ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.101
Committed: Wed Apr 28 19:49:50 2010 UTC (14 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.100: +9 -0 lines
Log Message:
less MAX_BUF, more object_thawer dir/file convenience

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.97 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.101 // could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61     // much more obfuscated... :)
62    
63     template<typename T, int N>
64     inline int array_length (const T (&arr)[N])
65     {
66     return N;
67     }
68    
69 root 1.81 // very ugly macro that basically declares and initialises a variable
70 root 1.26 // that is in scope for the next statement only
71     // works only for stuff that can be assigned 0 and converts to false
72     // (note: works great for pointers)
73     // most ugly macro I ever wrote
74 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
75 root 1.26
76 root 1.27 // in range including end
77     #define IN_RANGE_INC(val,beg,end) \
78     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
79    
80     // in range excluding end
81     #define IN_RANGE_EXC(val,beg,end) \
82     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
83    
84 root 1.66 void cleanup (const char *cause, bool make_core = false);
85 root 1.31 void fork_abort (const char *msg);
86    
87 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
88     // as a is often a constant while b is the variable. it is still a bug, though.
89     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92 root 1.32
93 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96 root 1.78
97 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
98    
99 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101    
102 root 1.79 // sign returns -1 or +1
103     template<typename T>
104     static inline T sign (T v) { return v < 0 ? -1 : +1; }
105     // relies on 2c representation
106     template<>
107     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108    
109     // sign0 returns -1, 0 or +1
110     template<typename T>
111     static inline T sign0 (T v) { return v ? sign (v) : 0; }
112    
113 root 1.99 template<typename T, typename U>
114     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
115    
116 root 1.88 // div* only work correctly for div > 0
117 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
118 root 1.88 template<typename T> static inline T div (T val, T div)
119     {
120     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
121     }
122 root 1.78 // div, round-up
123 root 1.88 template<typename T> static inline T div_ru (T val, T div)
124     {
125     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126     }
127 root 1.78 // div, round-down
128 root 1.88 template<typename T> static inline T div_rd (T val, T div)
129     {
130     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131     }
132 root 1.78
133 root 1.88 // lerp* only work correctly for min_in < max_in
134     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135 root 1.44 template<typename T>
136     static inline T
137     lerp (T val, T min_in, T max_in, T min_out, T max_out)
138     {
139 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140     }
141    
142     // lerp, round-down
143     template<typename T>
144     static inline T
145     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146     {
147     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148     }
149    
150     // lerp, round-up
151     template<typename T>
152     static inline T
153     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154     {
155     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156 root 1.44 }
157    
158 root 1.37 // lots of stuff taken from FXT
159    
160     /* Rotate right. This is used in various places for checksumming */
161 root 1.38 //TODO: that sucks, use a better checksum algo
162 root 1.37 static inline uint32_t
163 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
164 root 1.37 {
165 root 1.38 return (c << (32 - count)) | (c >> count);
166     }
167    
168     static inline uint32_t
169     rotate_left (uint32_t c, uint32_t count = 1)
170     {
171     return (c >> (32 - count)) | (c << count);
172 root 1.37 }
173    
174     // Return abs(a-b)
175     // Both a and b must not have the most significant bit set
176     static inline uint32_t
177     upos_abs_diff (uint32_t a, uint32_t b)
178     {
179     long d1 = b - a;
180     long d2 = (d1 & (d1 >> 31)) << 1;
181    
182     return d1 - d2; // == (b - d) - (a + d);
183     }
184    
185     // Both a and b must not have the most significant bit set
186     static inline uint32_t
187     upos_min (uint32_t a, uint32_t b)
188     {
189     int32_t d = b - a;
190     d &= d >> 31;
191     return a + d;
192     }
193    
194     // Both a and b must not have the most significant bit set
195     static inline uint32_t
196     upos_max (uint32_t a, uint32_t b)
197     {
198     int32_t d = b - a;
199     d &= d >> 31;
200     return b - d;
201     }
202    
203 root 1.94 // this is much faster than crossfire's original algorithm
204 root 1.28 // on modern cpus
205     inline int
206     isqrt (int n)
207     {
208     return (int)sqrtf ((float)n);
209     }
210    
211 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
212     // more handy than it looks like, due to the implicit !! done on its arguments
213     inline bool
214     logical_xor (bool a, bool b)
215     {
216     return a != b;
217     }
218    
219     inline bool
220     logical_implies (bool a, bool b)
221     {
222     return a <= b;
223     }
224    
225 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
226     #if 0
227     // and has a max. error of 6 in the range -100..+100.
228     #else
229     // and has a max. error of 9 in the range -100..+100.
230     #endif
231     inline int
232     idistance (int dx, int dy)
233     {
234     unsigned int dx_ = abs (dx);
235     unsigned int dy_ = abs (dy);
236    
237     #if 0
238     return dx_ > dy_
239     ? (dx_ * 61685 + dy_ * 26870) >> 16
240     : (dy_ * 61685 + dx_ * 26870) >> 16;
241     #else
242 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
243 root 1.28 #endif
244     }
245    
246 root 1.29 /*
247     * absdir(int): Returns a number between 1 and 8, which represent
248     * the "absolute" direction of a number (it actually takes care of
249     * "overflow" in previous calculations of a direction).
250     */
251     inline int
252     absdir (int d)
253     {
254     return ((d - 1) & 7) + 1;
255     }
256 root 1.28
257 root 1.96 // avoid ctz name because netbsd or freebsd spams it's namespace with it
258     #if GCC_VERSION(3,4)
259     static inline int least_significant_bit (uint32_t x)
260     {
261     return __builtin_ctz (x);
262     }
263     #else
264     int least_significant_bit (uint32_t x);
265     #endif
266    
267     #define for_all_bits_sparse_32(mask, idxvar) \
268     for (uint32_t idxvar, mask_ = mask; \
269     mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
270    
271 root 1.67 extern ssize_t slice_alloc; // statistics
272    
273     void *salloc_ (int n) throw (std::bad_alloc);
274     void *salloc_ (int n, void *src) throw (std::bad_alloc);
275    
276     // strictly the same as g_slice_alloc, but never returns 0
277     template<typename T>
278     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
279    
280     // also copies src into the new area, like "memdup"
281     // if src is 0, clears the memory
282     template<typename T>
283     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
284    
285     // clears the memory
286     template<typename T>
287     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
288    
289     // for symmetry
290     template<typename T>
291     inline void sfree (T *ptr, int n = 1) throw ()
292     {
293     if (expect_true (ptr))
294     {
295     slice_alloc -= n * sizeof (T);
296 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
297 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
298     assert (slice_alloc >= 0);//D
299     }
300     }
301 root 1.57
302 root 1.72 // nulls the pointer
303     template<typename T>
304     inline void sfree0 (T *&ptr, int n = 1) throw ()
305     {
306     sfree<T> (ptr, n);
307     ptr = 0;
308     }
309    
310 root 1.1 // makes dynamically allocated objects zero-initialised
311     struct zero_initialised
312     {
313 root 1.11 void *operator new (size_t s, void *p)
314     {
315     memset (p, 0, s);
316     return p;
317     }
318    
319     void *operator new (size_t s)
320     {
321 root 1.67 return salloc0<char> (s);
322 root 1.11 }
323    
324     void *operator new[] (size_t s)
325     {
326 root 1.67 return salloc0<char> (s);
327 root 1.11 }
328    
329     void operator delete (void *p, size_t s)
330     {
331 root 1.67 sfree ((char *)p, s);
332 root 1.11 }
333    
334     void operator delete[] (void *p, size_t s)
335     {
336 root 1.67 sfree ((char *)p, s);
337 root 1.11 }
338     };
339    
340 root 1.73 // makes dynamically allocated objects zero-initialised
341     struct slice_allocated
342     {
343     void *operator new (size_t s, void *p)
344     {
345     return p;
346     }
347    
348     void *operator new (size_t s)
349     {
350     return salloc<char> (s);
351     }
352    
353     void *operator new[] (size_t s)
354     {
355     return salloc<char> (s);
356     }
357    
358     void operator delete (void *p, size_t s)
359     {
360     sfree ((char *)p, s);
361     }
362    
363     void operator delete[] (void *p, size_t s)
364     {
365     sfree ((char *)p, s);
366     }
367     };
368    
369 root 1.11 // a STL-compatible allocator that uses g_slice
370     // boy, this is verbose
371     template<typename Tp>
372     struct slice_allocator
373     {
374     typedef size_t size_type;
375     typedef ptrdiff_t difference_type;
376     typedef Tp *pointer;
377     typedef const Tp *const_pointer;
378     typedef Tp &reference;
379     typedef const Tp &const_reference;
380     typedef Tp value_type;
381    
382     template <class U>
383     struct rebind
384     {
385     typedef slice_allocator<U> other;
386     };
387    
388     slice_allocator () throw () { }
389 root 1.64 slice_allocator (const slice_allocator &) throw () { }
390 root 1.11 template<typename Tp2>
391     slice_allocator (const slice_allocator<Tp2> &) throw () { }
392    
393     ~slice_allocator () { }
394    
395     pointer address (reference x) const { return &x; }
396     const_pointer address (const_reference x) const { return &x; }
397    
398     pointer allocate (size_type n, const_pointer = 0)
399     {
400 root 1.18 return salloc<Tp> (n);
401 root 1.11 }
402    
403     void deallocate (pointer p, size_type n)
404     {
405 root 1.19 sfree<Tp> (p, n);
406 root 1.11 }
407    
408 root 1.64 size_type max_size () const throw ()
409 root 1.11 {
410     return size_t (-1) / sizeof (Tp);
411     }
412    
413     void construct (pointer p, const Tp &val)
414     {
415     ::new (p) Tp (val);
416     }
417    
418     void destroy (pointer p)
419     {
420     p->~Tp ();
421     }
422 root 1.1 };
423    
424 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
425     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
426     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
427     struct tausworthe_random_generator
428     {
429     uint32_t state [4];
430    
431 root 1.34 void operator =(const tausworthe_random_generator &src)
432     {
433     state [0] = src.state [0];
434     state [1] = src.state [1];
435     state [2] = src.state [2];
436     state [3] = src.state [3];
437     }
438    
439     void seed (uint32_t seed);
440 root 1.32 uint32_t next ();
441 root 1.83 };
442    
443     // Xorshift RNGs, George Marsaglia
444     // http://www.jstatsoft.org/v08/i14/paper
445     // this one is about 40% faster than the tausworthe one above (i.e. not much),
446     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
447 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
448 root 1.83 struct xorshift_random_generator
449     {
450     uint32_t x, y;
451    
452     void operator =(const xorshift_random_generator &src)
453     {
454     x = src.x;
455     y = src.y;
456     }
457    
458     void seed (uint32_t seed)
459     {
460     x = seed;
461     y = seed * 69069U;
462     }
463 root 1.32
464 root 1.83 uint32_t next ()
465     {
466     uint32_t t = x ^ (x << 10);
467     x = y;
468     y = y ^ (y >> 13) ^ t ^ (t >> 10);
469     return y;
470     }
471     };
472    
473     template<class generator>
474     struct random_number_generator : generator
475     {
476 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
477 root 1.42 uint32_t operator ()(uint32_t num)
478 root 1.32 {
479 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
480     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
481     : this->next () & (num - 1); // constant, power-of-two
482 root 1.32 }
483    
484 root 1.100 // return a number within the closed interval [min .. max]
485 root 1.32 int operator () (int r_min, int r_max)
486     {
487 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
488     ? r_min + operator ()(r_max - r_min + 1)
489 root 1.34 : get_range (r_min, r_max);
490 root 1.32 }
491    
492 root 1.100 // return a number within the closed interval [0..1]
493 root 1.32 double operator ()()
494     {
495 root 1.34 return this->next () / (double)0xFFFFFFFFU;
496 root 1.32 }
497 root 1.34
498     protected:
499     uint32_t get_range (uint32_t r_max);
500     int get_range (int r_min, int r_max);
501 root 1.32 };
502    
503 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
504 root 1.32
505 root 1.74 extern rand_gen rndm, rmg_rndm;
506 root 1.32
507 root 1.54 INTERFACE_CLASS (attachable)
508     struct refcnt_base
509     {
510     typedef int refcnt_t;
511     mutable refcnt_t ACC (RW, refcnt);
512    
513     MTH void refcnt_inc () const { ++refcnt; }
514     MTH void refcnt_dec () const { --refcnt; }
515    
516     refcnt_base () : refcnt (0) { }
517     };
518    
519 root 1.56 // to avoid branches with more advanced compilers
520 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
521    
522 root 1.7 template<class T>
523     struct refptr
524     {
525 root 1.54 // p if not null
526     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
527    
528     void refcnt_dec ()
529     {
530     if (!is_constant (p))
531     --*refcnt_ref ();
532     else if (p)
533     --p->refcnt;
534     }
535    
536     void refcnt_inc ()
537     {
538     if (!is_constant (p))
539     ++*refcnt_ref ();
540     else if (p)
541     ++p->refcnt;
542     }
543    
544 root 1.7 T *p;
545    
546     refptr () : p(0) { }
547 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
548     refptr (T *p) : p(p) { refcnt_inc (); }
549     ~refptr () { refcnt_dec (); }
550 root 1.7
551     const refptr<T> &operator =(T *o)
552     {
553 root 1.54 // if decrementing ever destroys we need to reverse the order here
554     refcnt_dec ();
555 root 1.7 p = o;
556 root 1.54 refcnt_inc ();
557 root 1.7 return *this;
558     }
559    
560 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
561 root 1.7 {
562     *this = o.p;
563     return *this;
564     }
565    
566     T &operator * () const { return *p; }
567 root 1.54 T *operator ->() const { return p; }
568 root 1.7
569     operator T *() const { return p; }
570     };
571    
572 root 1.24 typedef refptr<maptile> maptile_ptr;
573 root 1.22 typedef refptr<object> object_ptr;
574     typedef refptr<archetype> arch_ptr;
575 root 1.24 typedef refptr<client> client_ptr;
576     typedef refptr<player> player_ptr;
577 root 1.22
578 root 1.95 #define STRHSH_NULL 2166136261
579    
580     static inline uint32_t
581     strhsh (const char *s)
582     {
583     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
584     // it is about twice as fast as the one-at-a-time one,
585     // with good distribution.
586     // FNV-1a is faster on many cpus because the multiplication
587     // runs concurrently with the looping logic.
588     uint32_t hash = STRHSH_NULL;
589    
590     while (*s)
591 root 1.98 hash = (hash ^ *s++) * 16777619U;
592 root 1.95
593     return hash;
594     }
595    
596     static inline uint32_t
597     memhsh (const char *s, size_t len)
598     {
599     uint32_t hash = STRHSH_NULL;
600    
601     while (len--)
602 root 1.98 hash = (hash ^ *s++) * 16777619U;
603 root 1.95
604     return hash;
605     }
606    
607 root 1.4 struct str_hash
608     {
609     std::size_t operator ()(const char *s) const
610     {
611 root 1.95 return strhsh (s);
612     }
613 root 1.4
614 root 1.95 std::size_t operator ()(const shstr &s) const
615     {
616     return strhsh (s);
617 root 1.4 }
618     };
619    
620     struct str_equal
621     {
622     bool operator ()(const char *a, const char *b) const
623     {
624     return !strcmp (a, b);
625     }
626     };
627    
628 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
629 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
630 root 1.49 //
631 root 1.52 // NOTE: only some forms of erase are available
632 root 1.26 template<class T>
633     struct unordered_vector : std::vector<T, slice_allocator<T> >
634 root 1.6 {
635 root 1.11 typedef typename unordered_vector::iterator iterator;
636 root 1.6
637     void erase (unsigned int pos)
638     {
639     if (pos < this->size () - 1)
640     (*this)[pos] = (*this)[this->size () - 1];
641    
642     this->pop_back ();
643     }
644    
645     void erase (iterator i)
646     {
647     erase ((unsigned int )(i - this->begin ()));
648     }
649     };
650    
651 root 1.49 // This container blends advantages of linked lists
652     // (efficiency) with vectors (random access) by
653     // by using an unordered vector and storing the vector
654     // index inside the object.
655     //
656     // + memory-efficient on most 64 bit archs
657     // + O(1) insert/remove
658     // + free unique (but varying) id for inserted objects
659     // + cache-friendly iteration
660     // - only works for pointers to structs
661     //
662     // NOTE: only some forms of erase/insert are available
663 root 1.50 typedef int object_vector_index;
664    
665     template<class T, object_vector_index T::*indexmember>
666 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
667     {
668 root 1.48 typedef typename object_vector::iterator iterator;
669    
670     bool contains (const T *obj) const
671     {
672 root 1.50 return obj->*indexmember;
673 root 1.48 }
674    
675     iterator find (const T *obj)
676     {
677 root 1.50 return obj->*indexmember
678     ? this->begin () + obj->*indexmember - 1
679 root 1.48 : this->end ();
680     }
681    
682 root 1.53 void push_back (T *obj)
683     {
684     std::vector<T *, slice_allocator<T *> >::push_back (obj);
685     obj->*indexmember = this->size ();
686     }
687    
688 root 1.26 void insert (T *obj)
689     {
690     push_back (obj);
691     }
692    
693     void insert (T &obj)
694     {
695     insert (&obj);
696     }
697    
698     void erase (T *obj)
699     {
700 root 1.50 unsigned int pos = obj->*indexmember;
701     obj->*indexmember = 0;
702 root 1.26
703     if (pos < this->size ())
704     {
705     (*this)[pos - 1] = (*this)[this->size () - 1];
706 root 1.50 (*this)[pos - 1]->*indexmember = pos;
707 root 1.26 }
708    
709     this->pop_back ();
710     }
711    
712     void erase (T &obj)
713     {
714 root 1.50 erase (&obj);
715 root 1.26 }
716     };
717    
718 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
719 root 1.87 // returns the number of bytes actually used (including \0)
720     int assign (char *dst, const char *src, int maxsize);
721 root 1.10
722     // type-safe version of assign
723 root 1.9 template<int N>
724 root 1.87 inline int assign (char (&dst)[N], const char *src)
725 root 1.9 {
726 root 1.87 return assign ((char *)&dst, src, N);
727 root 1.9 }
728    
729 root 1.17 typedef double tstamp;
730    
731 root 1.59 // return current time as timestamp
732 root 1.17 tstamp now ();
733    
734 root 1.25 int similar_direction (int a, int b);
735    
736 root 1.91 // like v?sprintf, but returns a "static" buffer
737     char *vformat (const char *format, va_list ap);
738 root 1.93 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
739 root 1.43
740 sf-marcmagus 1.89 // safety-check player input which will become object->msg
741     bool msg_is_safe (const char *msg);
742    
743 root 1.66 /////////////////////////////////////////////////////////////////////////////
744     // threads, very very thin wrappers around pthreads
745    
746     struct thread
747     {
748     pthread_t id;
749    
750     void start (void *(*start_routine)(void *), void *arg = 0);
751    
752     void cancel ()
753     {
754     pthread_cancel (id);
755     }
756    
757     void *join ()
758     {
759     void *ret;
760    
761     if (pthread_join (id, &ret))
762     cleanup ("pthread_join failed", 1);
763    
764     return ret;
765     }
766     };
767    
768     // note that mutexes are not classes
769     typedef pthread_mutex_t smutex;
770    
771     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
772     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
773     #else
774     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
775     #endif
776    
777     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
778 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
779 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
780    
781 root 1.68 typedef pthread_cond_t scond;
782    
783     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
784     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
785     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
786     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
787    
788 root 1.1 #endif
789