ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.100
Committed: Thu Apr 22 13:01:58 2010 UTC (14 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.99: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.97 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.81 // very ugly macro that basically declares and initialises a variable
61 root 1.26 // that is in scope for the next statement only
62     // works only for stuff that can be assigned 0 and converts to false
63     // (note: works great for pointers)
64     // most ugly macro I ever wrote
65 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66 root 1.26
67 root 1.27 // in range including end
68     #define IN_RANGE_INC(val,beg,end) \
69     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70    
71     // in range excluding end
72     #define IN_RANGE_EXC(val,beg,end) \
73     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74    
75 root 1.66 void cleanup (const char *cause, bool make_core = false);
76 root 1.31 void fork_abort (const char *msg);
77    
78 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
79     // as a is often a constant while b is the variable. it is still a bug, though.
80     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
81     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
82     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 root 1.32
84 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87 root 1.78
88 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89    
90 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92    
93 root 1.79 // sign returns -1 or +1
94     template<typename T>
95     static inline T sign (T v) { return v < 0 ? -1 : +1; }
96     // relies on 2c representation
97     template<>
98     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99    
100     // sign0 returns -1, 0 or +1
101     template<typename T>
102     static inline T sign0 (T v) { return v ? sign (v) : 0; }
103    
104 root 1.99 template<typename T, typename U>
105     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
106    
107 root 1.88 // div* only work correctly for div > 0
108 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
109 root 1.88 template<typename T> static inline T div (T val, T div)
110     {
111     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
112     }
113 root 1.78 // div, round-up
114 root 1.88 template<typename T> static inline T div_ru (T val, T div)
115     {
116     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
117     }
118 root 1.78 // div, round-down
119 root 1.88 template<typename T> static inline T div_rd (T val, T div)
120     {
121     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
122     }
123 root 1.78
124 root 1.88 // lerp* only work correctly for min_in < max_in
125     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
126 root 1.44 template<typename T>
127     static inline T
128     lerp (T val, T min_in, T max_in, T min_out, T max_out)
129     {
130 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
131     }
132    
133     // lerp, round-down
134     template<typename T>
135     static inline T
136     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
137     {
138     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
139     }
140    
141     // lerp, round-up
142     template<typename T>
143     static inline T
144     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
145     {
146     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147 root 1.44 }
148    
149 root 1.37 // lots of stuff taken from FXT
150    
151     /* Rotate right. This is used in various places for checksumming */
152 root 1.38 //TODO: that sucks, use a better checksum algo
153 root 1.37 static inline uint32_t
154 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
155 root 1.37 {
156 root 1.38 return (c << (32 - count)) | (c >> count);
157     }
158    
159     static inline uint32_t
160     rotate_left (uint32_t c, uint32_t count = 1)
161     {
162     return (c >> (32 - count)) | (c << count);
163 root 1.37 }
164    
165     // Return abs(a-b)
166     // Both a and b must not have the most significant bit set
167     static inline uint32_t
168     upos_abs_diff (uint32_t a, uint32_t b)
169     {
170     long d1 = b - a;
171     long d2 = (d1 & (d1 >> 31)) << 1;
172    
173     return d1 - d2; // == (b - d) - (a + d);
174     }
175    
176     // Both a and b must not have the most significant bit set
177     static inline uint32_t
178     upos_min (uint32_t a, uint32_t b)
179     {
180     int32_t d = b - a;
181     d &= d >> 31;
182     return a + d;
183     }
184    
185     // Both a and b must not have the most significant bit set
186     static inline uint32_t
187     upos_max (uint32_t a, uint32_t b)
188     {
189     int32_t d = b - a;
190     d &= d >> 31;
191     return b - d;
192     }
193    
194 root 1.94 // this is much faster than crossfire's original algorithm
195 root 1.28 // on modern cpus
196     inline int
197     isqrt (int n)
198     {
199     return (int)sqrtf ((float)n);
200     }
201    
202 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
203     // more handy than it looks like, due to the implicit !! done on its arguments
204     inline bool
205     logical_xor (bool a, bool b)
206     {
207     return a != b;
208     }
209    
210     inline bool
211     logical_implies (bool a, bool b)
212     {
213     return a <= b;
214     }
215    
216 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
217     #if 0
218     // and has a max. error of 6 in the range -100..+100.
219     #else
220     // and has a max. error of 9 in the range -100..+100.
221     #endif
222     inline int
223     idistance (int dx, int dy)
224     {
225     unsigned int dx_ = abs (dx);
226     unsigned int dy_ = abs (dy);
227    
228     #if 0
229     return dx_ > dy_
230     ? (dx_ * 61685 + dy_ * 26870) >> 16
231     : (dy_ * 61685 + dx_ * 26870) >> 16;
232     #else
233 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
234 root 1.28 #endif
235     }
236    
237 root 1.29 /*
238     * absdir(int): Returns a number between 1 and 8, which represent
239     * the "absolute" direction of a number (it actually takes care of
240     * "overflow" in previous calculations of a direction).
241     */
242     inline int
243     absdir (int d)
244     {
245     return ((d - 1) & 7) + 1;
246     }
247 root 1.28
248 root 1.96 // avoid ctz name because netbsd or freebsd spams it's namespace with it
249     #if GCC_VERSION(3,4)
250     static inline int least_significant_bit (uint32_t x)
251     {
252     return __builtin_ctz (x);
253     }
254     #else
255     int least_significant_bit (uint32_t x);
256     #endif
257    
258     #define for_all_bits_sparse_32(mask, idxvar) \
259     for (uint32_t idxvar, mask_ = mask; \
260     mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
261    
262 root 1.67 extern ssize_t slice_alloc; // statistics
263    
264     void *salloc_ (int n) throw (std::bad_alloc);
265     void *salloc_ (int n, void *src) throw (std::bad_alloc);
266    
267     // strictly the same as g_slice_alloc, but never returns 0
268     template<typename T>
269     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
270    
271     // also copies src into the new area, like "memdup"
272     // if src is 0, clears the memory
273     template<typename T>
274     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
275    
276     // clears the memory
277     template<typename T>
278     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
279    
280     // for symmetry
281     template<typename T>
282     inline void sfree (T *ptr, int n = 1) throw ()
283     {
284     if (expect_true (ptr))
285     {
286     slice_alloc -= n * sizeof (T);
287 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
288 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
289     assert (slice_alloc >= 0);//D
290     }
291     }
292 root 1.57
293 root 1.72 // nulls the pointer
294     template<typename T>
295     inline void sfree0 (T *&ptr, int n = 1) throw ()
296     {
297     sfree<T> (ptr, n);
298     ptr = 0;
299     }
300    
301 root 1.1 // makes dynamically allocated objects zero-initialised
302     struct zero_initialised
303     {
304 root 1.11 void *operator new (size_t s, void *p)
305     {
306     memset (p, 0, s);
307     return p;
308     }
309    
310     void *operator new (size_t s)
311     {
312 root 1.67 return salloc0<char> (s);
313 root 1.11 }
314    
315     void *operator new[] (size_t s)
316     {
317 root 1.67 return salloc0<char> (s);
318 root 1.11 }
319    
320     void operator delete (void *p, size_t s)
321     {
322 root 1.67 sfree ((char *)p, s);
323 root 1.11 }
324    
325     void operator delete[] (void *p, size_t s)
326     {
327 root 1.67 sfree ((char *)p, s);
328 root 1.11 }
329     };
330    
331 root 1.73 // makes dynamically allocated objects zero-initialised
332     struct slice_allocated
333     {
334     void *operator new (size_t s, void *p)
335     {
336     return p;
337     }
338    
339     void *operator new (size_t s)
340     {
341     return salloc<char> (s);
342     }
343    
344     void *operator new[] (size_t s)
345     {
346     return salloc<char> (s);
347     }
348    
349     void operator delete (void *p, size_t s)
350     {
351     sfree ((char *)p, s);
352     }
353    
354     void operator delete[] (void *p, size_t s)
355     {
356     sfree ((char *)p, s);
357     }
358     };
359    
360 root 1.11 // a STL-compatible allocator that uses g_slice
361     // boy, this is verbose
362     template<typename Tp>
363     struct slice_allocator
364     {
365     typedef size_t size_type;
366     typedef ptrdiff_t difference_type;
367     typedef Tp *pointer;
368     typedef const Tp *const_pointer;
369     typedef Tp &reference;
370     typedef const Tp &const_reference;
371     typedef Tp value_type;
372    
373     template <class U>
374     struct rebind
375     {
376     typedef slice_allocator<U> other;
377     };
378    
379     slice_allocator () throw () { }
380 root 1.64 slice_allocator (const slice_allocator &) throw () { }
381 root 1.11 template<typename Tp2>
382     slice_allocator (const slice_allocator<Tp2> &) throw () { }
383    
384     ~slice_allocator () { }
385    
386     pointer address (reference x) const { return &x; }
387     const_pointer address (const_reference x) const { return &x; }
388    
389     pointer allocate (size_type n, const_pointer = 0)
390     {
391 root 1.18 return salloc<Tp> (n);
392 root 1.11 }
393    
394     void deallocate (pointer p, size_type n)
395     {
396 root 1.19 sfree<Tp> (p, n);
397 root 1.11 }
398    
399 root 1.64 size_type max_size () const throw ()
400 root 1.11 {
401     return size_t (-1) / sizeof (Tp);
402     }
403    
404     void construct (pointer p, const Tp &val)
405     {
406     ::new (p) Tp (val);
407     }
408    
409     void destroy (pointer p)
410     {
411     p->~Tp ();
412     }
413 root 1.1 };
414    
415 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
416     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
417     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
418     struct tausworthe_random_generator
419     {
420     uint32_t state [4];
421    
422 root 1.34 void operator =(const tausworthe_random_generator &src)
423     {
424     state [0] = src.state [0];
425     state [1] = src.state [1];
426     state [2] = src.state [2];
427     state [3] = src.state [3];
428     }
429    
430     void seed (uint32_t seed);
431 root 1.32 uint32_t next ();
432 root 1.83 };
433    
434     // Xorshift RNGs, George Marsaglia
435     // http://www.jstatsoft.org/v08/i14/paper
436     // this one is about 40% faster than the tausworthe one above (i.e. not much),
437     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
438 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
439 root 1.83 struct xorshift_random_generator
440     {
441     uint32_t x, y;
442    
443     void operator =(const xorshift_random_generator &src)
444     {
445     x = src.x;
446     y = src.y;
447     }
448    
449     void seed (uint32_t seed)
450     {
451     x = seed;
452     y = seed * 69069U;
453     }
454 root 1.32
455 root 1.83 uint32_t next ()
456     {
457     uint32_t t = x ^ (x << 10);
458     x = y;
459     y = y ^ (y >> 13) ^ t ^ (t >> 10);
460     return y;
461     }
462     };
463    
464     template<class generator>
465     struct random_number_generator : generator
466     {
467 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
468 root 1.42 uint32_t operator ()(uint32_t num)
469 root 1.32 {
470 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
471     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
472     : this->next () & (num - 1); // constant, power-of-two
473 root 1.32 }
474    
475 root 1.100 // return a number within the closed interval [min .. max]
476 root 1.32 int operator () (int r_min, int r_max)
477     {
478 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
479     ? r_min + operator ()(r_max - r_min + 1)
480 root 1.34 : get_range (r_min, r_max);
481 root 1.32 }
482    
483 root 1.100 // return a number within the closed interval [0..1]
484 root 1.32 double operator ()()
485     {
486 root 1.34 return this->next () / (double)0xFFFFFFFFU;
487 root 1.32 }
488 root 1.34
489     protected:
490     uint32_t get_range (uint32_t r_max);
491     int get_range (int r_min, int r_max);
492 root 1.32 };
493    
494 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
495 root 1.32
496 root 1.74 extern rand_gen rndm, rmg_rndm;
497 root 1.32
498 root 1.54 INTERFACE_CLASS (attachable)
499     struct refcnt_base
500     {
501     typedef int refcnt_t;
502     mutable refcnt_t ACC (RW, refcnt);
503    
504     MTH void refcnt_inc () const { ++refcnt; }
505     MTH void refcnt_dec () const { --refcnt; }
506    
507     refcnt_base () : refcnt (0) { }
508     };
509    
510 root 1.56 // to avoid branches with more advanced compilers
511 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
512    
513 root 1.7 template<class T>
514     struct refptr
515     {
516 root 1.54 // p if not null
517     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
518    
519     void refcnt_dec ()
520     {
521     if (!is_constant (p))
522     --*refcnt_ref ();
523     else if (p)
524     --p->refcnt;
525     }
526    
527     void refcnt_inc ()
528     {
529     if (!is_constant (p))
530     ++*refcnt_ref ();
531     else if (p)
532     ++p->refcnt;
533     }
534    
535 root 1.7 T *p;
536    
537     refptr () : p(0) { }
538 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
539     refptr (T *p) : p(p) { refcnt_inc (); }
540     ~refptr () { refcnt_dec (); }
541 root 1.7
542     const refptr<T> &operator =(T *o)
543     {
544 root 1.54 // if decrementing ever destroys we need to reverse the order here
545     refcnt_dec ();
546 root 1.7 p = o;
547 root 1.54 refcnt_inc ();
548 root 1.7 return *this;
549     }
550    
551 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
552 root 1.7 {
553     *this = o.p;
554     return *this;
555     }
556    
557     T &operator * () const { return *p; }
558 root 1.54 T *operator ->() const { return p; }
559 root 1.7
560     operator T *() const { return p; }
561     };
562    
563 root 1.24 typedef refptr<maptile> maptile_ptr;
564 root 1.22 typedef refptr<object> object_ptr;
565     typedef refptr<archetype> arch_ptr;
566 root 1.24 typedef refptr<client> client_ptr;
567     typedef refptr<player> player_ptr;
568 root 1.22
569 root 1.95 #define STRHSH_NULL 2166136261
570    
571     static inline uint32_t
572     strhsh (const char *s)
573     {
574     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575     // it is about twice as fast as the one-at-a-time one,
576     // with good distribution.
577     // FNV-1a is faster on many cpus because the multiplication
578     // runs concurrently with the looping logic.
579     uint32_t hash = STRHSH_NULL;
580    
581     while (*s)
582 root 1.98 hash = (hash ^ *s++) * 16777619U;
583 root 1.95
584     return hash;
585     }
586    
587     static inline uint32_t
588     memhsh (const char *s, size_t len)
589     {
590     uint32_t hash = STRHSH_NULL;
591    
592     while (len--)
593 root 1.98 hash = (hash ^ *s++) * 16777619U;
594 root 1.95
595     return hash;
596     }
597    
598 root 1.4 struct str_hash
599     {
600     std::size_t operator ()(const char *s) const
601     {
602 root 1.95 return strhsh (s);
603     }
604 root 1.4
605 root 1.95 std::size_t operator ()(const shstr &s) const
606     {
607     return strhsh (s);
608 root 1.4 }
609     };
610    
611     struct str_equal
612     {
613     bool operator ()(const char *a, const char *b) const
614     {
615     return !strcmp (a, b);
616     }
617     };
618    
619 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
620 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
621 root 1.49 //
622 root 1.52 // NOTE: only some forms of erase are available
623 root 1.26 template<class T>
624     struct unordered_vector : std::vector<T, slice_allocator<T> >
625 root 1.6 {
626 root 1.11 typedef typename unordered_vector::iterator iterator;
627 root 1.6
628     void erase (unsigned int pos)
629     {
630     if (pos < this->size () - 1)
631     (*this)[pos] = (*this)[this->size () - 1];
632    
633     this->pop_back ();
634     }
635    
636     void erase (iterator i)
637     {
638     erase ((unsigned int )(i - this->begin ()));
639     }
640     };
641    
642 root 1.49 // This container blends advantages of linked lists
643     // (efficiency) with vectors (random access) by
644     // by using an unordered vector and storing the vector
645     // index inside the object.
646     //
647     // + memory-efficient on most 64 bit archs
648     // + O(1) insert/remove
649     // + free unique (but varying) id for inserted objects
650     // + cache-friendly iteration
651     // - only works for pointers to structs
652     //
653     // NOTE: only some forms of erase/insert are available
654 root 1.50 typedef int object_vector_index;
655    
656     template<class T, object_vector_index T::*indexmember>
657 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
658     {
659 root 1.48 typedef typename object_vector::iterator iterator;
660    
661     bool contains (const T *obj) const
662     {
663 root 1.50 return obj->*indexmember;
664 root 1.48 }
665    
666     iterator find (const T *obj)
667     {
668 root 1.50 return obj->*indexmember
669     ? this->begin () + obj->*indexmember - 1
670 root 1.48 : this->end ();
671     }
672    
673 root 1.53 void push_back (T *obj)
674     {
675     std::vector<T *, slice_allocator<T *> >::push_back (obj);
676     obj->*indexmember = this->size ();
677     }
678    
679 root 1.26 void insert (T *obj)
680     {
681     push_back (obj);
682     }
683    
684     void insert (T &obj)
685     {
686     insert (&obj);
687     }
688    
689     void erase (T *obj)
690     {
691 root 1.50 unsigned int pos = obj->*indexmember;
692     obj->*indexmember = 0;
693 root 1.26
694     if (pos < this->size ())
695     {
696     (*this)[pos - 1] = (*this)[this->size () - 1];
697 root 1.50 (*this)[pos - 1]->*indexmember = pos;
698 root 1.26 }
699    
700     this->pop_back ();
701     }
702    
703     void erase (T &obj)
704     {
705 root 1.50 erase (&obj);
706 root 1.26 }
707     };
708    
709 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
710 root 1.87 // returns the number of bytes actually used (including \0)
711     int assign (char *dst, const char *src, int maxsize);
712 root 1.10
713     // type-safe version of assign
714 root 1.9 template<int N>
715 root 1.87 inline int assign (char (&dst)[N], const char *src)
716 root 1.9 {
717 root 1.87 return assign ((char *)&dst, src, N);
718 root 1.9 }
719    
720 root 1.17 typedef double tstamp;
721    
722 root 1.59 // return current time as timestamp
723 root 1.17 tstamp now ();
724    
725 root 1.25 int similar_direction (int a, int b);
726    
727 root 1.91 // like v?sprintf, but returns a "static" buffer
728     char *vformat (const char *format, va_list ap);
729 root 1.93 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
730 root 1.43
731 sf-marcmagus 1.89 // safety-check player input which will become object->msg
732     bool msg_is_safe (const char *msg);
733    
734 root 1.66 /////////////////////////////////////////////////////////////////////////////
735     // threads, very very thin wrappers around pthreads
736    
737     struct thread
738     {
739     pthread_t id;
740    
741     void start (void *(*start_routine)(void *), void *arg = 0);
742    
743     void cancel ()
744     {
745     pthread_cancel (id);
746     }
747    
748     void *join ()
749     {
750     void *ret;
751    
752     if (pthread_join (id, &ret))
753     cleanup ("pthread_join failed", 1);
754    
755     return ret;
756     }
757     };
758    
759     // note that mutexes are not classes
760     typedef pthread_mutex_t smutex;
761    
762     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
763     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
764     #else
765     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
766     #endif
767    
768     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
769 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
770 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
771    
772 root 1.68 typedef pthread_cond_t scond;
773    
774     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
775     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
776     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
777     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
778    
779 root 1.1 #endif
780