ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.104
Committed: Thu Apr 29 21:21:34 2010 UTC (14 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.103: +1 -1 lines
Log Message:
better 'luck' implementation, hopefully

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.97 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.101 // could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61     // much more obfuscated... :)
62    
63     template<typename T, int N>
64     inline int array_length (const T (&arr)[N])
65     {
66     return N;
67     }
68    
69 root 1.81 // very ugly macro that basically declares and initialises a variable
70 root 1.26 // that is in scope for the next statement only
71     // works only for stuff that can be assigned 0 and converts to false
72     // (note: works great for pointers)
73     // most ugly macro I ever wrote
74 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
75 root 1.26
76 root 1.27 // in range including end
77     #define IN_RANGE_INC(val,beg,end) \
78     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
79    
80     // in range excluding end
81     #define IN_RANGE_EXC(val,beg,end) \
82     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
83    
84 root 1.66 void cleanup (const char *cause, bool make_core = false);
85 root 1.31 void fork_abort (const char *msg);
86    
87 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
88     // as a is often a constant while b is the variable. it is still a bug, though.
89     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92 root 1.32
93 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96 root 1.78
97 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
98    
99 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101    
102 root 1.79 // sign returns -1 or +1
103     template<typename T>
104     static inline T sign (T v) { return v < 0 ? -1 : +1; }
105     // relies on 2c representation
106     template<>
107 root 1.103 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108     template<>
109     inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
110     template<>
111     inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
112 root 1.79
113     // sign0 returns -1, 0 or +1
114     template<typename T>
115     static inline T sign0 (T v) { return v ? sign (v) : 0; }
116    
117 root 1.99 template<typename T, typename U>
118     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
119    
120 root 1.88 // div* only work correctly for div > 0
121 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122 root 1.88 template<typename T> static inline T div (T val, T div)
123     {
124     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
125     }
126 root 1.78 // div, round-up
127 root 1.88 template<typename T> static inline T div_ru (T val, T div)
128     {
129     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
130     }
131 root 1.78 // div, round-down
132 root 1.88 template<typename T> static inline T div_rd (T val, T div)
133     {
134     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
135     }
136 root 1.78
137 root 1.88 // lerp* only work correctly for min_in < max_in
138     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
139 root 1.44 template<typename T>
140     static inline T
141     lerp (T val, T min_in, T max_in, T min_out, T max_out)
142     {
143 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144     }
145    
146     // lerp, round-down
147     template<typename T>
148     static inline T
149     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
150     {
151     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
152     }
153    
154     // lerp, round-up
155     template<typename T>
156     static inline T
157     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
158     {
159     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
160 root 1.44 }
161    
162 root 1.37 // lots of stuff taken from FXT
163    
164     /* Rotate right. This is used in various places for checksumming */
165 root 1.38 //TODO: that sucks, use a better checksum algo
166 root 1.37 static inline uint32_t
167 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
168 root 1.37 {
169 root 1.38 return (c << (32 - count)) | (c >> count);
170     }
171    
172     static inline uint32_t
173     rotate_left (uint32_t c, uint32_t count = 1)
174     {
175     return (c >> (32 - count)) | (c << count);
176 root 1.37 }
177    
178     // Return abs(a-b)
179     // Both a and b must not have the most significant bit set
180     static inline uint32_t
181     upos_abs_diff (uint32_t a, uint32_t b)
182     {
183     long d1 = b - a;
184     long d2 = (d1 & (d1 >> 31)) << 1;
185    
186     return d1 - d2; // == (b - d) - (a + d);
187     }
188    
189     // Both a and b must not have the most significant bit set
190     static inline uint32_t
191     upos_min (uint32_t a, uint32_t b)
192     {
193     int32_t d = b - a;
194     d &= d >> 31;
195     return a + d;
196     }
197    
198     // Both a and b must not have the most significant bit set
199     static inline uint32_t
200     upos_max (uint32_t a, uint32_t b)
201     {
202     int32_t d = b - a;
203     d &= d >> 31;
204     return b - d;
205     }
206    
207 root 1.94 // this is much faster than crossfire's original algorithm
208 root 1.28 // on modern cpus
209     inline int
210     isqrt (int n)
211     {
212     return (int)sqrtf ((float)n);
213     }
214    
215 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
216     // more handy than it looks like, due to the implicit !! done on its arguments
217     inline bool
218     logical_xor (bool a, bool b)
219     {
220     return a != b;
221     }
222    
223     inline bool
224     logical_implies (bool a, bool b)
225     {
226     return a <= b;
227     }
228    
229 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
230     #if 0
231     // and has a max. error of 6 in the range -100..+100.
232     #else
233     // and has a max. error of 9 in the range -100..+100.
234     #endif
235     inline int
236     idistance (int dx, int dy)
237     {
238     unsigned int dx_ = abs (dx);
239     unsigned int dy_ = abs (dy);
240    
241     #if 0
242     return dx_ > dy_
243     ? (dx_ * 61685 + dy_ * 26870) >> 16
244     : (dy_ * 61685 + dx_ * 26870) >> 16;
245     #else
246 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
247 root 1.28 #endif
248     }
249    
250 root 1.29 /*
251     * absdir(int): Returns a number between 1 and 8, which represent
252     * the "absolute" direction of a number (it actually takes care of
253     * "overflow" in previous calculations of a direction).
254     */
255     inline int
256     absdir (int d)
257     {
258     return ((d - 1) & 7) + 1;
259     }
260 root 1.28
261 root 1.96 // avoid ctz name because netbsd or freebsd spams it's namespace with it
262     #if GCC_VERSION(3,4)
263     static inline int least_significant_bit (uint32_t x)
264     {
265     return __builtin_ctz (x);
266     }
267     #else
268     int least_significant_bit (uint32_t x);
269     #endif
270    
271     #define for_all_bits_sparse_32(mask, idxvar) \
272     for (uint32_t idxvar, mask_ = mask; \
273     mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
274    
275 root 1.67 extern ssize_t slice_alloc; // statistics
276    
277     void *salloc_ (int n) throw (std::bad_alloc);
278     void *salloc_ (int n, void *src) throw (std::bad_alloc);
279    
280     // strictly the same as g_slice_alloc, but never returns 0
281     template<typename T>
282     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
283    
284     // also copies src into the new area, like "memdup"
285     // if src is 0, clears the memory
286     template<typename T>
287     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
288    
289     // clears the memory
290     template<typename T>
291     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
292    
293     // for symmetry
294     template<typename T>
295     inline void sfree (T *ptr, int n = 1) throw ()
296     {
297     if (expect_true (ptr))
298     {
299     slice_alloc -= n * sizeof (T);
300 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
301 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
302     assert (slice_alloc >= 0);//D
303     }
304     }
305 root 1.57
306 root 1.72 // nulls the pointer
307     template<typename T>
308     inline void sfree0 (T *&ptr, int n = 1) throw ()
309     {
310     sfree<T> (ptr, n);
311     ptr = 0;
312     }
313    
314 root 1.1 // makes dynamically allocated objects zero-initialised
315     struct zero_initialised
316     {
317 root 1.11 void *operator new (size_t s, void *p)
318     {
319     memset (p, 0, s);
320     return p;
321     }
322    
323     void *operator new (size_t s)
324     {
325 root 1.67 return salloc0<char> (s);
326 root 1.11 }
327    
328     void *operator new[] (size_t s)
329     {
330 root 1.67 return salloc0<char> (s);
331 root 1.11 }
332    
333     void operator delete (void *p, size_t s)
334     {
335 root 1.67 sfree ((char *)p, s);
336 root 1.11 }
337    
338     void operator delete[] (void *p, size_t s)
339     {
340 root 1.67 sfree ((char *)p, s);
341 root 1.11 }
342     };
343    
344 root 1.73 // makes dynamically allocated objects zero-initialised
345     struct slice_allocated
346     {
347     void *operator new (size_t s, void *p)
348     {
349     return p;
350     }
351    
352     void *operator new (size_t s)
353     {
354     return salloc<char> (s);
355     }
356    
357     void *operator new[] (size_t s)
358     {
359     return salloc<char> (s);
360     }
361    
362     void operator delete (void *p, size_t s)
363     {
364     sfree ((char *)p, s);
365     }
366    
367     void operator delete[] (void *p, size_t s)
368     {
369     sfree ((char *)p, s);
370     }
371     };
372    
373 root 1.11 // a STL-compatible allocator that uses g_slice
374     // boy, this is verbose
375     template<typename Tp>
376     struct slice_allocator
377     {
378     typedef size_t size_type;
379     typedef ptrdiff_t difference_type;
380     typedef Tp *pointer;
381     typedef const Tp *const_pointer;
382     typedef Tp &reference;
383     typedef const Tp &const_reference;
384     typedef Tp value_type;
385    
386     template <class U>
387     struct rebind
388     {
389     typedef slice_allocator<U> other;
390     };
391    
392     slice_allocator () throw () { }
393 root 1.64 slice_allocator (const slice_allocator &) throw () { }
394 root 1.11 template<typename Tp2>
395     slice_allocator (const slice_allocator<Tp2> &) throw () { }
396    
397     ~slice_allocator () { }
398    
399     pointer address (reference x) const { return &x; }
400     const_pointer address (const_reference x) const { return &x; }
401    
402     pointer allocate (size_type n, const_pointer = 0)
403     {
404 root 1.18 return salloc<Tp> (n);
405 root 1.11 }
406    
407     void deallocate (pointer p, size_type n)
408     {
409 root 1.19 sfree<Tp> (p, n);
410 root 1.11 }
411    
412 root 1.64 size_type max_size () const throw ()
413 root 1.11 {
414     return size_t (-1) / sizeof (Tp);
415     }
416    
417     void construct (pointer p, const Tp &val)
418     {
419     ::new (p) Tp (val);
420     }
421    
422     void destroy (pointer p)
423     {
424     p->~Tp ();
425     }
426 root 1.1 };
427    
428 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
429     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
430     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
431     struct tausworthe_random_generator
432     {
433     uint32_t state [4];
434    
435 root 1.34 void operator =(const tausworthe_random_generator &src)
436     {
437     state [0] = src.state [0];
438     state [1] = src.state [1];
439     state [2] = src.state [2];
440     state [3] = src.state [3];
441     }
442    
443     void seed (uint32_t seed);
444 root 1.32 uint32_t next ();
445 root 1.83 };
446    
447     // Xorshift RNGs, George Marsaglia
448     // http://www.jstatsoft.org/v08/i14/paper
449     // this one is about 40% faster than the tausworthe one above (i.e. not much),
450     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
451 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
452 root 1.83 struct xorshift_random_generator
453     {
454     uint32_t x, y;
455    
456     void operator =(const xorshift_random_generator &src)
457     {
458     x = src.x;
459     y = src.y;
460     }
461    
462     void seed (uint32_t seed)
463     {
464     x = seed;
465     y = seed * 69069U;
466     }
467 root 1.32
468 root 1.83 uint32_t next ()
469     {
470     uint32_t t = x ^ (x << 10);
471     x = y;
472     y = y ^ (y >> 13) ^ t ^ (t >> 10);
473     return y;
474     }
475     };
476    
477     template<class generator>
478     struct random_number_generator : generator
479     {
480 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
481 root 1.42 uint32_t operator ()(uint32_t num)
482 root 1.32 {
483 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
484     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
485     : this->next () & (num - 1); // constant, power-of-two
486 root 1.32 }
487    
488 root 1.100 // return a number within the closed interval [min .. max]
489 root 1.32 int operator () (int r_min, int r_max)
490     {
491 root 1.104 return is_constant (r_min <= r_max) && r_min <= r_max
492 root 1.42 ? r_min + operator ()(r_max - r_min + 1)
493 root 1.34 : get_range (r_min, r_max);
494 root 1.32 }
495    
496 root 1.100 // return a number within the closed interval [0..1]
497 root 1.32 double operator ()()
498     {
499 root 1.34 return this->next () / (double)0xFFFFFFFFU;
500 root 1.32 }
501 root 1.34
502     protected:
503     uint32_t get_range (uint32_t r_max);
504     int get_range (int r_min, int r_max);
505 root 1.32 };
506    
507 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
508 root 1.32
509 root 1.74 extern rand_gen rndm, rmg_rndm;
510 root 1.32
511 root 1.54 INTERFACE_CLASS (attachable)
512     struct refcnt_base
513     {
514     typedef int refcnt_t;
515     mutable refcnt_t ACC (RW, refcnt);
516    
517     MTH void refcnt_inc () const { ++refcnt; }
518     MTH void refcnt_dec () const { --refcnt; }
519    
520     refcnt_base () : refcnt (0) { }
521     };
522    
523 root 1.56 // to avoid branches with more advanced compilers
524 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
525    
526 root 1.7 template<class T>
527     struct refptr
528     {
529 root 1.54 // p if not null
530     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
531    
532     void refcnt_dec ()
533     {
534     if (!is_constant (p))
535     --*refcnt_ref ();
536     else if (p)
537     --p->refcnt;
538     }
539    
540     void refcnt_inc ()
541     {
542     if (!is_constant (p))
543     ++*refcnt_ref ();
544     else if (p)
545     ++p->refcnt;
546     }
547    
548 root 1.7 T *p;
549    
550     refptr () : p(0) { }
551 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
552     refptr (T *p) : p(p) { refcnt_inc (); }
553     ~refptr () { refcnt_dec (); }
554 root 1.7
555     const refptr<T> &operator =(T *o)
556     {
557 root 1.54 // if decrementing ever destroys we need to reverse the order here
558     refcnt_dec ();
559 root 1.7 p = o;
560 root 1.54 refcnt_inc ();
561 root 1.7 return *this;
562     }
563    
564 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
565 root 1.7 {
566     *this = o.p;
567     return *this;
568     }
569    
570     T &operator * () const { return *p; }
571 root 1.54 T *operator ->() const { return p; }
572 root 1.7
573     operator T *() const { return p; }
574     };
575    
576 root 1.24 typedef refptr<maptile> maptile_ptr;
577 root 1.22 typedef refptr<object> object_ptr;
578     typedef refptr<archetype> arch_ptr;
579 root 1.24 typedef refptr<client> client_ptr;
580     typedef refptr<player> player_ptr;
581 root 1.102 typedef refptr<region> region_ptr;
582 root 1.22
583 root 1.95 #define STRHSH_NULL 2166136261
584    
585     static inline uint32_t
586     strhsh (const char *s)
587     {
588     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589     // it is about twice as fast as the one-at-a-time one,
590     // with good distribution.
591     // FNV-1a is faster on many cpus because the multiplication
592     // runs concurrently with the looping logic.
593     uint32_t hash = STRHSH_NULL;
594    
595     while (*s)
596 root 1.98 hash = (hash ^ *s++) * 16777619U;
597 root 1.95
598     return hash;
599     }
600    
601     static inline uint32_t
602     memhsh (const char *s, size_t len)
603     {
604     uint32_t hash = STRHSH_NULL;
605    
606     while (len--)
607 root 1.98 hash = (hash ^ *s++) * 16777619U;
608 root 1.95
609     return hash;
610     }
611    
612 root 1.4 struct str_hash
613     {
614     std::size_t operator ()(const char *s) const
615     {
616 root 1.95 return strhsh (s);
617     }
618 root 1.4
619 root 1.95 std::size_t operator ()(const shstr &s) const
620     {
621     return strhsh (s);
622 root 1.4 }
623     };
624    
625     struct str_equal
626     {
627     bool operator ()(const char *a, const char *b) const
628     {
629     return !strcmp (a, b);
630     }
631     };
632    
633 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
634 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
635 root 1.49 //
636 root 1.52 // NOTE: only some forms of erase are available
637 root 1.26 template<class T>
638     struct unordered_vector : std::vector<T, slice_allocator<T> >
639 root 1.6 {
640 root 1.11 typedef typename unordered_vector::iterator iterator;
641 root 1.6
642     void erase (unsigned int pos)
643     {
644     if (pos < this->size () - 1)
645     (*this)[pos] = (*this)[this->size () - 1];
646    
647     this->pop_back ();
648     }
649    
650     void erase (iterator i)
651     {
652     erase ((unsigned int )(i - this->begin ()));
653     }
654     };
655    
656 root 1.49 // This container blends advantages of linked lists
657     // (efficiency) with vectors (random access) by
658     // by using an unordered vector and storing the vector
659     // index inside the object.
660     //
661     // + memory-efficient on most 64 bit archs
662     // + O(1) insert/remove
663     // + free unique (but varying) id for inserted objects
664     // + cache-friendly iteration
665     // - only works for pointers to structs
666     //
667     // NOTE: only some forms of erase/insert are available
668 root 1.50 typedef int object_vector_index;
669    
670     template<class T, object_vector_index T::*indexmember>
671 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
672     {
673 root 1.48 typedef typename object_vector::iterator iterator;
674    
675     bool contains (const T *obj) const
676     {
677 root 1.50 return obj->*indexmember;
678 root 1.48 }
679    
680     iterator find (const T *obj)
681     {
682 root 1.50 return obj->*indexmember
683     ? this->begin () + obj->*indexmember - 1
684 root 1.48 : this->end ();
685     }
686    
687 root 1.53 void push_back (T *obj)
688     {
689     std::vector<T *, slice_allocator<T *> >::push_back (obj);
690     obj->*indexmember = this->size ();
691     }
692    
693 root 1.26 void insert (T *obj)
694     {
695     push_back (obj);
696     }
697    
698     void insert (T &obj)
699     {
700     insert (&obj);
701     }
702    
703     void erase (T *obj)
704     {
705 root 1.50 unsigned int pos = obj->*indexmember;
706     obj->*indexmember = 0;
707 root 1.26
708     if (pos < this->size ())
709     {
710     (*this)[pos - 1] = (*this)[this->size () - 1];
711 root 1.50 (*this)[pos - 1]->*indexmember = pos;
712 root 1.26 }
713    
714     this->pop_back ();
715     }
716    
717     void erase (T &obj)
718     {
719 root 1.50 erase (&obj);
720 root 1.26 }
721     };
722    
723 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
724 root 1.87 // returns the number of bytes actually used (including \0)
725     int assign (char *dst, const char *src, int maxsize);
726 root 1.10
727     // type-safe version of assign
728 root 1.9 template<int N>
729 root 1.87 inline int assign (char (&dst)[N], const char *src)
730 root 1.9 {
731 root 1.87 return assign ((char *)&dst, src, N);
732 root 1.9 }
733    
734 root 1.17 typedef double tstamp;
735    
736 root 1.59 // return current time as timestamp
737 root 1.17 tstamp now ();
738    
739 root 1.25 int similar_direction (int a, int b);
740    
741 root 1.91 // like v?sprintf, but returns a "static" buffer
742     char *vformat (const char *format, va_list ap);
743 root 1.93 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
744 root 1.43
745 sf-marcmagus 1.89 // safety-check player input which will become object->msg
746     bool msg_is_safe (const char *msg);
747    
748 root 1.66 /////////////////////////////////////////////////////////////////////////////
749     // threads, very very thin wrappers around pthreads
750    
751     struct thread
752     {
753     pthread_t id;
754    
755     void start (void *(*start_routine)(void *), void *arg = 0);
756    
757     void cancel ()
758     {
759     pthread_cancel (id);
760     }
761    
762     void *join ()
763     {
764     void *ret;
765    
766     if (pthread_join (id, &ret))
767     cleanup ("pthread_join failed", 1);
768    
769     return ret;
770     }
771     };
772    
773     // note that mutexes are not classes
774     typedef pthread_mutex_t smutex;
775    
776     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
777     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
778     #else
779     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
780     #endif
781    
782     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
783 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
784 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
785    
786 root 1.68 typedef pthread_cond_t scond;
787    
788     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
789     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
790     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
791     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
792    
793 root 1.1 #endif
794