ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/common/los.C
Revision: 1.51
Committed: Wed Dec 24 01:37:23 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.50: +10 -10 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) 2002,2007 Mark Wedel & Crossfire Development Team
6 * Copyright (©) 1992,2007 Frank Tore Johansen
7 *
8 * Deliantra is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 #include <global.h>
25 #include <cmath>
26
27 #define SEE_IN_DARK_RADIUS 3
28
29 // los flags
30 enum {
31 FLG_XI = 0x01, // we have an x-parent
32 FLG_YI = 0x02, // we have an y-parent
33 FLG_BLOCKED = 0x04, // this space blocks the view
34 FLG_QUEUED = 0x80 // already queued in queue, or border
35 };
36
37 struct los_info
38 {
39 uint8 flags; // FLG_xxx
40 uint8 culled; // culled from "tree"
41 uint8 visible;
42 uint8 pad0;
43
44 sint8 xo, yo; // obscure angle
45 sint8 xe, ye; // angle deviation
46 };
47
48 // temporary storage for the los algorithm,
49 // one los_info for each lightable map space
50 static los_info los[MAP_CLIENT_X][MAP_CLIENT_Y];
51
52 struct point
53 {
54 sint8 x, y;
55 };
56
57 // minimum size, but must be a power of two
58 #define QUEUE_LENGTH ((MAP_CLIENT_X + MAP_CLIENT_Y) * 2)
59
60 // a queue of spaces to calculate
61 static point queue [QUEUE_LENGTH];
62 static int q1, q2; // queue start, end
63
64 /*
65 * Clears/initialises the los-array associated to the player
66 * controlling the object.
67 */
68 void
69 player::clear_los (sint8 value)
70 {
71 memset (los, value, sizeof (los));
72 }
73
74 // enqueue a single mapspace, but only if it hasn't
75 // been enqueued yet.
76 static void
77 enqueue (sint8 dx, sint8 dy, uint8 flags = 0)
78 {
79 sint8 x = LOS_X0 + dx;
80 sint8 y = LOS_Y0 + dy;
81
82 los_info &l = los[x][y];
83
84 l.flags |= flags;
85
86 if (l.flags & FLG_QUEUED)
87 return;
88
89 l.flags |= FLG_QUEUED;
90
91 queue[q1].x = dx;
92 queue[q1].y = dy;
93
94 q1 = (q1 + 1) & (QUEUE_LENGTH - 1);
95 }
96
97 // run the los algorithm
98 // this is a variant of a spiral los algorithm taken from
99 // http://www.geocities.com/temerra/los_rays.html
100 // which has been simplified and changed considerably, but
101 // still is basically the same algorithm.
102 static void
103 calculate_los (player *pl)
104 {
105 {
106 // we keep one line for ourselves, for the border flag
107 // so the client area is actually MAP_CLIENT_(X|Y) - 2
108 int half_x = min (LOS_X0 - 1, pl->ns->mapx / 2);
109 int half_y = min (LOS_Y0 - 1, pl->ns->mapy / 2);
110
111 // create borders, the corners are not touched
112 for (int dx = -half_x; dx <= half_x; ++dx)
113 los [dx + LOS_X0][LOS_Y0 - (half_y + 1)].flags =
114 los [dx + LOS_X0][LOS_Y0 + (half_y + 1)].flags = FLG_QUEUED;
115
116 for (int dy = -half_y; dy <= half_y; ++dy)
117 los [LOS_X0 - (half_x + 1)][dy + LOS_Y0].flags =
118 los [LOS_X0 + (half_x + 1)][dy + LOS_Y0].flags = FLG_QUEUED;
119
120 // now reset the los area and also add blocked flags
121 // which supposedly is faster than doing it inside the
122 // spiral path algorithm below, except when very little
123 // area is visible, in which case it is slower, evening
124 // out los calculation times between large and small los maps.
125 // apply_lights also iterates over this area, maybe these
126 // two passes could be combined somehow.
127 rectangular_mapspace_iterate_begin (pl->observe, -half_x, half_x, -half_y, half_y)
128 los_info &l = los [LOS_X0 + dx][LOS_Y0 + dy];
129 l.flags = m && m->at (nx, ny).flags () & P_BLOCKSVIEW ? FLG_BLOCKED : 0;
130 rectangular_mapspace_iterate_end
131 }
132
133 q1 = 0; q2 = 0; // initialise queue, not strictly required
134 enqueue (0, 0); // enqueue center
135
136 // treat the origin specially
137 los[LOS_X0][LOS_Y0].visible = 1;
138 pl->los[LOS_X0][LOS_Y0] = 0;
139
140 // loop over all enqueued points until the queue is empty
141 // the order in which this is done ensures that we
142 // never touch a mapspace whose input spaces we haven't checked
143 // yet.
144 while (q1 != q2)
145 {
146 sint8 dx = queue[q2].x;
147 sint8 dy = queue[q2].y;
148
149 q2 = (q2 + 1) & (QUEUE_LENGTH - 1);
150
151 sint8 x = LOS_X0 + dx;
152 sint8 y = LOS_Y0 + dy;
153
154 los_info &l = los[x][y];
155
156 if (expect_true (l.flags & (FLG_XI | FLG_YI)))
157 {
158 l.culled = 1;
159 l.xo = l.yo = l.xe = l.ye = 0;
160
161 // check contributing spaces, first horizontal
162 if (expect_true (l.flags & FLG_XI))
163 {
164 los_info *xi = &los[x - sign (dx)][y];
165
166 // don't cull unless obscured
167 l.culled &= !xi->visible;
168
169 /* merge input space */
170 if (expect_false (xi->xo || xi->yo))
171 {
172 // The X input can provide two main pieces of information:
173 // 1. Progressive X obscurity.
174 // 2. Recessive Y obscurity.
175
176 // Progressive X obscurity, favouring recessive input angle
177 if (xi->xe > 0 && l.xo == 0)
178 {
179 l.xe = xi->xe - xi->yo;
180 l.ye = xi->ye + xi->yo;
181 l.xo = xi->xo;
182 l.yo = xi->yo;
183 }
184
185 // Recessive Y obscurity
186 if (xi->ye <= 0 && xi->yo > 0 && xi->xe > 0)
187 {
188 l.ye = xi->yo + xi->ye;
189 l.xe = xi->xe - xi->yo;
190 l.xo = xi->xo;
191 l.yo = xi->yo;
192 }
193 }
194 }
195
196 // check contributing spaces, last vertical, identical structure
197 if (expect_true (l.flags & FLG_YI))
198 {
199 los_info *yi = &los[x][y - sign (dy)];
200
201 // don't cull unless obscured
202 l.culled &= !yi->visible;
203
204 /* merge input space */
205 if (expect_false (yi->yo || yi->xo))
206 {
207 // The Y input can provide two main pieces of information:
208 // 1. Progressive Y obscurity.
209 // 2. Recessive X obscurity.
210
211 // Progressive Y obscurity, favouring recessive input angle
212 if (yi->ye > 0 && l.yo == 0)
213 {
214 l.ye = yi->ye - yi->xo;
215 l.xe = yi->xe + yi->xo;
216 l.yo = yi->yo;
217 l.xo = yi->xo;
218 }
219
220 // Recessive X obscurity
221 if (yi->xe <= 0 && yi->xo > 0 && yi->ye > 0)
222 {
223 l.xe = yi->xo + yi->xe;
224 l.ye = yi->ye - yi->xo;
225 l.yo = yi->yo;
226 l.xo = yi->xo;
227 }
228 }
229 }
230
231 if (l.flags & FLG_BLOCKED)
232 {
233 l.xo = l.xe = abs (dx);
234 l.yo = l.ye = abs (dy);
235
236 // we obscure dependents, but might be visible
237 // copy the los from the square towards the player,
238 // so outward diagonal corners are lit.
239 pl->los[x][y] = los[x - sign0 (dx)][y - sign0 (dy)].visible ? 0 : LOS_BLOCKED;
240
241 l.visible = false;
242 }
243 else
244 {
245 // we are not blocked, so calculate visibility, by checking
246 // whether we are inside or outside the shadow
247 l.visible = (l.xe <= 0 || l.xe > l.xo)
248 && (l.ye <= 0 || l.ye > l.yo);
249
250 pl->los[x][y] = l.culled ? LOS_BLOCKED
251 : l.visible ? 0
252 : 3;
253 }
254
255 }
256
257 // Expands by the unit length in each component's current direction.
258 // If a component has no direction, then it is expanded in both of its
259 // positive and negative directions.
260 if (!l.culled)
261 {
262 if (dx >= 0) enqueue (dx + 1, dy, FLG_XI);
263 if (dx <= 0) enqueue (dx - 1, dy, FLG_XI);
264 if (dy >= 0) enqueue (dx, dy + 1, FLG_YI);
265 if (dy <= 0) enqueue (dx, dy - 1, FLG_YI);
266 }
267 }
268 }
269
270 /* returns true if op carries one or more lights
271 * This is a trivial function now days, but it used to
272 * be a bit longer. Probably better for callers to just
273 * check the op->glow_radius instead of calling this.
274 */
275 int
276 has_carried_lights (const object *op)
277 {
278 /* op may glow! */
279 if (op->glow_radius > 0)
280 return 1;
281
282 return 0;
283 }
284
285 /* radius, distance => lightness adjust */
286 static sint8 light_atten[MAX_LIGHT_RADIUS * 2 + 1][MAX_LIGHT_RADIUS * 3 / 2 + 1];
287 static sint8 vision_atten[MAX_DARKNESS + SEE_IN_DARK_RADIUS + 1][(MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2 + 1];
288
289 static struct los_init
290 {
291 los_init ()
292 {
293 assert (("QUEUE_LENGTH, MAP_CLIENT_X and MAP_CLIENT_Y *must* be powers of two",
294 !(QUEUE_LENGTH & (QUEUE_LENGTH - 1))));
295
296 /* for lights */
297 for (int radius = -MAX_LIGHT_RADIUS; radius <= MAX_LIGHT_RADIUS; ++radius)
298 for (int distance = 0; distance <= MAX_LIGHT_RADIUS * 3 / 2; ++distance)
299 {
300 // max intensity
301 int intensity = min (LOS_MAX, abs (radius) + 1);
302
303 // actual intensity
304 intensity = max (0, lerp_rd (distance, 0, abs (radius) + 1, intensity, 0));
305
306 light_atten [radius + MAX_LIGHT_RADIUS][distance] = radius < 0
307 ? min (3, intensity)
308 : LOS_MAX - intensity;
309 }
310
311 /* for general vision */
312 for (int radius = 0; radius <= MAX_DARKNESS + SEE_IN_DARK_RADIUS; ++radius)
313 for (int distance = 0; distance <= (MAX_DARKNESS + SEE_IN_DARK_RADIUS) * 3 / 2; ++distance)
314 vision_atten [radius][distance] = distance <= radius ? 3 : 4;
315 }
316 } los_init;
317
318 sint8
319 los_brighten (sint8 b, sint8 l)
320 {
321 return b == LOS_BLOCKED ? b : min (b, l);
322 }
323
324 sint8
325 los_darken (sint8 b, sint8 l)
326 {
327 return max (b, l);
328 }
329
330 template<sint8 change_it (sint8, sint8)>
331 static void
332 apply_light (player *pl, int dx, int dy, int light, const sint8 *atten_table)
333 {
334 // min or max the circular area around basex, basey
335 dx += LOS_X0;
336 dy += LOS_Y0;
337
338 int hx = pl->ns->mapx / 2;
339 int hy = pl->ns->mapy / 2;
340
341 int ax0 = max (LOS_X0 - hx, dx - light);
342 int ay0 = max (LOS_Y0 - hy, dy - light);
343 int ax1 = min (dx + light, LOS_X0 + hx);
344 int ay1 = min (dy + light, LOS_Y0 + hy);
345
346 for (int ax = ax0; ax <= ax1; ax++)
347 for (int ay = ay0; ay <= ay1; ay++)
348 pl->los[ax][ay] =
349 change_it (pl->los[ax][ay], atten_table [idistance (ax - dx, ay - dy)]);
350 }
351
352 /* add light, by finding all (non-null) nearby light sources, then
353 * mark those squares specially.
354 */
355 static void
356 apply_lights (player *pl)
357 {
358 object *op = pl->observe;
359 int darklevel = op->map->darklevel ();
360
361 int half_x = pl->ns->mapx / 2;
362 int half_y = pl->ns->mapy / 2;
363
364 int pass2 = 0; // negative lights have an extra pass
365
366 if (!darklevel)
367 pass2 = 1;
368 else
369 {
370 /* first, make everything totally dark */
371 for (int dx = -half_x; dx <= half_x; dx++)
372 for (int dy = -half_x; dy <= half_y; dy++)
373 max_it (pl->los[dx + LOS_X0][dy + LOS_Y0], LOS_MAX);
374
375 /*
376 * Only process the area of interest.
377 * the basex, basey values represent the position in the op->contr->los
378 * array. Its easier to just increment them here (and start with the right
379 * value) than to recalculate them down below.
380 */
381 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
382 if (m)
383 {
384 mapspace &ms = m->at (nx, ny);
385 ms.update ();
386 sint8 light = ms.light;
387
388 if (expect_false (light))
389 if (light < 0)
390 pass2 = 1;
391 else
392 apply_light<los_brighten> (pl, dx, dy, light, light_atten [light + MAX_LIGHT_RADIUS]);
393 }
394 rectangular_mapspace_iterate_end
395
396 /* grant some vision to the player, based on the darklevel */
397 {
398 int light = clamp (MAX_DARKNESS - darklevel, 0, MAX_DARKNESS);
399
400 /* If the player can see in the dark, lower the darklevel for him */
401 if (op->flag [FLAG_SEE_IN_DARK])
402 light += SEE_IN_DARK_RADIUS;
403
404 apply_light<los_brighten> (pl, 0, 0, light, vision_atten [light]);
405 }
406 }
407
408 // possibly do 2nd pass for rare negative glow radii
409 // for effect, those are always considered to be stronger than anything else
410 // but they can't darken a place completely
411 if (pass2)
412 rectangular_mapspace_iterate_begin (pl->observe, -half_x - MAX_LIGHT_RADIUS, half_x + MAX_LIGHT_RADIUS, -half_y - MAX_LIGHT_RADIUS, half_y + MAX_LIGHT_RADIUS)
413 if (m)
414 {
415 mapspace &ms = m->at (nx, ny);
416 ms.update ();
417 sint8 light = ms.light;
418
419 if (expect_false (light < 0))
420 apply_light<los_darken> (pl, dx, dy, -light, light_atten [light + MAX_LIGHT_RADIUS]);
421 }
422 rectangular_mapspace_iterate_end
423 }
424
425 /* blinded_sight() - sets all viewable squares to blocked except
426 * for the one the central one that the player occupies. A little
427 * odd that you can see yourself (and what your standing on), but
428 * really need for any reasonable game play.
429 */
430 static void
431 blinded_sight (player *pl)
432 {
433 pl->los[LOS_X0][LOS_Y0] = 1;
434 }
435
436 /*
437 * update_los() recalculates the array which specifies what is
438 * visible for the given player-object.
439 */
440 void
441 player::update_los ()
442 {
443 if (ob->flag [FLAG_REMOVED])//D really needed?
444 return;
445
446 if (ob->flag [FLAG_WIZLOOK])
447 clear_los (0);
448 else if (observe->flag [FLAG_BLIND]) /* player is blind */
449 {
450 clear_los ();
451 blinded_sight (this);
452 }
453 else
454 {
455 clear_los ();
456 calculate_los (this);
457 apply_lights (this);
458 }
459
460 if (observe->flag [FLAG_XRAYS])
461 for (int dx = -2; dx <= 2; dx++)
462 for (int dy = -2; dy <= 2; dy++)
463 min_it (los[dx + LOS_X0][dy + LOS_Y0], 1);
464 }
465
466 /* update all_map_los is like update_all_los below,
467 * but updates everyone on the map, no matter where they
468 * are. This generally should not be used, as a per
469 * specific map change doesn't make much sense when tiling
470 * is considered (lowering darkness would certainly be a
471 * strange effect if done on a tile map, as it makes
472 * the distinction between maps much more obvious to the
473 * players, which is should not be.
474 * Currently, this function is called from the
475 * change_map_light function
476 */
477 void
478 update_all_map_los (maptile *map)
479 {
480 for_all_players_on_map (pl, map)
481 pl->do_los = 1;
482 }
483
484 /*
485 * This function makes sure that update_los() will be called for all
486 * players on the given map within the next frame.
487 * It is triggered by removal or inserting of objects which blocks
488 * the sight in the map.
489 * Modified by MSW 2001-07-12 to take a coordinate of the changed
490 * position, and to also take map tiling into account. This change
491 * means that just being on the same map is not sufficient - the
492 * space that changes must be withing your viewable area.
493 *
494 * map is the map that changed, x and y are the coordinates.
495 */
496 void
497 update_all_los (const maptile *map, int x, int y)
498 {
499 map->at (x, y).invalidate ();
500
501 for_all_players (pl)
502 {
503 /* Player should not have a null map, but do this
504 * check as a safety
505 */
506 if (!pl->ob || !pl->ob->map || !pl->ns)
507 continue;
508
509 /* Same map is simple case - see if pl is close enough.
510 * Note in all cases, we did the check for same map first,
511 * and then see if the player is close enough and update
512 * los if that is the case. If the player is on the
513 * corresponding map, but not close enough, then the
514 * player can't be on another map that may be closer,
515 * so by setting it up this way, we trim processing
516 * some.
517 */
518 if (pl->ob->map == map)
519 {
520 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
521 pl->do_los = 1;
522 }
523
524 /* Now we check to see if player is on adjacent
525 * maps to the one that changed and also within
526 * view. The tile_maps[] could be null, but in that
527 * case it should never match the pl->ob->map, so
528 * we want ever try to dereference any of the data in it.
529 *
530 * The logic for 0 and 3 is to see how far the player is
531 * from the edge of the map (height/width) - pl->ob->(x,y)
532 * and to add current position on this map - that gives a
533 * distance.
534 * For 1 and 2, we check to see how far the given
535 * coordinate (x,y) is from the corresponding edge,
536 * and then add the players location, which gives
537 * a distance.
538 */
539 else if (pl->ob->map == map->tile_map[0])
540 {
541 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (y + map->tile_map[0]->height - pl->ob->y) <= pl->ns->mapy / 2))
542 pl->do_los = 1;
543 }
544 else if (pl->ob->map == map->tile_map[2])
545 {
546 if ((abs (pl->ob->x - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y + map->height - y) <= pl->ns->mapy / 2))
547 pl->do_los = 1;
548 }
549 else if (pl->ob->map == map->tile_map[1])
550 {
551 if ((abs (pl->ob->x + map->width - x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
552 pl->do_los = 1;
553 }
554 else if (pl->ob->map == map->tile_map[3])
555 {
556 if ((abs (x + map->tile_map[3]->width - pl->ob->x) <= pl->ns->mapx / 2) && (abs (pl->ob->y - y) <= pl->ns->mapy / 2))
557 pl->do_los = 1;
558 }
559 }
560 }
561
562 static const int season_darkness[5][HOURS_PER_DAY] = {
563 /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 */
564 { 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5 },
565 { 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 },
566 { 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 4 },
567 { 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4 },
568 { 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4 }
569 };
570
571 /*
572 * Tell players the time and compute the darkness level for all maps in the game.
573 * MUST be called exactly once per hour.
574 */
575 void
576 maptile::adjust_daylight ()
577 {
578 timeofday_t tod;
579
580 get_tod (&tod);
581
582 // log the time to log-1 every hour, and to chat every day
583 {
584 char todbuf[512];
585
586 format_tod (todbuf, sizeof (todbuf), &tod);
587
588 for_all_players (pl)
589 pl->ns->send_msg (NDI_GREY, tod.hour == 15 ? CHAT_CHANNEL : LOG_CHANNEL, todbuf);
590 }
591
592 /* If the light level isn't changing, no reason to do all
593 * the work below.
594 */
595 sint8 new_darkness = season_darkness[tod.season][tod.hour];
596
597 if (new_darkness == maptile::outdoor_darkness)
598 return;
599
600 new_draw_info (NDI_GREY | NDI_UNIQUE | NDI_ALL, 1, 0,
601 new_darkness > maptile::outdoor_darkness
602 ? "It becomes darker."
603 : "It becomes brighter.");
604
605 maptile::outdoor_darkness = new_darkness;
606
607 // we simply update the los for all players, which is unnecessarily
608 // costly, but should do for the moment.
609 for_all_players (pl)
610 pl->do_los = 1;
611 }
612
613 /*
614 * make_sure_seen: The object is supposed to be visible through walls, thus
615 * check if any players are nearby, and edit their LOS array.
616 */
617 void
618 make_sure_seen (const object *op)
619 {
620 for_all_players (pl)
621 if (pl->ob->map == op->map &&
622 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
623 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
624 pl->los[op->x - pl->ob->x + LOS_X0][op->y - pl->ob->y + LOS_Y0] = 0;
625 }
626
627 /*
628 * make_sure_not_seen: The object which is supposed to be visible through
629 * walls has just been removed from the map, so update the los of any
630 * players within its range
631 */
632 void
633 make_sure_not_seen (const object *op)
634 {
635 for_all_players (pl)
636 if (pl->ob->map == op->map &&
637 pl->ob->y - pl->ns->mapy / 2 <= op->y &&
638 pl->ob->y + pl->ns->mapy / 2 >= op->y && pl->ob->x - pl->ns->mapx / 2 <= op->x && pl->ob->x + pl->ns->mapx / 2 >= op->x)
639 pl->do_los = 1;
640 }