ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.116
Committed: Sat Dec 31 06:18:01 2011 UTC (12 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.115: +2 -2 lines
Log Message:
big min/max type change

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.114 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.105 #if cplusplus_does_not_suck
61     // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62 root 1.101 template<typename T, int N>
63 root 1.105 static inline int array_length (const T (&arr)[N])
64 root 1.101 {
65     return N;
66     }
67 root 1.105 #else
68     #define array_length(name) (sizeof (name) / sizeof (name [0]))
69     #endif
70 root 1.101
71 root 1.81 // very ugly macro that basically declares and initialises a variable
72 root 1.26 // that is in scope for the next statement only
73     // works only for stuff that can be assigned 0 and converts to false
74     // (note: works great for pointers)
75     // most ugly macro I ever wrote
76 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77 root 1.26
78 root 1.27 // in range including end
79     #define IN_RANGE_INC(val,beg,end) \
80     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81    
82     // in range excluding end
83     #define IN_RANGE_EXC(val,beg,end) \
84     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85    
86 root 1.66 void cleanup (const char *cause, bool make_core = false);
87 root 1.31 void fork_abort (const char *msg);
88    
89 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
90     // as a is often a constant while b is the variable. it is still a bug, though.
91 root 1.116 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
92     template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
93 root 1.35 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94 root 1.32
95 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98 root 1.78
99 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100    
101 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103    
104 root 1.79 // sign returns -1 or +1
105     template<typename T>
106     static inline T sign (T v) { return v < 0 ? -1 : +1; }
107     // relies on 2c representation
108     template<>
109 root 1.103 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110     template<>
111     inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112     template<>
113     inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114 root 1.79
115     // sign0 returns -1, 0 or +1
116     template<typename T>
117     static inline T sign0 (T v) { return v ? sign (v) : 0; }
118    
119 root 1.113 //clashes with C++0x
120 root 1.99 template<typename T, typename U>
121     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122    
123 root 1.88 // div* only work correctly for div > 0
124 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125 root 1.88 template<typename T> static inline T div (T val, T div)
126     {
127     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128     }
129 root 1.105
130     template<> inline float div (float val, float div) { return val / div; }
131     template<> inline double div (double val, double div) { return val / div; }
132    
133 root 1.78 // div, round-up
134 root 1.88 template<typename T> static inline T div_ru (T val, T div)
135     {
136     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137     }
138 root 1.78 // div, round-down
139 root 1.88 template<typename T> static inline T div_rd (T val, T div)
140     {
141     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142     }
143 root 1.78
144 root 1.88 // lerp* only work correctly for min_in < max_in
145     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146 root 1.44 template<typename T>
147     static inline T
148     lerp (T val, T min_in, T max_in, T min_out, T max_out)
149     {
150 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151     }
152    
153     // lerp, round-down
154     template<typename T>
155     static inline T
156     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157     {
158     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159     }
160    
161     // lerp, round-up
162     template<typename T>
163     static inline T
164     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165     {
166     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167 root 1.44 }
168    
169 root 1.37 // lots of stuff taken from FXT
170    
171     /* Rotate right. This is used in various places for checksumming */
172 root 1.38 //TODO: that sucks, use a better checksum algo
173 root 1.37 static inline uint32_t
174 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
175 root 1.37 {
176 root 1.38 return (c << (32 - count)) | (c >> count);
177     }
178    
179     static inline uint32_t
180     rotate_left (uint32_t c, uint32_t count = 1)
181     {
182     return (c >> (32 - count)) | (c << count);
183 root 1.37 }
184    
185     // Return abs(a-b)
186     // Both a and b must not have the most significant bit set
187     static inline uint32_t
188     upos_abs_diff (uint32_t a, uint32_t b)
189     {
190     long d1 = b - a;
191     long d2 = (d1 & (d1 >> 31)) << 1;
192    
193     return d1 - d2; // == (b - d) - (a + d);
194     }
195    
196     // Both a and b must not have the most significant bit set
197     static inline uint32_t
198     upos_min (uint32_t a, uint32_t b)
199     {
200     int32_t d = b - a;
201     d &= d >> 31;
202     return a + d;
203     }
204    
205     // Both a and b must not have the most significant bit set
206     static inline uint32_t
207     upos_max (uint32_t a, uint32_t b)
208     {
209     int32_t d = b - a;
210     d &= d >> 31;
211     return b - d;
212     }
213    
214 root 1.94 // this is much faster than crossfire's original algorithm
215 root 1.28 // on modern cpus
216     inline int
217     isqrt (int n)
218     {
219     return (int)sqrtf ((float)n);
220     }
221    
222 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
223     // more handy than it looks like, due to the implicit !! done on its arguments
224     inline bool
225     logical_xor (bool a, bool b)
226     {
227     return a != b;
228     }
229    
230     inline bool
231     logical_implies (bool a, bool b)
232     {
233     return a <= b;
234     }
235    
236 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
237     #if 0
238     // and has a max. error of 6 in the range -100..+100.
239     #else
240     // and has a max. error of 9 in the range -100..+100.
241     #endif
242     inline int
243     idistance (int dx, int dy)
244     {
245     unsigned int dx_ = abs (dx);
246     unsigned int dy_ = abs (dy);
247    
248     #if 0
249     return dx_ > dy_
250     ? (dx_ * 61685 + dy_ * 26870) >> 16
251     : (dy_ * 61685 + dx_ * 26870) >> 16;
252     #else
253 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
254 root 1.28 #endif
255     }
256    
257 root 1.115 // can be substantially faster than floor, if your value range allows for it
258     template<typename T>
259     inline T
260     fastfloor (T x)
261     {
262     return std::floor (x);
263     }
264    
265     inline float
266     fastfloor (float x)
267     {
268     return sint32(x) - (x < 0);
269     }
270    
271     inline double
272     fastfloor (double x)
273     {
274     return sint64(x) - (x < 0);
275     }
276    
277 root 1.29 /*
278     * absdir(int): Returns a number between 1 and 8, which represent
279     * the "absolute" direction of a number (it actually takes care of
280     * "overflow" in previous calculations of a direction).
281     */
282     inline int
283     absdir (int d)
284     {
285     return ((d - 1) & 7) + 1;
286     }
287 root 1.28
288 root 1.96 // avoid ctz name because netbsd or freebsd spams it's namespace with it
289     #if GCC_VERSION(3,4)
290     static inline int least_significant_bit (uint32_t x)
291     {
292     return __builtin_ctz (x);
293     }
294     #else
295     int least_significant_bit (uint32_t x);
296     #endif
297    
298     #define for_all_bits_sparse_32(mask, idxvar) \
299     for (uint32_t idxvar, mask_ = mask; \
300     mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301    
302 root 1.67 extern ssize_t slice_alloc; // statistics
303    
304     void *salloc_ (int n) throw (std::bad_alloc);
305     void *salloc_ (int n, void *src) throw (std::bad_alloc);
306    
307     // strictly the same as g_slice_alloc, but never returns 0
308     template<typename T>
309     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310    
311     // also copies src into the new area, like "memdup"
312     // if src is 0, clears the memory
313     template<typename T>
314     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315    
316     // clears the memory
317     template<typename T>
318     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319    
320     // for symmetry
321     template<typename T>
322     inline void sfree (T *ptr, int n = 1) throw ()
323     {
324     if (expect_true (ptr))
325     {
326     slice_alloc -= n * sizeof (T);
327 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
329     assert (slice_alloc >= 0);//D
330     }
331     }
332 root 1.57
333 root 1.72 // nulls the pointer
334     template<typename T>
335     inline void sfree0 (T *&ptr, int n = 1) throw ()
336     {
337     sfree<T> (ptr, n);
338     ptr = 0;
339     }
340    
341 root 1.1 // makes dynamically allocated objects zero-initialised
342     struct zero_initialised
343     {
344 root 1.11 void *operator new (size_t s, void *p)
345     {
346     memset (p, 0, s);
347     return p;
348     }
349    
350     void *operator new (size_t s)
351     {
352 root 1.67 return salloc0<char> (s);
353 root 1.11 }
354    
355     void *operator new[] (size_t s)
356     {
357 root 1.67 return salloc0<char> (s);
358 root 1.11 }
359    
360     void operator delete (void *p, size_t s)
361     {
362 root 1.67 sfree ((char *)p, s);
363 root 1.11 }
364    
365     void operator delete[] (void *p, size_t s)
366     {
367 root 1.67 sfree ((char *)p, s);
368 root 1.11 }
369     };
370    
371 root 1.73 // makes dynamically allocated objects zero-initialised
372     struct slice_allocated
373     {
374     void *operator new (size_t s, void *p)
375     {
376     return p;
377     }
378    
379     void *operator new (size_t s)
380     {
381     return salloc<char> (s);
382     }
383    
384     void *operator new[] (size_t s)
385     {
386     return salloc<char> (s);
387     }
388    
389     void operator delete (void *p, size_t s)
390     {
391     sfree ((char *)p, s);
392     }
393    
394     void operator delete[] (void *p, size_t s)
395     {
396     sfree ((char *)p, s);
397     }
398     };
399    
400 root 1.11 // a STL-compatible allocator that uses g_slice
401     // boy, this is verbose
402     template<typename Tp>
403     struct slice_allocator
404     {
405     typedef size_t size_type;
406     typedef ptrdiff_t difference_type;
407     typedef Tp *pointer;
408     typedef const Tp *const_pointer;
409     typedef Tp &reference;
410     typedef const Tp &const_reference;
411     typedef Tp value_type;
412    
413     template <class U>
414     struct rebind
415     {
416     typedef slice_allocator<U> other;
417     };
418    
419     slice_allocator () throw () { }
420 root 1.64 slice_allocator (const slice_allocator &) throw () { }
421 root 1.11 template<typename Tp2>
422     slice_allocator (const slice_allocator<Tp2> &) throw () { }
423    
424     ~slice_allocator () { }
425    
426     pointer address (reference x) const { return &x; }
427     const_pointer address (const_reference x) const { return &x; }
428    
429     pointer allocate (size_type n, const_pointer = 0)
430     {
431 root 1.18 return salloc<Tp> (n);
432 root 1.11 }
433    
434     void deallocate (pointer p, size_type n)
435     {
436 root 1.19 sfree<Tp> (p, n);
437 root 1.11 }
438    
439 root 1.64 size_type max_size () const throw ()
440 root 1.11 {
441     return size_t (-1) / sizeof (Tp);
442     }
443    
444     void construct (pointer p, const Tp &val)
445     {
446     ::new (p) Tp (val);
447     }
448    
449     void destroy (pointer p)
450     {
451     p->~Tp ();
452     }
453 root 1.1 };
454    
455 root 1.54 INTERFACE_CLASS (attachable)
456     struct refcnt_base
457     {
458     typedef int refcnt_t;
459     mutable refcnt_t ACC (RW, refcnt);
460    
461     MTH void refcnt_inc () const { ++refcnt; }
462     MTH void refcnt_dec () const { --refcnt; }
463    
464     refcnt_base () : refcnt (0) { }
465     };
466    
467 root 1.56 // to avoid branches with more advanced compilers
468 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
469    
470 root 1.7 template<class T>
471     struct refptr
472     {
473 root 1.54 // p if not null
474     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
475    
476     void refcnt_dec ()
477     {
478     if (!is_constant (p))
479     --*refcnt_ref ();
480     else if (p)
481     --p->refcnt;
482     }
483    
484     void refcnt_inc ()
485     {
486     if (!is_constant (p))
487     ++*refcnt_ref ();
488     else if (p)
489     ++p->refcnt;
490     }
491    
492 root 1.7 T *p;
493    
494     refptr () : p(0) { }
495 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
496     refptr (T *p) : p(p) { refcnt_inc (); }
497     ~refptr () { refcnt_dec (); }
498 root 1.7
499     const refptr<T> &operator =(T *o)
500     {
501 root 1.54 // if decrementing ever destroys we need to reverse the order here
502     refcnt_dec ();
503 root 1.7 p = o;
504 root 1.54 refcnt_inc ();
505 root 1.7 return *this;
506     }
507    
508 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
509 root 1.7 {
510     *this = o.p;
511     return *this;
512     }
513    
514     T &operator * () const { return *p; }
515 root 1.54 T *operator ->() const { return p; }
516 root 1.7
517     operator T *() const { return p; }
518     };
519    
520 root 1.24 typedef refptr<maptile> maptile_ptr;
521 root 1.22 typedef refptr<object> object_ptr;
522     typedef refptr<archetype> arch_ptr;
523 root 1.24 typedef refptr<client> client_ptr;
524     typedef refptr<player> player_ptr;
525 root 1.102 typedef refptr<region> region_ptr;
526 root 1.22
527 root 1.95 #define STRHSH_NULL 2166136261
528    
529     static inline uint32_t
530     strhsh (const char *s)
531     {
532     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
533     // it is about twice as fast as the one-at-a-time one,
534     // with good distribution.
535     // FNV-1a is faster on many cpus because the multiplication
536     // runs concurrently with the looping logic.
537 root 1.112 // we modify the hash a bit to improve its distribution
538 root 1.95 uint32_t hash = STRHSH_NULL;
539    
540     while (*s)
541 root 1.98 hash = (hash ^ *s++) * 16777619U;
542 root 1.95
543 root 1.112 return hash ^ (hash >> 16);
544 root 1.95 }
545    
546     static inline uint32_t
547     memhsh (const char *s, size_t len)
548     {
549     uint32_t hash = STRHSH_NULL;
550    
551     while (len--)
552 root 1.98 hash = (hash ^ *s++) * 16777619U;
553 root 1.95
554     return hash;
555     }
556    
557 root 1.4 struct str_hash
558     {
559     std::size_t operator ()(const char *s) const
560     {
561 root 1.95 return strhsh (s);
562     }
563 root 1.4
564 root 1.95 std::size_t operator ()(const shstr &s) const
565     {
566     return strhsh (s);
567 root 1.4 }
568     };
569    
570     struct str_equal
571     {
572     bool operator ()(const char *a, const char *b) const
573     {
574     return !strcmp (a, b);
575     }
576     };
577    
578 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
579 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
580 root 1.49 //
581 root 1.52 // NOTE: only some forms of erase are available
582 root 1.26 template<class T>
583     struct unordered_vector : std::vector<T, slice_allocator<T> >
584 root 1.6 {
585 root 1.11 typedef typename unordered_vector::iterator iterator;
586 root 1.6
587     void erase (unsigned int pos)
588     {
589     if (pos < this->size () - 1)
590     (*this)[pos] = (*this)[this->size () - 1];
591    
592     this->pop_back ();
593     }
594    
595     void erase (iterator i)
596     {
597     erase ((unsigned int )(i - this->begin ()));
598     }
599     };
600    
601 root 1.49 // This container blends advantages of linked lists
602     // (efficiency) with vectors (random access) by
603     // by using an unordered vector and storing the vector
604     // index inside the object.
605     //
606     // + memory-efficient on most 64 bit archs
607     // + O(1) insert/remove
608     // + free unique (but varying) id for inserted objects
609     // + cache-friendly iteration
610     // - only works for pointers to structs
611     //
612     // NOTE: only some forms of erase/insert are available
613 root 1.50 typedef int object_vector_index;
614    
615     template<class T, object_vector_index T::*indexmember>
616 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
617     {
618 root 1.48 typedef typename object_vector::iterator iterator;
619    
620     bool contains (const T *obj) const
621     {
622 root 1.50 return obj->*indexmember;
623 root 1.48 }
624    
625     iterator find (const T *obj)
626     {
627 root 1.50 return obj->*indexmember
628     ? this->begin () + obj->*indexmember - 1
629 root 1.48 : this->end ();
630     }
631    
632 root 1.53 void push_back (T *obj)
633     {
634     std::vector<T *, slice_allocator<T *> >::push_back (obj);
635     obj->*indexmember = this->size ();
636     }
637    
638 root 1.26 void insert (T *obj)
639     {
640     push_back (obj);
641     }
642    
643     void insert (T &obj)
644     {
645     insert (&obj);
646     }
647    
648     void erase (T *obj)
649     {
650 root 1.50 unsigned int pos = obj->*indexmember;
651     obj->*indexmember = 0;
652 root 1.26
653     if (pos < this->size ())
654     {
655     (*this)[pos - 1] = (*this)[this->size () - 1];
656 root 1.50 (*this)[pos - 1]->*indexmember = pos;
657 root 1.26 }
658    
659     this->pop_back ();
660     }
661    
662     void erase (T &obj)
663     {
664 root 1.50 erase (&obj);
665 root 1.26 }
666     };
667    
668 root 1.111 /////////////////////////////////////////////////////////////////////////////
669    
670     // something like a vector or stack, but without
671     // out of bounds checking
672     template<typename T>
673     struct fixed_stack
674     {
675     T *data;
676     int size;
677     int max;
678    
679     fixed_stack ()
680     : size (0), data (0)
681     {
682     }
683    
684     fixed_stack (int max)
685     : size (0), max (max)
686     {
687     data = salloc<T> (max);
688     }
689    
690     void reset (int new_max)
691     {
692     sfree (data, max);
693     size = 0;
694     max = new_max;
695     data = salloc<T> (max);
696     }
697    
698     void free ()
699     {
700     sfree (data, max);
701     data = 0;
702     }
703    
704     ~fixed_stack ()
705     {
706     sfree (data, max);
707     }
708    
709     T &operator[](int idx)
710     {
711     return data [idx];
712     }
713    
714     void push (T v)
715     {
716     data [size++] = v;
717     }
718    
719     T &pop ()
720     {
721     return data [--size];
722     }
723    
724     T remove (int idx)
725     {
726     T v = data [idx];
727    
728     data [idx] = data [--size];
729    
730     return v;
731     }
732     };
733    
734     /////////////////////////////////////////////////////////////////////////////
735    
736 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
737 root 1.87 // returns the number of bytes actually used (including \0)
738     int assign (char *dst, const char *src, int maxsize);
739 root 1.10
740     // type-safe version of assign
741 root 1.9 template<int N>
742 root 1.87 inline int assign (char (&dst)[N], const char *src)
743 root 1.9 {
744 root 1.87 return assign ((char *)&dst, src, N);
745 root 1.9 }
746    
747 root 1.17 typedef double tstamp;
748    
749 root 1.59 // return current time as timestamp
750 root 1.17 tstamp now ();
751    
752 root 1.25 int similar_direction (int a, int b);
753    
754 root 1.91 // like v?sprintf, but returns a "static" buffer
755     char *vformat (const char *format, va_list ap);
756 root 1.93 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
757 root 1.43
758 sf-marcmagus 1.89 // safety-check player input which will become object->msg
759     bool msg_is_safe (const char *msg);
760    
761 root 1.66 /////////////////////////////////////////////////////////////////////////////
762     // threads, very very thin wrappers around pthreads
763    
764     struct thread
765     {
766     pthread_t id;
767    
768     void start (void *(*start_routine)(void *), void *arg = 0);
769    
770     void cancel ()
771     {
772     pthread_cancel (id);
773     }
774    
775     void *join ()
776     {
777     void *ret;
778    
779     if (pthread_join (id, &ret))
780     cleanup ("pthread_join failed", 1);
781    
782     return ret;
783     }
784     };
785    
786     // note that mutexes are not classes
787     typedef pthread_mutex_t smutex;
788    
789     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
790     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
791     #else
792     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
793     #endif
794    
795     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
796 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
797 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
798    
799 root 1.68 typedef pthread_cond_t scond;
800    
801     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
802     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
803     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
804     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
805    
806 root 1.1 #endif
807