map->tile_map[1])
551 {
552 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
553 pl->do_los = 1;
554 }
555 else if (pl->ob->map == map->tile_map[3])
556 {
557 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
558 pl->do_los = 1;
559 }
560 }
561 }
562
563 static const int season_darkness[5][HOURS_PER_DAY] = {
564 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
565 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
566 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
567 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
568 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
569 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
570 };
571
572 /*
573 * Tell players the time and compute the darkness level for all maps in the game.
574 * MUST be called exactly once per hour.
575 */
576 void
577 maptile::adjust_daylight ()
578 {
579 timeofday_t tod;
580
581 get_tod (&tod);
582
583 // log the time to log-1 every hour, and to chat every day
584 {
585 char todbuf[512];
586
587 format_tod (todbuf, sizeof (todbuf), &tod);
588
589 for_all_players (pl)
590 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
591 }
592
593 /* If the light level isn't changing, no reason to do all
594 * the work below.
595 */
596 sint8 new_darkness = season_darkness[tod.season][tod.hour];
597
598 if (new_darkness == maptile::outdoor_darkness)
599 return;
600
601 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
602 new_darkness > maptile::outdoor_darkness
603 ? "It becomes darker."
604 : "It becomes brighter.");
605
606 maptile::outdoor_darkness = new_darkness;
607
608 // we simply update the los for all players, which is unnecessarily
609 // costly, but should do for the moment.
610 for_all_players (pl)
611 pl->do_los = 1;
612 }
613
614 /*
615 * make_sure_seen: The object is supposed to be visible through walls, thus
616 * check if any players are nearby, and edit their LOS array.
617 */
618 void
619 make_sure_seen (const object *op)
620 {
621 for_all_players (pl)
622 if (pl->ob->map == op->map &&
623 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
624 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
625 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
626 }
627
628 /*
629 * make_sure_not_seen: The object which is supposed to be visible through
630 * walls has just been removed from the map, so update the los of any
631 * players within its range
632 */
633 void
634 make_sure_not_seen (const object *op)
635 {
636 for_all_players (pl)
637 if (pl->ob->map == op->map &&
638 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
639 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
640 pl->do_los = 1;
641 }