ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.123
Committed: Wed Nov 16 23:42:01 2016 UTC (7 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.122: +1 -1 lines
Log Message:
copyright update 2016

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.120 *
4 root 1.123 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.120 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.120 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.120 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.120 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.105 #if cplusplus_does_not_suck
61     // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62 root 1.101 template<typename T, int N>
63 root 1.105 static inline int array_length (const T (&arr)[N])
64 root 1.101 {
65     return N;
66     }
67 root 1.105 #else
68     #define array_length(name) (sizeof (name) / sizeof (name [0]))
69     #endif
70 root 1.101
71 root 1.81 // very ugly macro that basically declares and initialises a variable
72 root 1.26 // that is in scope for the next statement only
73     // works only for stuff that can be assigned 0 and converts to false
74     // (note: works great for pointers)
75     // most ugly macro I ever wrote
76 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77 root 1.26
78 root 1.27 // in range including end
79     #define IN_RANGE_INC(val,beg,end) \
80     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81    
82     // in range excluding end
83     #define IN_RANGE_EXC(val,beg,end) \
84     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85    
86 root 1.66 void cleanup (const char *cause, bool make_core = false);
87 root 1.31 void fork_abort (const char *msg);
88    
89 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
90     // as a is often a constant while b is the variable. it is still a bug, though.
91 root 1.116 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
92     template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
93 root 1.35 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94 root 1.32
95 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98 root 1.78
99 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100    
101 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103    
104 root 1.79 // sign returns -1 or +1
105     template<typename T>
106     static inline T sign (T v) { return v < 0 ? -1 : +1; }
107     // relies on 2c representation
108     template<>
109 root 1.103 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110     template<>
111     inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112     template<>
113     inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114 root 1.79
115     // sign0 returns -1, 0 or +1
116     template<typename T>
117     static inline T sign0 (T v) { return v ? sign (v) : 0; }
118    
119 root 1.113 //clashes with C++0x
120 root 1.99 template<typename T, typename U>
121     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122    
123 root 1.88 // div* only work correctly for div > 0
124 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125 root 1.88 template<typename T> static inline T div (T val, T div)
126     {
127     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128     }
129 root 1.105
130     template<> inline float div (float val, float div) { return val / div; }
131     template<> inline double div (double val, double div) { return val / div; }
132    
133 root 1.78 // div, round-up
134 root 1.88 template<typename T> static inline T div_ru (T val, T div)
135     {
136     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137     }
138 root 1.78 // div, round-down
139 root 1.88 template<typename T> static inline T div_rd (T val, T div)
140     {
141     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142     }
143 root 1.78
144 root 1.88 // lerp* only work correctly for min_in < max_in
145     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146 root 1.44 template<typename T>
147     static inline T
148     lerp (T val, T min_in, T max_in, T min_out, T max_out)
149     {
150 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151     }
152    
153     // lerp, round-down
154     template<typename T>
155     static inline T
156     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157     {
158     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159     }
160    
161     // lerp, round-up
162     template<typename T>
163     static inline T
164     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165     {
166     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167 root 1.44 }
168    
169 root 1.37 // lots of stuff taken from FXT
170    
171     /* Rotate right. This is used in various places for checksumming */
172 root 1.38 //TODO: that sucks, use a better checksum algo
173 root 1.37 static inline uint32_t
174 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
175 root 1.37 {
176 root 1.38 return (c << (32 - count)) | (c >> count);
177     }
178    
179     static inline uint32_t
180     rotate_left (uint32_t c, uint32_t count = 1)
181     {
182     return (c >> (32 - count)) | (c << count);
183 root 1.37 }
184    
185     // Return abs(a-b)
186     // Both a and b must not have the most significant bit set
187     static inline uint32_t
188     upos_abs_diff (uint32_t a, uint32_t b)
189     {
190     long d1 = b - a;
191     long d2 = (d1 & (d1 >> 31)) << 1;
192    
193     return d1 - d2; // == (b - d) - (a + d);
194     }
195    
196     // Both a and b must not have the most significant bit set
197     static inline uint32_t
198     upos_min (uint32_t a, uint32_t b)
199     {
200     int32_t d = b - a;
201     d &= d >> 31;
202     return a + d;
203     }
204    
205     // Both a and b must not have the most significant bit set
206     static inline uint32_t
207     upos_max (uint32_t a, uint32_t b)
208     {
209     int32_t d = b - a;
210     d &= d >> 31;
211     return b - d;
212     }
213    
214 root 1.94 // this is much faster than crossfire's original algorithm
215 root 1.28 // on modern cpus
216     inline int
217     isqrt (int n)
218     {
219     return (int)sqrtf ((float)n);
220     }
221    
222 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
223     // more handy than it looks like, due to the implicit !! done on its arguments
224     inline bool
225     logical_xor (bool a, bool b)
226     {
227     return a != b;
228     }
229    
230     inline bool
231     logical_implies (bool a, bool b)
232     {
233     return a <= b;
234     }
235    
236 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
237     #if 0
238     // and has a max. error of 6 in the range -100..+100.
239     #else
240     // and has a max. error of 9 in the range -100..+100.
241     #endif
242 root 1.122 inline int
243 root 1.28 idistance (int dx, int dy)
244 root 1.122 {
245 root 1.28 unsigned int dx_ = abs (dx);
246     unsigned int dy_ = abs (dy);
247    
248     #if 0
249     return dx_ > dy_
250     ? (dx_ * 61685 + dy_ * 26870) >> 16
251     : (dy_ * 61685 + dx_ * 26870) >> 16;
252     #else
253 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
254 root 1.28 #endif
255     }
256    
257 root 1.115 // can be substantially faster than floor, if your value range allows for it
258     template<typename T>
259     inline T
260     fastfloor (T x)
261     {
262     return std::floor (x);
263     }
264    
265     inline float
266     fastfloor (float x)
267     {
268     return sint32(x) - (x < 0);
269     }
270    
271     inline double
272     fastfloor (double x)
273     {
274     return sint64(x) - (x < 0);
275     }
276    
277 root 1.29 /*
278     * absdir(int): Returns a number between 1 and 8, which represent
279     * the "absolute" direction of a number (it actually takes care of
280     * "overflow" in previous calculations of a direction).
281     */
282     inline int
283     absdir (int d)
284     {
285     return ((d - 1) & 7) + 1;
286     }
287 root 1.28
288 root 1.96 // avoid ctz name because netbsd or freebsd spams it's namespace with it
289     #if GCC_VERSION(3,4)
290     static inline int least_significant_bit (uint32_t x)
291     {
292     return __builtin_ctz (x);
293     }
294     #else
295     int least_significant_bit (uint32_t x);
296     #endif
297    
298     #define for_all_bits_sparse_32(mask, idxvar) \
299     for (uint32_t idxvar, mask_ = mask; \
300     mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301    
302 root 1.67 extern ssize_t slice_alloc; // statistics
303    
304     void *salloc_ (int n) throw (std::bad_alloc);
305     void *salloc_ (int n, void *src) throw (std::bad_alloc);
306    
307     // strictly the same as g_slice_alloc, but never returns 0
308     template<typename T>
309     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310    
311     // also copies src into the new area, like "memdup"
312     // if src is 0, clears the memory
313     template<typename T>
314     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315    
316     // clears the memory
317     template<typename T>
318     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319    
320     // for symmetry
321     template<typename T>
322     inline void sfree (T *ptr, int n = 1) throw ()
323     {
324     if (expect_true (ptr))
325     {
326     slice_alloc -= n * sizeof (T);
327 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
329     }
330     }
331 root 1.57
332 root 1.72 // nulls the pointer
333     template<typename T>
334     inline void sfree0 (T *&ptr, int n = 1) throw ()
335     {
336     sfree<T> (ptr, n);
337     ptr = 0;
338     }
339    
340 root 1.1 // makes dynamically allocated objects zero-initialised
341     struct zero_initialised
342     {
343 root 1.11 void *operator new (size_t s, void *p)
344     {
345     memset (p, 0, s);
346     return p;
347     }
348    
349     void *operator new (size_t s)
350     {
351 root 1.67 return salloc0<char> (s);
352 root 1.11 }
353    
354     void *operator new[] (size_t s)
355     {
356 root 1.67 return salloc0<char> (s);
357 root 1.11 }
358    
359     void operator delete (void *p, size_t s)
360     {
361 root 1.67 sfree ((char *)p, s);
362 root 1.11 }
363    
364     void operator delete[] (void *p, size_t s)
365     {
366 root 1.67 sfree ((char *)p, s);
367 root 1.11 }
368     };
369    
370 root 1.73 // makes dynamically allocated objects zero-initialised
371     struct slice_allocated
372     {
373     void *operator new (size_t s, void *p)
374     {
375     return p;
376     }
377    
378     void *operator new (size_t s)
379     {
380     return salloc<char> (s);
381     }
382    
383     void *operator new[] (size_t s)
384     {
385     return salloc<char> (s);
386     }
387    
388     void operator delete (void *p, size_t s)
389     {
390     sfree ((char *)p, s);
391     }
392    
393     void operator delete[] (void *p, size_t s)
394     {
395     sfree ((char *)p, s);
396     }
397     };
398    
399 root 1.11 // a STL-compatible allocator that uses g_slice
400     // boy, this is verbose
401     template<typename Tp>
402     struct slice_allocator
403     {
404     typedef size_t size_type;
405     typedef ptrdiff_t difference_type;
406     typedef Tp *pointer;
407     typedef const Tp *const_pointer;
408     typedef Tp &reference;
409     typedef const Tp &const_reference;
410     typedef Tp value_type;
411    
412 root 1.122 template <class U>
413 root 1.11 struct rebind
414     {
415     typedef slice_allocator<U> other;
416     };
417    
418     slice_allocator () throw () { }
419 root 1.64 slice_allocator (const slice_allocator &) throw () { }
420 root 1.11 template<typename Tp2>
421     slice_allocator (const slice_allocator<Tp2> &) throw () { }
422    
423     ~slice_allocator () { }
424    
425     pointer address (reference x) const { return &x; }
426     const_pointer address (const_reference x) const { return &x; }
427    
428     pointer allocate (size_type n, const_pointer = 0)
429     {
430 root 1.18 return salloc<Tp> (n);
431 root 1.11 }
432    
433     void deallocate (pointer p, size_type n)
434     {
435 root 1.19 sfree<Tp> (p, n);
436 root 1.11 }
437    
438 root 1.64 size_type max_size () const throw ()
439 root 1.11 {
440     return size_t (-1) / sizeof (Tp);
441     }
442    
443     void construct (pointer p, const Tp &val)
444     {
445     ::new (p) Tp (val);
446     }
447    
448     void destroy (pointer p)
449     {
450     p->~Tp ();
451     }
452 root 1.1 };
453    
454 root 1.117 // basically a memory area, but refcounted
455     struct refcnt_buf
456     {
457     char *data;
458    
459     refcnt_buf (size_t size = 0);
460     refcnt_buf (void *data, size_t size);
461    
462     refcnt_buf (const refcnt_buf &src)
463     {
464     data = src.data;
465 root 1.121 inc ();
466 root 1.117 }
467    
468     ~refcnt_buf ();
469    
470     refcnt_buf &operator =(const refcnt_buf &src);
471    
472     operator char *()
473     {
474     return data;
475     }
476    
477     size_t size () const
478     {
479     return _size ();
480     }
481    
482     protected:
483     enum {
484 root 1.121 overhead = sizeof (uint32_t) * 2
485 root 1.117 };
486    
487 root 1.121 uint32_t &_size () const
488 root 1.117 {
489     return ((unsigned int *)data)[-2];
490     }
491    
492 root 1.121 uint32_t &_refcnt () const
493 root 1.117 {
494     return ((unsigned int *)data)[-1];
495     }
496    
497 root 1.121 void _alloc (uint32_t size)
498 root 1.117 {
499     data = ((char *)salloc<char> (size + overhead)) + overhead;
500     _size () = size;
501     _refcnt () = 1;
502     }
503    
504 root 1.121 void _dealloc ();
505    
506     void inc ()
507     {
508     ++_refcnt ();
509     }
510    
511 root 1.117 void dec ()
512     {
513     if (!--_refcnt ())
514 root 1.121 _dealloc ();
515 root 1.117 }
516     };
517    
518 root 1.54 INTERFACE_CLASS (attachable)
519     struct refcnt_base
520     {
521     typedef int refcnt_t;
522     mutable refcnt_t ACC (RW, refcnt);
523    
524     MTH void refcnt_inc () const { ++refcnt; }
525     MTH void refcnt_dec () const { --refcnt; }
526    
527     refcnt_base () : refcnt (0) { }
528     };
529    
530 root 1.56 // to avoid branches with more advanced compilers
531 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
532    
533 root 1.7 template<class T>
534     struct refptr
535     {
536 root 1.54 // p if not null
537     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
538    
539     void refcnt_dec ()
540     {
541     if (!is_constant (p))
542     --*refcnt_ref ();
543     else if (p)
544     --p->refcnt;
545     }
546    
547     void refcnt_inc ()
548     {
549     if (!is_constant (p))
550     ++*refcnt_ref ();
551     else if (p)
552     ++p->refcnt;
553     }
554    
555 root 1.7 T *p;
556    
557     refptr () : p(0) { }
558 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
559     refptr (T *p) : p(p) { refcnt_inc (); }
560     ~refptr () { refcnt_dec (); }
561 root 1.7
562     const refptr<T> &operator =(T *o)
563     {
564 root 1.54 // if decrementing ever destroys we need to reverse the order here
565     refcnt_dec ();
566 root 1.7 p = o;
567 root 1.54 refcnt_inc ();
568 root 1.7 return *this;
569     }
570    
571 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
572 root 1.7 {
573     *this = o.p;
574     return *this;
575     }
576    
577     T &operator * () const { return *p; }
578 root 1.54 T *operator ->() const { return p; }
579 root 1.7
580     operator T *() const { return p; }
581     };
582    
583 root 1.24 typedef refptr<maptile> maptile_ptr;
584 root 1.22 typedef refptr<object> object_ptr;
585     typedef refptr<archetype> arch_ptr;
586 root 1.24 typedef refptr<client> client_ptr;
587     typedef refptr<player> player_ptr;
588 root 1.102 typedef refptr<region> region_ptr;
589 root 1.22
590 root 1.95 #define STRHSH_NULL 2166136261
591    
592     static inline uint32_t
593     strhsh (const char *s)
594     {
595     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
596     // it is about twice as fast as the one-at-a-time one,
597     // with good distribution.
598     // FNV-1a is faster on many cpus because the multiplication
599     // runs concurrently with the looping logic.
600 root 1.112 // we modify the hash a bit to improve its distribution
601 root 1.95 uint32_t hash = STRHSH_NULL;
602 root 1.122
603 root 1.95 while (*s)
604 root 1.98 hash = (hash ^ *s++) * 16777619U;
605 root 1.95
606 root 1.112 return hash ^ (hash >> 16);
607 root 1.95 }
608    
609     static inline uint32_t
610     memhsh (const char *s, size_t len)
611     {
612     uint32_t hash = STRHSH_NULL;
613 root 1.122
614 root 1.95 while (len--)
615 root 1.98 hash = (hash ^ *s++) * 16777619U;
616 root 1.95
617     return hash;
618     }
619    
620 root 1.4 struct str_hash
621     {
622     std::size_t operator ()(const char *s) const
623     {
624 root 1.95 return strhsh (s);
625     }
626 root 1.4
627 root 1.95 std::size_t operator ()(const shstr &s) const
628     {
629     return strhsh (s);
630 root 1.4 }
631     };
632    
633     struct str_equal
634     {
635     bool operator ()(const char *a, const char *b) const
636     {
637     return !strcmp (a, b);
638     }
639     };
640    
641 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
642 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
643 root 1.49 //
644 root 1.52 // NOTE: only some forms of erase are available
645 root 1.26 template<class T>
646     struct unordered_vector : std::vector<T, slice_allocator<T> >
647 root 1.6 {
648 root 1.11 typedef typename unordered_vector::iterator iterator;
649 root 1.6
650     void erase (unsigned int pos)
651     {
652     if (pos < this->size () - 1)
653     (*this)[pos] = (*this)[this->size () - 1];
654    
655     this->pop_back ();
656     }
657    
658     void erase (iterator i)
659     {
660     erase ((unsigned int )(i - this->begin ()));
661     }
662     };
663    
664 root 1.49 // This container blends advantages of linked lists
665     // (efficiency) with vectors (random access) by
666 root 1.119 // using an unordered vector and storing the vector
667 root 1.49 // index inside the object.
668     //
669     // + memory-efficient on most 64 bit archs
670     // + O(1) insert/remove
671     // + free unique (but varying) id for inserted objects
672     // + cache-friendly iteration
673     // - only works for pointers to structs
674     //
675     // NOTE: only some forms of erase/insert are available
676 root 1.50 typedef int object_vector_index;
677    
678     template<class T, object_vector_index T::*indexmember>
679 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
680     {
681 root 1.48 typedef typename object_vector::iterator iterator;
682    
683     bool contains (const T *obj) const
684     {
685 root 1.50 return obj->*indexmember;
686 root 1.48 }
687    
688     iterator find (const T *obj)
689     {
690 root 1.50 return obj->*indexmember
691     ? this->begin () + obj->*indexmember - 1
692 root 1.48 : this->end ();
693     }
694    
695 root 1.53 void push_back (T *obj)
696     {
697     std::vector<T *, slice_allocator<T *> >::push_back (obj);
698     obj->*indexmember = this->size ();
699     }
700    
701 root 1.26 void insert (T *obj)
702     {
703     push_back (obj);
704     }
705    
706     void insert (T &obj)
707     {
708     insert (&obj);
709     }
710    
711     void erase (T *obj)
712     {
713 root 1.119 object_vector_index pos = obj->*indexmember;
714 root 1.50 obj->*indexmember = 0;
715 root 1.26
716     if (pos < this->size ())
717     {
718     (*this)[pos - 1] = (*this)[this->size () - 1];
719 root 1.50 (*this)[pos - 1]->*indexmember = pos;
720 root 1.26 }
721    
722     this->pop_back ();
723     }
724    
725     void erase (T &obj)
726     {
727 root 1.50 erase (&obj);
728 root 1.26 }
729     };
730    
731 root 1.111 /////////////////////////////////////////////////////////////////////////////
732    
733     // something like a vector or stack, but without
734     // out of bounds checking
735     template<typename T>
736     struct fixed_stack
737     {
738     T *data;
739     int size;
740     int max;
741    
742     fixed_stack ()
743     : size (0), data (0)
744     {
745     }
746    
747     fixed_stack (int max)
748     : size (0), max (max)
749     {
750     data = salloc<T> (max);
751     }
752    
753     void reset (int new_max)
754     {
755     sfree (data, max);
756     size = 0;
757     max = new_max;
758     data = salloc<T> (max);
759     }
760    
761     void free ()
762     {
763     sfree (data, max);
764     data = 0;
765     }
766    
767     ~fixed_stack ()
768     {
769     sfree (data, max);
770     }
771    
772     T &operator[](int idx)
773     {
774     return data [idx];
775     }
776    
777     void push (T v)
778     {
779     data [size++] = v;
780     }
781    
782     T &pop ()
783     {
784     return data [--size];
785     }
786    
787     T remove (int idx)
788     {
789     T v = data [idx];
790    
791     data [idx] = data [--size];
792    
793     return v;
794     }
795     };
796    
797     /////////////////////////////////////////////////////////////////////////////
798    
799 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
800 root 1.87 // returns the number of bytes actually used (including \0)
801     int assign (char *dst, const char *src, int maxsize);
802 root 1.10
803     // type-safe version of assign
804 root 1.9 template<int N>
805 root 1.87 inline int assign (char (&dst)[N], const char *src)
806 root 1.9 {
807 root 1.87 return assign ((char *)&dst, src, N);
808 root 1.9 }
809    
810 root 1.17 typedef double tstamp;
811    
812 root 1.59 // return current time as timestamp
813 root 1.17 tstamp now ();
814    
815 root 1.25 int similar_direction (int a, int b);
816    
817 root 1.91 // like v?sprintf, but returns a "static" buffer
818     char *vformat (const char *format, va_list ap);
819 root 1.93 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
820 root 1.43
821 sf-marcmagus 1.89 // safety-check player input which will become object->msg
822     bool msg_is_safe (const char *msg);
823    
824 root 1.66 /////////////////////////////////////////////////////////////////////////////
825     // threads, very very thin wrappers around pthreads
826    
827     struct thread
828     {
829     pthread_t id;
830    
831     void start (void *(*start_routine)(void *), void *arg = 0);
832    
833     void cancel ()
834     {
835     pthread_cancel (id);
836     }
837    
838     void *join ()
839     {
840     void *ret;
841    
842     if (pthread_join (id, &ret))
843     cleanup ("pthread_join failed", 1);
844    
845     return ret;
846     }
847     };
848    
849     // note that mutexes are not classes
850     typedef pthread_mutex_t smutex;
851    
852     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
853     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
854     #else
855     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
856     #endif
857    
858     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
859 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
860 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
861    
862 root 1.68 typedef pthread_cond_t scond;
863    
864     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
865     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
866     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
867     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
868    
869 root 1.1 #endif
870