ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.126
Committed: Sat Nov 17 23:33:18 2018 UTC (5 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.125: +6 -16 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.120 *
4 root 1.123 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.120 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.120 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.120 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.120 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.124 #if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
61 root 1.105 // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62 root 1.101 template<typename T, int N>
63 root 1.105 static inline int array_length (const T (&arr)[N])
64 root 1.101 {
65     return N;
66     }
67 root 1.105 #else
68     #define array_length(name) (sizeof (name) / sizeof (name [0]))
69     #endif
70 root 1.101
71 root 1.81 // very ugly macro that basically declares and initialises a variable
72 root 1.26 // that is in scope for the next statement only
73     // works only for stuff that can be assigned 0 and converts to false
74     // (note: works great for pointers)
75     // most ugly macro I ever wrote
76 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77 root 1.26
78 root 1.27 // in range including end
79     #define IN_RANGE_INC(val,beg,end) \
80     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81    
82     // in range excluding end
83     #define IN_RANGE_EXC(val,beg,end) \
84     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85    
86 root 1.126 ecb_cold void cleanup (const char *cause, bool make_core = false);
87     ecb_cold void fork_abort (const char *msg);
88 root 1.31
89 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
90     // as a is often a constant while b is the variable. it is still a bug, though.
91 root 1.116 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
92     template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
93 root 1.35 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94 root 1.32
95 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98 root 1.78
99 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100    
101 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103    
104 root 1.79 // sign returns -1 or +1
105     template<typename T>
106     static inline T sign (T v) { return v < 0 ? -1 : +1; }
107     // relies on 2c representation
108     template<>
109 root 1.103 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110     template<>
111     inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112     template<>
113     inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114 root 1.79
115     // sign0 returns -1, 0 or +1
116     template<typename T>
117     static inline T sign0 (T v) { return v ? sign (v) : 0; }
118    
119 root 1.113 //clashes with C++0x
120 root 1.99 template<typename T, typename U>
121     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122    
123 root 1.88 // div* only work correctly for div > 0
124 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125 root 1.88 template<typename T> static inline T div (T val, T div)
126     {
127     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128     }
129 root 1.105
130     template<> inline float div (float val, float div) { return val / div; }
131     template<> inline double div (double val, double div) { return val / div; }
132    
133 root 1.78 // div, round-up
134 root 1.88 template<typename T> static inline T div_ru (T val, T div)
135     {
136     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137     }
138 root 1.78 // div, round-down
139 root 1.88 template<typename T> static inline T div_rd (T val, T div)
140     {
141     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142     }
143 root 1.78
144 root 1.88 // lerp* only work correctly for min_in < max_in
145     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146 root 1.44 template<typename T>
147     static inline T
148     lerp (T val, T min_in, T max_in, T min_out, T max_out)
149     {
150 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151     }
152    
153     // lerp, round-down
154     template<typename T>
155     static inline T
156     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157     {
158     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159     }
160    
161     // lerp, round-up
162     template<typename T>
163     static inline T
164     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165     {
166     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167 root 1.44 }
168    
169 root 1.37 // lots of stuff taken from FXT
170    
171     /* Rotate right. This is used in various places for checksumming */
172 root 1.38 //TODO: that sucks, use a better checksum algo
173 root 1.37 static inline uint32_t
174 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
175 root 1.37 {
176 root 1.38 return (c << (32 - count)) | (c >> count);
177     }
178    
179     static inline uint32_t
180     rotate_left (uint32_t c, uint32_t count = 1)
181     {
182     return (c >> (32 - count)) | (c << count);
183 root 1.37 }
184    
185     // Return abs(a-b)
186     // Both a and b must not have the most significant bit set
187     static inline uint32_t
188     upos_abs_diff (uint32_t a, uint32_t b)
189     {
190     long d1 = b - a;
191     long d2 = (d1 & (d1 >> 31)) << 1;
192    
193     return d1 - d2; // == (b - d) - (a + d);
194     }
195    
196     // Both a and b must not have the most significant bit set
197     static inline uint32_t
198     upos_min (uint32_t a, uint32_t b)
199     {
200     int32_t d = b - a;
201     d &= d >> 31;
202     return a + d;
203     }
204    
205     // Both a and b must not have the most significant bit set
206     static inline uint32_t
207     upos_max (uint32_t a, uint32_t b)
208     {
209     int32_t d = b - a;
210     d &= d >> 31;
211     return b - d;
212     }
213    
214 root 1.94 // this is much faster than crossfire's original algorithm
215 root 1.28 // on modern cpus
216     inline int
217     isqrt (int n)
218     {
219     return (int)sqrtf ((float)n);
220     }
221    
222 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
223     // more handy than it looks like, due to the implicit !! done on its arguments
224     inline bool
225     logical_xor (bool a, bool b)
226     {
227     return a != b;
228     }
229    
230     inline bool
231     logical_implies (bool a, bool b)
232     {
233     return a <= b;
234     }
235    
236 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
237     #if 0
238     // and has a max. error of 6 in the range -100..+100.
239     #else
240     // and has a max. error of 9 in the range -100..+100.
241     #endif
242 root 1.122 inline int
243 root 1.28 idistance (int dx, int dy)
244 root 1.122 {
245 root 1.28 unsigned int dx_ = abs (dx);
246     unsigned int dy_ = abs (dy);
247    
248     #if 0
249     return dx_ > dy_
250     ? (dx_ * 61685 + dy_ * 26870) >> 16
251     : (dy_ * 61685 + dx_ * 26870) >> 16;
252     #else
253 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
254 root 1.28 #endif
255     }
256    
257 root 1.115 // can be substantially faster than floor, if your value range allows for it
258     template<typename T>
259     inline T
260     fastfloor (T x)
261     {
262     return std::floor (x);
263     }
264    
265     inline float
266     fastfloor (float x)
267     {
268     return sint32(x) - (x < 0);
269     }
270    
271     inline double
272     fastfloor (double x)
273     {
274     return sint64(x) - (x < 0);
275     }
276    
277 root 1.29 /*
278     * absdir(int): Returns a number between 1 and 8, which represent
279     * the "absolute" direction of a number (it actually takes care of
280     * "overflow" in previous calculations of a direction).
281     */
282     inline int
283     absdir (int d)
284     {
285     return ((d - 1) & 7) + 1;
286     }
287 root 1.28
288 root 1.96 #define for_all_bits_sparse_32(mask, idxvar) \
289     for (uint32_t idxvar, mask_ = mask; \
290 root 1.126 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
291 root 1.96
292 root 1.67 extern ssize_t slice_alloc; // statistics
293    
294 root 1.125 void *salloc_ (int n);
295     void *salloc_ (int n, void *src);
296 root 1.67
297     // strictly the same as g_slice_alloc, but never returns 0
298     template<typename T>
299 root 1.125 inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
300 root 1.67
301     // also copies src into the new area, like "memdup"
302     // if src is 0, clears the memory
303     template<typename T>
304 root 1.125 inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
305 root 1.67
306     // clears the memory
307     template<typename T>
308 root 1.125 inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
309 root 1.67
310     // for symmetry
311     template<typename T>
312 root 1.125 inline void sfree (T *ptr, int n = 1) noexcept
313 root 1.67 {
314     if (expect_true (ptr))
315     {
316     slice_alloc -= n * sizeof (T);
317 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
318 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
319     }
320     }
321 root 1.57
322 root 1.72 // nulls the pointer
323     template<typename T>
324 root 1.125 inline void sfree0 (T *&ptr, int n = 1) noexcept
325 root 1.72 {
326     sfree<T> (ptr, n);
327     ptr = 0;
328     }
329    
330 root 1.1 // makes dynamically allocated objects zero-initialised
331     struct zero_initialised
332     {
333 root 1.11 void *operator new (size_t s, void *p)
334     {
335     memset (p, 0, s);
336     return p;
337     }
338    
339     void *operator new (size_t s)
340     {
341 root 1.67 return salloc0<char> (s);
342 root 1.11 }
343    
344     void *operator new[] (size_t s)
345     {
346 root 1.67 return salloc0<char> (s);
347 root 1.11 }
348    
349     void operator delete (void *p, size_t s)
350     {
351 root 1.67 sfree ((char *)p, s);
352 root 1.11 }
353    
354     void operator delete[] (void *p, size_t s)
355     {
356 root 1.67 sfree ((char *)p, s);
357 root 1.11 }
358     };
359    
360 root 1.73 // makes dynamically allocated objects zero-initialised
361     struct slice_allocated
362     {
363     void *operator new (size_t s, void *p)
364     {
365     return p;
366     }
367    
368     void *operator new (size_t s)
369     {
370     return salloc<char> (s);
371     }
372    
373     void *operator new[] (size_t s)
374     {
375     return salloc<char> (s);
376     }
377    
378     void operator delete (void *p, size_t s)
379     {
380     sfree ((char *)p, s);
381     }
382    
383     void operator delete[] (void *p, size_t s)
384     {
385     sfree ((char *)p, s);
386     }
387     };
388    
389 root 1.11 // a STL-compatible allocator that uses g_slice
390     // boy, this is verbose
391     template<typename Tp>
392     struct slice_allocator
393     {
394     typedef size_t size_type;
395     typedef ptrdiff_t difference_type;
396     typedef Tp *pointer;
397     typedef const Tp *const_pointer;
398     typedef Tp &reference;
399     typedef const Tp &const_reference;
400     typedef Tp value_type;
401    
402 root 1.122 template <class U>
403 root 1.11 struct rebind
404     {
405     typedef slice_allocator<U> other;
406     };
407    
408 root 1.125 slice_allocator () noexcept { }
409     slice_allocator (const slice_allocator &) noexcept { }
410 root 1.11 template<typename Tp2>
411 root 1.125 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
412 root 1.11
413     ~slice_allocator () { }
414    
415     pointer address (reference x) const { return &x; }
416     const_pointer address (const_reference x) const { return &x; }
417    
418     pointer allocate (size_type n, const_pointer = 0)
419     {
420 root 1.18 return salloc<Tp> (n);
421 root 1.11 }
422    
423     void deallocate (pointer p, size_type n)
424     {
425 root 1.19 sfree<Tp> (p, n);
426 root 1.11 }
427    
428 root 1.125 size_type max_size () const noexcept
429 root 1.11 {
430     return size_t (-1) / sizeof (Tp);
431     }
432    
433     void construct (pointer p, const Tp &val)
434     {
435     ::new (p) Tp (val);
436     }
437    
438     void destroy (pointer p)
439     {
440     p->~Tp ();
441     }
442 root 1.1 };
443    
444 root 1.117 // basically a memory area, but refcounted
445     struct refcnt_buf
446     {
447     char *data;
448    
449     refcnt_buf (size_t size = 0);
450     refcnt_buf (void *data, size_t size);
451    
452     refcnt_buf (const refcnt_buf &src)
453     {
454     data = src.data;
455 root 1.121 inc ();
456 root 1.117 }
457    
458     ~refcnt_buf ();
459    
460     refcnt_buf &operator =(const refcnt_buf &src);
461    
462     operator char *()
463     {
464     return data;
465     }
466    
467     size_t size () const
468     {
469     return _size ();
470     }
471    
472     protected:
473     enum {
474 root 1.121 overhead = sizeof (uint32_t) * 2
475 root 1.117 };
476    
477 root 1.121 uint32_t &_size () const
478 root 1.117 {
479     return ((unsigned int *)data)[-2];
480     }
481    
482 root 1.121 uint32_t &_refcnt () const
483 root 1.117 {
484     return ((unsigned int *)data)[-1];
485     }
486    
487 root 1.121 void _alloc (uint32_t size)
488 root 1.117 {
489     data = ((char *)salloc<char> (size + overhead)) + overhead;
490     _size () = size;
491     _refcnt () = 1;
492     }
493    
494 root 1.121 void _dealloc ();
495    
496     void inc ()
497     {
498     ++_refcnt ();
499     }
500    
501 root 1.117 void dec ()
502     {
503     if (!--_refcnt ())
504 root 1.121 _dealloc ();
505 root 1.117 }
506     };
507    
508 root 1.54 INTERFACE_CLASS (attachable)
509     struct refcnt_base
510     {
511     typedef int refcnt_t;
512     mutable refcnt_t ACC (RW, refcnt);
513    
514     MTH void refcnt_inc () const { ++refcnt; }
515     MTH void refcnt_dec () const { --refcnt; }
516    
517     refcnt_base () : refcnt (0) { }
518     };
519    
520 root 1.56 // to avoid branches with more advanced compilers
521 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
522    
523 root 1.7 template<class T>
524     struct refptr
525     {
526 root 1.54 // p if not null
527     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
528    
529     void refcnt_dec ()
530     {
531 root 1.126 if (!ecb_is_constant (p))
532 root 1.54 --*refcnt_ref ();
533     else if (p)
534     --p->refcnt;
535     }
536    
537     void refcnt_inc ()
538     {
539 root 1.126 if (!ecb_is_constant (p))
540 root 1.54 ++*refcnt_ref ();
541     else if (p)
542     ++p->refcnt;
543     }
544    
545 root 1.7 T *p;
546    
547     refptr () : p(0) { }
548 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
549     refptr (T *p) : p(p) { refcnt_inc (); }
550     ~refptr () { refcnt_dec (); }
551 root 1.7
552     const refptr<T> &operator =(T *o)
553     {
554 root 1.54 // if decrementing ever destroys we need to reverse the order here
555     refcnt_dec ();
556 root 1.7 p = o;
557 root 1.54 refcnt_inc ();
558 root 1.7 return *this;
559     }
560    
561 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
562 root 1.7 {
563     *this = o.p;
564     return *this;
565     }
566    
567     T &operator * () const { return *p; }
568 root 1.54 T *operator ->() const { return p; }
569 root 1.7
570     operator T *() const { return p; }
571     };
572    
573 root 1.24 typedef refptr<maptile> maptile_ptr;
574 root 1.22 typedef refptr<object> object_ptr;
575     typedef refptr<archetype> arch_ptr;
576 root 1.24 typedef refptr<client> client_ptr;
577     typedef refptr<player> player_ptr;
578 root 1.102 typedef refptr<region> region_ptr;
579 root 1.22
580 root 1.95 #define STRHSH_NULL 2166136261
581    
582     static inline uint32_t
583     strhsh (const char *s)
584     {
585     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
586     // it is about twice as fast as the one-at-a-time one,
587     // with good distribution.
588     // FNV-1a is faster on many cpus because the multiplication
589     // runs concurrently with the looping logic.
590 root 1.112 // we modify the hash a bit to improve its distribution
591 root 1.95 uint32_t hash = STRHSH_NULL;
592 root 1.122
593 root 1.95 while (*s)
594 root 1.98 hash = (hash ^ *s++) * 16777619U;
595 root 1.95
596 root 1.112 return hash ^ (hash >> 16);
597 root 1.95 }
598    
599     static inline uint32_t
600     memhsh (const char *s, size_t len)
601     {
602     uint32_t hash = STRHSH_NULL;
603 root 1.122
604 root 1.95 while (len--)
605 root 1.98 hash = (hash ^ *s++) * 16777619U;
606 root 1.95
607     return hash;
608     }
609    
610 root 1.4 struct str_hash
611     {
612     std::size_t operator ()(const char *s) const
613     {
614 root 1.95 return strhsh (s);
615     }
616 root 1.4
617 root 1.95 std::size_t operator ()(const shstr &s) const
618     {
619     return strhsh (s);
620 root 1.4 }
621     };
622    
623     struct str_equal
624     {
625     bool operator ()(const char *a, const char *b) const
626     {
627     return !strcmp (a, b);
628     }
629     };
630    
631 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
632 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
633 root 1.49 //
634 root 1.52 // NOTE: only some forms of erase are available
635 root 1.26 template<class T>
636     struct unordered_vector : std::vector<T, slice_allocator<T> >
637 root 1.6 {
638 root 1.11 typedef typename unordered_vector::iterator iterator;
639 root 1.6
640     void erase (unsigned int pos)
641     {
642     if (pos < this->size () - 1)
643     (*this)[pos] = (*this)[this->size () - 1];
644    
645     this->pop_back ();
646     }
647    
648     void erase (iterator i)
649     {
650     erase ((unsigned int )(i - this->begin ()));
651     }
652     };
653    
654 root 1.49 // This container blends advantages of linked lists
655     // (efficiency) with vectors (random access) by
656 root 1.119 // using an unordered vector and storing the vector
657 root 1.49 // index inside the object.
658     //
659     // + memory-efficient on most 64 bit archs
660     // + O(1) insert/remove
661     // + free unique (but varying) id for inserted objects
662     // + cache-friendly iteration
663     // - only works for pointers to structs
664     //
665     // NOTE: only some forms of erase/insert are available
666 root 1.50 typedef int object_vector_index;
667    
668     template<class T, object_vector_index T::*indexmember>
669 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
670     {
671 root 1.48 typedef typename object_vector::iterator iterator;
672    
673     bool contains (const T *obj) const
674     {
675 root 1.50 return obj->*indexmember;
676 root 1.48 }
677    
678     iterator find (const T *obj)
679     {
680 root 1.50 return obj->*indexmember
681     ? this->begin () + obj->*indexmember - 1
682 root 1.48 : this->end ();
683     }
684    
685 root 1.53 void push_back (T *obj)
686     {
687     std::vector<T *, slice_allocator<T *> >::push_back (obj);
688     obj->*indexmember = this->size ();
689     }
690    
691 root 1.26 void insert (T *obj)
692     {
693     push_back (obj);
694     }
695    
696     void insert (T &obj)
697     {
698     insert (&obj);
699     }
700    
701     void erase (T *obj)
702     {
703 root 1.119 object_vector_index pos = obj->*indexmember;
704 root 1.50 obj->*indexmember = 0;
705 root 1.26
706     if (pos < this->size ())
707     {
708     (*this)[pos - 1] = (*this)[this->size () - 1];
709 root 1.50 (*this)[pos - 1]->*indexmember = pos;
710 root 1.26 }
711    
712     this->pop_back ();
713     }
714    
715     void erase (T &obj)
716     {
717 root 1.50 erase (&obj);
718 root 1.26 }
719     };
720    
721 root 1.111 /////////////////////////////////////////////////////////////////////////////
722    
723     // something like a vector or stack, but without
724     // out of bounds checking
725     template<typename T>
726     struct fixed_stack
727     {
728     T *data;
729     int size;
730     int max;
731    
732     fixed_stack ()
733     : size (0), data (0)
734     {
735     }
736    
737     fixed_stack (int max)
738     : size (0), max (max)
739     {
740     data = salloc<T> (max);
741     }
742    
743     void reset (int new_max)
744     {
745     sfree (data, max);
746     size = 0;
747     max = new_max;
748     data = salloc<T> (max);
749     }
750    
751     void free ()
752     {
753     sfree (data, max);
754     data = 0;
755     }
756    
757     ~fixed_stack ()
758     {
759     sfree (data, max);
760     }
761    
762     T &operator[](int idx)
763     {
764     return data [idx];
765     }
766    
767     void push (T v)
768     {
769     data [size++] = v;
770     }
771    
772     T &pop ()
773     {
774     return data [--size];
775     }
776    
777     T remove (int idx)
778     {
779     T v = data [idx];
780    
781     data [idx] = data [--size];
782    
783     return v;
784     }
785     };
786    
787     /////////////////////////////////////////////////////////////////////////////
788    
789 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
790 root 1.87 // returns the number of bytes actually used (including \0)
791     int assign (char *dst, const char *src, int maxsize);
792 root 1.10
793     // type-safe version of assign
794 root 1.9 template<int N>
795 root 1.87 inline int assign (char (&dst)[N], const char *src)
796 root 1.9 {
797 root 1.87 return assign ((char *)&dst, src, N);
798 root 1.9 }
799    
800 root 1.17 typedef double tstamp;
801    
802 root 1.59 // return current time as timestamp
803 root 1.17 tstamp now ();
804    
805 root 1.25 int similar_direction (int a, int b);
806    
807 root 1.91 // like v?sprintf, but returns a "static" buffer
808     char *vformat (const char *format, va_list ap);
809 root 1.126 char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
810 root 1.43
811 sf-marcmagus 1.89 // safety-check player input which will become object->msg
812     bool msg_is_safe (const char *msg);
813    
814 root 1.66 /////////////////////////////////////////////////////////////////////////////
815     // threads, very very thin wrappers around pthreads
816    
817     struct thread
818     {
819     pthread_t id;
820    
821     void start (void *(*start_routine)(void *), void *arg = 0);
822    
823     void cancel ()
824     {
825     pthread_cancel (id);
826     }
827    
828     void *join ()
829     {
830     void *ret;
831    
832     if (pthread_join (id, &ret))
833     cleanup ("pthread_join failed", 1);
834    
835     return ret;
836     }
837     };
838    
839     // note that mutexes are not classes
840     typedef pthread_mutex_t smutex;
841    
842     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
843     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
844     #else
845     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
846     #endif
847    
848     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
849 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
850 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
851    
852 root 1.68 typedef pthread_cond_t scond;
853    
854     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
855     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
856     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
857     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
858    
859 root 1.1 #endif
860