ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.107
Committed: Sun May 2 14:46:56 2010 UTC (14 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.106: +1 -1 lines
Log Message:
d'oh

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.97 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.105 #if cplusplus_does_not_suck
61     // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62 root 1.101 template<typename T, int N>
63 root 1.105 static inline int array_length (const T (&arr)[N])
64 root 1.101 {
65     return N;
66     }
67 root 1.105 #else
68     #define array_length(name) (sizeof (name) / sizeof (name [0]))
69     #endif
70 root 1.101
71 root 1.81 // very ugly macro that basically declares and initialises a variable
72 root 1.26 // that is in scope for the next statement only
73     // works only for stuff that can be assigned 0 and converts to false
74     // (note: works great for pointers)
75     // most ugly macro I ever wrote
76 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77 root 1.26
78 root 1.27 // in range including end
79     #define IN_RANGE_INC(val,beg,end) \
80     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81    
82     // in range excluding end
83     #define IN_RANGE_EXC(val,beg,end) \
84     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85    
86 root 1.66 void cleanup (const char *cause, bool make_core = false);
87 root 1.31 void fork_abort (const char *msg);
88    
89 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
90     // as a is often a constant while b is the variable. it is still a bug, though.
91     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
92     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
93     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94 root 1.32
95 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98 root 1.78
99 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100    
101 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103    
104 root 1.79 // sign returns -1 or +1
105     template<typename T>
106     static inline T sign (T v) { return v < 0 ? -1 : +1; }
107     // relies on 2c representation
108     template<>
109 root 1.103 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110     template<>
111     inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112     template<>
113     inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114 root 1.79
115     // sign0 returns -1, 0 or +1
116     template<typename T>
117     static inline T sign0 (T v) { return v ? sign (v) : 0; }
118    
119 root 1.99 template<typename T, typename U>
120     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
121    
122 root 1.88 // div* only work correctly for div > 0
123 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124 root 1.88 template<typename T> static inline T div (T val, T div)
125     {
126     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
127     }
128 root 1.105
129     template<> inline float div (float val, float div) { return val / div; }
130     template<> inline double div (double val, double div) { return val / div; }
131    
132 root 1.78 // div, round-up
133 root 1.88 template<typename T> static inline T div_ru (T val, T div)
134     {
135     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
136     }
137 root 1.78 // div, round-down
138 root 1.88 template<typename T> static inline T div_rd (T val, T div)
139     {
140     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
141     }
142 root 1.78
143 root 1.88 // lerp* only work correctly for min_in < max_in
144     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
145 root 1.44 template<typename T>
146     static inline T
147     lerp (T val, T min_in, T max_in, T min_out, T max_out)
148     {
149 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
150     }
151    
152     // lerp, round-down
153     template<typename T>
154     static inline T
155     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
156     {
157     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
158     }
159    
160     // lerp, round-up
161     template<typename T>
162     static inline T
163     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
164     {
165     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
166 root 1.44 }
167    
168 root 1.37 // lots of stuff taken from FXT
169    
170     /* Rotate right. This is used in various places for checksumming */
171 root 1.38 //TODO: that sucks, use a better checksum algo
172 root 1.37 static inline uint32_t
173 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
174 root 1.37 {
175 root 1.38 return (c << (32 - count)) | (c >> count);
176     }
177    
178     static inline uint32_t
179     rotate_left (uint32_t c, uint32_t count = 1)
180     {
181     return (c >> (32 - count)) | (c << count);
182 root 1.37 }
183    
184     // Return abs(a-b)
185     // Both a and b must not have the most significant bit set
186     static inline uint32_t
187     upos_abs_diff (uint32_t a, uint32_t b)
188     {
189     long d1 = b - a;
190     long d2 = (d1 & (d1 >> 31)) << 1;
191    
192     return d1 - d2; // == (b - d) - (a + d);
193     }
194    
195     // Both a and b must not have the most significant bit set
196     static inline uint32_t
197     upos_min (uint32_t a, uint32_t b)
198     {
199     int32_t d = b - a;
200     d &= d >> 31;
201     return a + d;
202     }
203    
204     // Both a and b must not have the most significant bit set
205     static inline uint32_t
206     upos_max (uint32_t a, uint32_t b)
207     {
208     int32_t d = b - a;
209     d &= d >> 31;
210     return b - d;
211     }
212    
213 root 1.94 // this is much faster than crossfire's original algorithm
214 root 1.28 // on modern cpus
215     inline int
216     isqrt (int n)
217     {
218     return (int)sqrtf ((float)n);
219     }
220    
221 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
222     // more handy than it looks like, due to the implicit !! done on its arguments
223     inline bool
224     logical_xor (bool a, bool b)
225     {
226     return a != b;
227     }
228    
229     inline bool
230     logical_implies (bool a, bool b)
231     {
232     return a <= b;
233     }
234    
235 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
236     #if 0
237     // and has a max. error of 6 in the range -100..+100.
238     #else
239     // and has a max. error of 9 in the range -100..+100.
240     #endif
241     inline int
242     idistance (int dx, int dy)
243     {
244     unsigned int dx_ = abs (dx);
245     unsigned int dy_ = abs (dy);
246    
247     #if 0
248     return dx_ > dy_
249     ? (dx_ * 61685 + dy_ * 26870) >> 16
250     : (dy_ * 61685 + dx_ * 26870) >> 16;
251     #else
252 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
253 root 1.28 #endif
254     }
255    
256 root 1.29 /*
257     * absdir(int): Returns a number between 1 and 8, which represent
258     * the "absolute" direction of a number (it actually takes care of
259     * "overflow" in previous calculations of a direction).
260     */
261     inline int
262     absdir (int d)
263     {
264     return ((d - 1) & 7) + 1;
265     }
266 root 1.28
267 root 1.96 // avoid ctz name because netbsd or freebsd spams it's namespace with it
268     #if GCC_VERSION(3,4)
269     static inline int least_significant_bit (uint32_t x)
270     {
271     return __builtin_ctz (x);
272     }
273     #else
274     int least_significant_bit (uint32_t x);
275     #endif
276    
277     #define for_all_bits_sparse_32(mask, idxvar) \
278     for (uint32_t idxvar, mask_ = mask; \
279     mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
280    
281 root 1.67 extern ssize_t slice_alloc; // statistics
282    
283     void *salloc_ (int n) throw (std::bad_alloc);
284     void *salloc_ (int n, void *src) throw (std::bad_alloc);
285    
286     // strictly the same as g_slice_alloc, but never returns 0
287     template<typename T>
288     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
289    
290     // also copies src into the new area, like "memdup"
291     // if src is 0, clears the memory
292     template<typename T>
293     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294    
295     // clears the memory
296     template<typename T>
297     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
298    
299     // for symmetry
300     template<typename T>
301     inline void sfree (T *ptr, int n = 1) throw ()
302     {
303     if (expect_true (ptr))
304     {
305     slice_alloc -= n * sizeof (T);
306 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
308     assert (slice_alloc >= 0);//D
309     }
310     }
311 root 1.57
312 root 1.72 // nulls the pointer
313     template<typename T>
314     inline void sfree0 (T *&ptr, int n = 1) throw ()
315     {
316     sfree<T> (ptr, n);
317     ptr = 0;
318     }
319    
320 root 1.1 // makes dynamically allocated objects zero-initialised
321     struct zero_initialised
322     {
323 root 1.11 void *operator new (size_t s, void *p)
324     {
325     memset (p, 0, s);
326     return p;
327     }
328    
329     void *operator new (size_t s)
330     {
331 root 1.67 return salloc0<char> (s);
332 root 1.11 }
333    
334     void *operator new[] (size_t s)
335     {
336 root 1.67 return salloc0<char> (s);
337 root 1.11 }
338    
339     void operator delete (void *p, size_t s)
340     {
341 root 1.67 sfree ((char *)p, s);
342 root 1.11 }
343    
344     void operator delete[] (void *p, size_t s)
345     {
346 root 1.67 sfree ((char *)p, s);
347 root 1.11 }
348     };
349    
350 root 1.73 // makes dynamically allocated objects zero-initialised
351     struct slice_allocated
352     {
353     void *operator new (size_t s, void *p)
354     {
355     return p;
356     }
357    
358     void *operator new (size_t s)
359     {
360     return salloc<char> (s);
361     }
362    
363     void *operator new[] (size_t s)
364     {
365     return salloc<char> (s);
366     }
367    
368     void operator delete (void *p, size_t s)
369     {
370     sfree ((char *)p, s);
371     }
372    
373     void operator delete[] (void *p, size_t s)
374     {
375     sfree ((char *)p, s);
376     }
377     };
378    
379 root 1.11 // a STL-compatible allocator that uses g_slice
380     // boy, this is verbose
381     template<typename Tp>
382     struct slice_allocator
383     {
384     typedef size_t size_type;
385     typedef ptrdiff_t difference_type;
386     typedef Tp *pointer;
387     typedef const Tp *const_pointer;
388     typedef Tp &reference;
389     typedef const Tp &const_reference;
390     typedef Tp value_type;
391    
392     template <class U>
393     struct rebind
394     {
395     typedef slice_allocator<U> other;
396     };
397    
398     slice_allocator () throw () { }
399 root 1.64 slice_allocator (const slice_allocator &) throw () { }
400 root 1.11 template<typename Tp2>
401     slice_allocator (const slice_allocator<Tp2> &) throw () { }
402    
403     ~slice_allocator () { }
404    
405     pointer address (reference x) const { return &x; }
406     const_pointer address (const_reference x) const { return &x; }
407    
408     pointer allocate (size_type n, const_pointer = 0)
409     {
410 root 1.18 return salloc<Tp> (n);
411 root 1.11 }
412    
413     void deallocate (pointer p, size_type n)
414     {
415 root 1.19 sfree<Tp> (p, n);
416 root 1.11 }
417    
418 root 1.64 size_type max_size () const throw ()
419 root 1.11 {
420     return size_t (-1) / sizeof (Tp);
421     }
422    
423     void construct (pointer p, const Tp &val)
424     {
425     ::new (p) Tp (val);
426     }
427    
428     void destroy (pointer p)
429     {
430     p->~Tp ();
431     }
432 root 1.1 };
433    
434 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
435     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
436     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
437     struct tausworthe_random_generator
438     {
439     uint32_t state [4];
440    
441 root 1.34 void operator =(const tausworthe_random_generator &src)
442     {
443     state [0] = src.state [0];
444     state [1] = src.state [1];
445     state [2] = src.state [2];
446     state [3] = src.state [3];
447     }
448    
449     void seed (uint32_t seed);
450 root 1.32 uint32_t next ();
451 root 1.83 };
452    
453     // Xorshift RNGs, George Marsaglia
454     // http://www.jstatsoft.org/v08/i14/paper
455     // this one is about 40% faster than the tausworthe one above (i.e. not much),
456     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
457 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
458 root 1.83 struct xorshift_random_generator
459     {
460     uint32_t x, y;
461    
462     void operator =(const xorshift_random_generator &src)
463     {
464     x = src.x;
465     y = src.y;
466     }
467    
468     void seed (uint32_t seed)
469     {
470     x = seed;
471     y = seed * 69069U;
472     }
473 root 1.32
474 root 1.83 uint32_t next ()
475     {
476     uint32_t t = x ^ (x << 10);
477     x = y;
478     y = y ^ (y >> 13) ^ t ^ (t >> 10);
479     return y;
480     }
481     };
482    
483     template<class generator>
484     struct random_number_generator : generator
485     {
486 root 1.106 // uniform distribution, [0 .. num - 1]
487 root 1.42 uint32_t operator ()(uint32_t num)
488 root 1.32 {
489 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
490     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
491     : this->next () & (num - 1); // constant, power-of-two
492 root 1.32 }
493    
494 root 1.100 // return a number within the closed interval [min .. max]
495 root 1.32 int operator () (int r_min, int r_max)
496     {
497 root 1.104 return is_constant (r_min <= r_max) && r_min <= r_max
498 root 1.42 ? r_min + operator ()(r_max - r_min + 1)
499 root 1.34 : get_range (r_min, r_max);
500 root 1.32 }
501    
502 root 1.106 // return a number within the half-open interval [0..1[
503 root 1.32 double operator ()()
504     {
505 root 1.107 return this->next () / (double)0x100000000;
506 root 1.32 }
507 root 1.34
508     protected:
509     uint32_t get_range (uint32_t r_max);
510     int get_range (int r_min, int r_max);
511 root 1.32 };
512    
513 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
514 root 1.32
515 root 1.74 extern rand_gen rndm, rmg_rndm;
516 root 1.32
517 root 1.54 INTERFACE_CLASS (attachable)
518     struct refcnt_base
519     {
520     typedef int refcnt_t;
521     mutable refcnt_t ACC (RW, refcnt);
522    
523     MTH void refcnt_inc () const { ++refcnt; }
524     MTH void refcnt_dec () const { --refcnt; }
525    
526     refcnt_base () : refcnt (0) { }
527     };
528    
529 root 1.56 // to avoid branches with more advanced compilers
530 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
531    
532 root 1.7 template<class T>
533     struct refptr
534     {
535 root 1.54 // p if not null
536     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
537    
538     void refcnt_dec ()
539     {
540     if (!is_constant (p))
541     --*refcnt_ref ();
542     else if (p)
543     --p->refcnt;
544     }
545    
546     void refcnt_inc ()
547     {
548     if (!is_constant (p))
549     ++*refcnt_ref ();
550     else if (p)
551     ++p->refcnt;
552     }
553    
554 root 1.7 T *p;
555    
556     refptr () : p(0) { }
557 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
558     refptr (T *p) : p(p) { refcnt_inc (); }
559     ~refptr () { refcnt_dec (); }
560 root 1.7
561     const refptr<T> &operator =(T *o)
562     {
563 root 1.54 // if decrementing ever destroys we need to reverse the order here
564     refcnt_dec ();
565 root 1.7 p = o;
566 root 1.54 refcnt_inc ();
567 root 1.7 return *this;
568     }
569    
570 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
571 root 1.7 {
572     *this = o.p;
573     return *this;
574     }
575    
576     T &operator * () const { return *p; }
577 root 1.54 T *operator ->() const { return p; }
578 root 1.7
579     operator T *() const { return p; }
580     };
581    
582 root 1.24 typedef refptr<maptile> maptile_ptr;
583 root 1.22 typedef refptr<object> object_ptr;
584     typedef refptr<archetype> arch_ptr;
585 root 1.24 typedef refptr<client> client_ptr;
586     typedef refptr<player> player_ptr;
587 root 1.102 typedef refptr<region> region_ptr;
588 root 1.22
589 root 1.95 #define STRHSH_NULL 2166136261
590    
591     static inline uint32_t
592     strhsh (const char *s)
593     {
594     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595     // it is about twice as fast as the one-at-a-time one,
596     // with good distribution.
597     // FNV-1a is faster on many cpus because the multiplication
598     // runs concurrently with the looping logic.
599     uint32_t hash = STRHSH_NULL;
600    
601     while (*s)
602 root 1.98 hash = (hash ^ *s++) * 16777619U;
603 root 1.95
604     return hash;
605     }
606    
607     static inline uint32_t
608     memhsh (const char *s, size_t len)
609     {
610     uint32_t hash = STRHSH_NULL;
611    
612     while (len--)
613 root 1.98 hash = (hash ^ *s++) * 16777619U;
614 root 1.95
615     return hash;
616     }
617    
618 root 1.4 struct str_hash
619     {
620     std::size_t operator ()(const char *s) const
621     {
622 root 1.95 return strhsh (s);
623     }
624 root 1.4
625 root 1.95 std::size_t operator ()(const shstr &s) const
626     {
627     return strhsh (s);
628 root 1.4 }
629     };
630    
631     struct str_equal
632     {
633     bool operator ()(const char *a, const char *b) const
634     {
635     return !strcmp (a, b);
636     }
637     };
638    
639 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
640 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
641 root 1.49 //
642 root 1.52 // NOTE: only some forms of erase are available
643 root 1.26 template<class T>
644     struct unordered_vector : std::vector<T, slice_allocator<T> >
645 root 1.6 {
646 root 1.11 typedef typename unordered_vector::iterator iterator;
647 root 1.6
648     void erase (unsigned int pos)
649     {
650     if (pos < this->size () - 1)
651     (*this)[pos] = (*this)[this->size () - 1];
652    
653     this->pop_back ();
654     }
655    
656     void erase (iterator i)
657     {
658     erase ((unsigned int )(i - this->begin ()));
659     }
660     };
661    
662 root 1.49 // This container blends advantages of linked lists
663     // (efficiency) with vectors (random access) by
664     // by using an unordered vector and storing the vector
665     // index inside the object.
666     //
667     // + memory-efficient on most 64 bit archs
668     // + O(1) insert/remove
669     // + free unique (but varying) id for inserted objects
670     // + cache-friendly iteration
671     // - only works for pointers to structs
672     //
673     // NOTE: only some forms of erase/insert are available
674 root 1.50 typedef int object_vector_index;
675    
676     template<class T, object_vector_index T::*indexmember>
677 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
678     {
679 root 1.48 typedef typename object_vector::iterator iterator;
680    
681     bool contains (const T *obj) const
682     {
683 root 1.50 return obj->*indexmember;
684 root 1.48 }
685    
686     iterator find (const T *obj)
687     {
688 root 1.50 return obj->*indexmember
689     ? this->begin () + obj->*indexmember - 1
690 root 1.48 : this->end ();
691     }
692    
693 root 1.53 void push_back (T *obj)
694     {
695     std::vector<T *, slice_allocator<T *> >::push_back (obj);
696     obj->*indexmember = this->size ();
697     }
698    
699 root 1.26 void insert (T *obj)
700     {
701     push_back (obj);
702     }
703    
704     void insert (T &obj)
705     {
706     insert (&obj);
707     }
708    
709     void erase (T *obj)
710     {
711 root 1.50 unsigned int pos = obj->*indexmember;
712     obj->*indexmember = 0;
713 root 1.26
714     if (pos < this->size ())
715     {
716     (*this)[pos - 1] = (*this)[this->size () - 1];
717 root 1.50 (*this)[pos - 1]->*indexmember = pos;
718 root 1.26 }
719    
720     this->pop_back ();
721     }
722    
723     void erase (T &obj)
724     {
725 root 1.50 erase (&obj);
726 root 1.26 }
727     };
728    
729 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
730 root 1.87 // returns the number of bytes actually used (including \0)
731     int assign (char *dst, const char *src, int maxsize);
732 root 1.10
733     // type-safe version of assign
734 root 1.9 template<int N>
735 root 1.87 inline int assign (char (&dst)[N], const char *src)
736 root 1.9 {
737 root 1.87 return assign ((char *)&dst, src, N);
738 root 1.9 }
739    
740 root 1.17 typedef double tstamp;
741    
742 root 1.59 // return current time as timestamp
743 root 1.17 tstamp now ();
744    
745 root 1.25 int similar_direction (int a, int b);
746    
747 root 1.91 // like v?sprintf, but returns a "static" buffer
748     char *vformat (const char *format, va_list ap);
749 root 1.93 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
750 root 1.43
751 sf-marcmagus 1.89 // safety-check player input which will become object->msg
752     bool msg_is_safe (const char *msg);
753    
754 root 1.66 /////////////////////////////////////////////////////////////////////////////
755     // threads, very very thin wrappers around pthreads
756    
757     struct thread
758     {
759     pthread_t id;
760    
761     void start (void *(*start_routine)(void *), void *arg = 0);
762    
763     void cancel ()
764     {
765     pthread_cancel (id);
766     }
767    
768     void *join ()
769     {
770     void *ret;
771    
772     if (pthread_join (id, &ret))
773     cleanup ("pthread_join failed", 1);
774    
775     return ret;
776     }
777     };
778    
779     // note that mutexes are not classes
780     typedef pthread_mutex_t smutex;
781    
782     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
783     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
784     #else
785     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
786     #endif
787    
788     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
789 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
790 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
791    
792 root 1.68 typedef pthread_cond_t scond;
793    
794     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
795     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
796     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
797     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
798    
799 root 1.1 #endif
800