ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.128
Committed: Tue Nov 27 18:47:35 2018 UTC (5 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.127: +4 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.120 *
4 root 1.127 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 root 1.123 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 root 1.120 *
7 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
8     * the terms of the Affero GNU General Public License as published by the
9     * Free Software Foundation, either version 3 of the License, or (at your
10     * option) any later version.
11 root 1.120 *
12 root 1.51 * This program is distributed in the hope that it will be useful,
13     * but WITHOUT ANY WARRANTY; without even the implied warranty of
14     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15     * GNU General Public License for more details.
16 root 1.120 *
17 root 1.90 * You should have received a copy of the Affero GNU General Public License
18     * and the GNU General Public License along with this program. If not, see
19     * <http://www.gnu.org/licenses/>.
20 root 1.120 *
21 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
22 root 1.46 */
23    
24 root 1.1 #ifndef UTIL_H__
25     #define UTIL_H__
26    
27 root 1.93 #include <compiler.h>
28    
29 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
30 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
31     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
32 root 1.36
33 root 1.66 #include <pthread.h>
34    
35 root 1.11 #include <cstddef>
36 root 1.28 #include <cmath>
37 root 1.25 #include <new>
38     #include <vector>
39 root 1.11
40     #include <glib.h>
41    
42 root 1.128 #include <flat_hash_map.hpp>
43    
44 root 1.25 #include <shstr.h>
45     #include <traits.h>
46    
47 root 1.65 #if DEBUG_SALLOC
48 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
49     # define g_slice_alloc(s) debug_slice_alloc(s)
50     # define g_slice_free1(s,p) debug_slice_free1(s,p)
51     void *g_slice_alloc (unsigned long size);
52     void *g_slice_alloc0 (unsigned long size);
53     void g_slice_free1 (unsigned long size, void *ptr);
54 root 1.67 #elif PREFER_MALLOC
55     # define g_slice_alloc0(s) calloc (1, (s))
56     # define g_slice_alloc(s) malloc ((s))
57 root 1.68 # define g_slice_free1(s,p) free ((p))
58 root 1.60 #endif
59    
60 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
61 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
62 root 1.14
63 root 1.124 #if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
64 root 1.105 // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
65 root 1.101 template<typename T, int N>
66 root 1.105 static inline int array_length (const T (&arr)[N])
67 root 1.101 {
68     return N;
69     }
70 root 1.105 #else
71     #define array_length(name) (sizeof (name) / sizeof (name [0]))
72     #endif
73 root 1.101
74 root 1.81 // very ugly macro that basically declares and initialises a variable
75 root 1.26 // that is in scope for the next statement only
76     // works only for stuff that can be assigned 0 and converts to false
77     // (note: works great for pointers)
78     // most ugly macro I ever wrote
79 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
80 root 1.26
81 root 1.27 // in range including end
82     #define IN_RANGE_INC(val,beg,end) \
83     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
84    
85     // in range excluding end
86     #define IN_RANGE_EXC(val,beg,end) \
87     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
88    
89 root 1.126 ecb_cold void cleanup (const char *cause, bool make_core = false);
90     ecb_cold void fork_abort (const char *msg);
91 root 1.31
92 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
93     // as a is often a constant while b is the variable. it is still a bug, though.
94 root 1.116 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
95     template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
96 root 1.35 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
97 root 1.32
98 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
99     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
100     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
101 root 1.78
102 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
103    
104 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
105     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
106    
107 root 1.79 // sign returns -1 or +1
108     template<typename T>
109     static inline T sign (T v) { return v < 0 ? -1 : +1; }
110     // relies on 2c representation
111     template<>
112 root 1.103 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
113     template<>
114     inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
115     template<>
116     inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
117 root 1.79
118     // sign0 returns -1, 0 or +1
119     template<typename T>
120     static inline T sign0 (T v) { return v ? sign (v) : 0; }
121    
122 root 1.113 //clashes with C++0x
123 root 1.99 template<typename T, typename U>
124     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
125    
126 root 1.88 // div* only work correctly for div > 0
127 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
128 root 1.88 template<typename T> static inline T div (T val, T div)
129     {
130     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
131     }
132 root 1.105
133     template<> inline float div (float val, float div) { return val / div; }
134     template<> inline double div (double val, double div) { return val / div; }
135    
136 root 1.78 // div, round-up
137 root 1.88 template<typename T> static inline T div_ru (T val, T div)
138     {
139     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
140     }
141 root 1.78 // div, round-down
142 root 1.88 template<typename T> static inline T div_rd (T val, T div)
143     {
144     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
145     }
146 root 1.78
147 root 1.88 // lerp* only work correctly for min_in < max_in
148     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
149 root 1.44 template<typename T>
150     static inline T
151     lerp (T val, T min_in, T max_in, T min_out, T max_out)
152     {
153 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
154     }
155    
156     // lerp, round-down
157     template<typename T>
158     static inline T
159     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
160     {
161     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
162     }
163    
164     // lerp, round-up
165     template<typename T>
166     static inline T
167     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
168     {
169     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
170 root 1.44 }
171    
172 root 1.37 // lots of stuff taken from FXT
173    
174     /* Rotate right. This is used in various places for checksumming */
175 root 1.38 //TODO: that sucks, use a better checksum algo
176 root 1.37 static inline uint32_t
177 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
178 root 1.37 {
179 root 1.38 return (c << (32 - count)) | (c >> count);
180     }
181    
182     static inline uint32_t
183     rotate_left (uint32_t c, uint32_t count = 1)
184     {
185     return (c >> (32 - count)) | (c << count);
186 root 1.37 }
187    
188     // Return abs(a-b)
189     // Both a and b must not have the most significant bit set
190     static inline uint32_t
191     upos_abs_diff (uint32_t a, uint32_t b)
192     {
193     long d1 = b - a;
194     long d2 = (d1 & (d1 >> 31)) << 1;
195    
196     return d1 - d2; // == (b - d) - (a + d);
197     }
198    
199     // Both a and b must not have the most significant bit set
200     static inline uint32_t
201     upos_min (uint32_t a, uint32_t b)
202     {
203     int32_t d = b - a;
204     d &= d >> 31;
205     return a + d;
206     }
207    
208     // Both a and b must not have the most significant bit set
209     static inline uint32_t
210     upos_max (uint32_t a, uint32_t b)
211     {
212     int32_t d = b - a;
213     d &= d >> 31;
214     return b - d;
215     }
216    
217 root 1.94 // this is much faster than crossfire's original algorithm
218 root 1.28 // on modern cpus
219     inline int
220     isqrt (int n)
221     {
222     return (int)sqrtf ((float)n);
223     }
224    
225 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
226     // more handy than it looks like, due to the implicit !! done on its arguments
227     inline bool
228     logical_xor (bool a, bool b)
229     {
230     return a != b;
231     }
232    
233     inline bool
234     logical_implies (bool a, bool b)
235     {
236     return a <= b;
237     }
238    
239 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
240     #if 0
241     // and has a max. error of 6 in the range -100..+100.
242     #else
243     // and has a max. error of 9 in the range -100..+100.
244     #endif
245 root 1.122 inline int
246 root 1.28 idistance (int dx, int dy)
247 root 1.122 {
248 root 1.28 unsigned int dx_ = abs (dx);
249     unsigned int dy_ = abs (dy);
250    
251     #if 0
252     return dx_ > dy_
253     ? (dx_ * 61685 + dy_ * 26870) >> 16
254     : (dy_ * 61685 + dx_ * 26870) >> 16;
255     #else
256 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
257 root 1.28 #endif
258     }
259    
260 root 1.115 // can be substantially faster than floor, if your value range allows for it
261     template<typename T>
262     inline T
263     fastfloor (T x)
264     {
265     return std::floor (x);
266     }
267    
268     inline float
269     fastfloor (float x)
270     {
271     return sint32(x) - (x < 0);
272     }
273    
274     inline double
275     fastfloor (double x)
276     {
277     return sint64(x) - (x < 0);
278     }
279    
280 root 1.29 /*
281     * absdir(int): Returns a number between 1 and 8, which represent
282     * the "absolute" direction of a number (it actually takes care of
283     * "overflow" in previous calculations of a direction).
284     */
285     inline int
286     absdir (int d)
287     {
288     return ((d - 1) & 7) + 1;
289     }
290 root 1.28
291 root 1.96 #define for_all_bits_sparse_32(mask, idxvar) \
292     for (uint32_t idxvar, mask_ = mask; \
293 root 1.126 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
294 root 1.96
295 root 1.67 extern ssize_t slice_alloc; // statistics
296    
297 root 1.125 void *salloc_ (int n);
298     void *salloc_ (int n, void *src);
299 root 1.67
300     // strictly the same as g_slice_alloc, but never returns 0
301     template<typename T>
302 root 1.125 inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
303 root 1.67
304     // also copies src into the new area, like "memdup"
305     // if src is 0, clears the memory
306     template<typename T>
307 root 1.125 inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
308 root 1.67
309     // clears the memory
310     template<typename T>
311 root 1.125 inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
312 root 1.67
313     // for symmetry
314     template<typename T>
315 root 1.125 inline void sfree (T *ptr, int n = 1) noexcept
316 root 1.67 {
317     if (expect_true (ptr))
318     {
319     slice_alloc -= n * sizeof (T);
320 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
321 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
322     }
323     }
324 root 1.57
325 root 1.72 // nulls the pointer
326     template<typename T>
327 root 1.125 inline void sfree0 (T *&ptr, int n = 1) noexcept
328 root 1.72 {
329     sfree<T> (ptr, n);
330     ptr = 0;
331     }
332    
333 root 1.1 // makes dynamically allocated objects zero-initialised
334     struct zero_initialised
335     {
336 root 1.11 void *operator new (size_t s, void *p)
337     {
338     memset (p, 0, s);
339     return p;
340     }
341    
342     void *operator new (size_t s)
343     {
344 root 1.67 return salloc0<char> (s);
345 root 1.11 }
346    
347     void *operator new[] (size_t s)
348     {
349 root 1.67 return salloc0<char> (s);
350 root 1.11 }
351    
352     void operator delete (void *p, size_t s)
353     {
354 root 1.67 sfree ((char *)p, s);
355 root 1.11 }
356    
357     void operator delete[] (void *p, size_t s)
358     {
359 root 1.67 sfree ((char *)p, s);
360 root 1.11 }
361     };
362    
363 root 1.73 // makes dynamically allocated objects zero-initialised
364     struct slice_allocated
365     {
366     void *operator new (size_t s, void *p)
367     {
368     return p;
369     }
370    
371     void *operator new (size_t s)
372     {
373     return salloc<char> (s);
374     }
375    
376     void *operator new[] (size_t s)
377     {
378     return salloc<char> (s);
379     }
380    
381     void operator delete (void *p, size_t s)
382     {
383     sfree ((char *)p, s);
384     }
385    
386     void operator delete[] (void *p, size_t s)
387     {
388     sfree ((char *)p, s);
389     }
390     };
391    
392 root 1.11 // a STL-compatible allocator that uses g_slice
393     // boy, this is verbose
394     template<typename Tp>
395     struct slice_allocator
396     {
397     typedef size_t size_type;
398     typedef ptrdiff_t difference_type;
399     typedef Tp *pointer;
400     typedef const Tp *const_pointer;
401     typedef Tp &reference;
402     typedef const Tp &const_reference;
403     typedef Tp value_type;
404    
405 root 1.122 template <class U>
406 root 1.11 struct rebind
407     {
408     typedef slice_allocator<U> other;
409     };
410    
411 root 1.125 slice_allocator () noexcept { }
412     slice_allocator (const slice_allocator &) noexcept { }
413 root 1.11 template<typename Tp2>
414 root 1.125 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
415 root 1.11
416     ~slice_allocator () { }
417    
418     pointer address (reference x) const { return &x; }
419     const_pointer address (const_reference x) const { return &x; }
420    
421     pointer allocate (size_type n, const_pointer = 0)
422     {
423 root 1.18 return salloc<Tp> (n);
424 root 1.11 }
425    
426     void deallocate (pointer p, size_type n)
427     {
428 root 1.19 sfree<Tp> (p, n);
429 root 1.11 }
430    
431 root 1.125 size_type max_size () const noexcept
432 root 1.11 {
433     return size_t (-1) / sizeof (Tp);
434     }
435    
436     void construct (pointer p, const Tp &val)
437     {
438     ::new (p) Tp (val);
439     }
440    
441     void destroy (pointer p)
442     {
443     p->~Tp ();
444     }
445 root 1.1 };
446    
447 root 1.117 // basically a memory area, but refcounted
448     struct refcnt_buf
449     {
450     char *data;
451    
452     refcnt_buf (size_t size = 0);
453     refcnt_buf (void *data, size_t size);
454    
455     refcnt_buf (const refcnt_buf &src)
456     {
457     data = src.data;
458 root 1.121 inc ();
459 root 1.117 }
460    
461     ~refcnt_buf ();
462    
463     refcnt_buf &operator =(const refcnt_buf &src);
464    
465     operator char *()
466     {
467     return data;
468     }
469    
470     size_t size () const
471     {
472     return _size ();
473     }
474    
475     protected:
476     enum {
477 root 1.121 overhead = sizeof (uint32_t) * 2
478 root 1.117 };
479    
480 root 1.121 uint32_t &_size () const
481 root 1.117 {
482     return ((unsigned int *)data)[-2];
483     }
484    
485 root 1.121 uint32_t &_refcnt () const
486 root 1.117 {
487     return ((unsigned int *)data)[-1];
488     }
489    
490 root 1.121 void _alloc (uint32_t size)
491 root 1.117 {
492     data = ((char *)salloc<char> (size + overhead)) + overhead;
493     _size () = size;
494     _refcnt () = 1;
495     }
496    
497 root 1.121 void _dealloc ();
498    
499     void inc ()
500     {
501     ++_refcnt ();
502     }
503    
504 root 1.117 void dec ()
505     {
506     if (!--_refcnt ())
507 root 1.121 _dealloc ();
508 root 1.117 }
509     };
510    
511 root 1.54 INTERFACE_CLASS (attachable)
512     struct refcnt_base
513     {
514     typedef int refcnt_t;
515     mutable refcnt_t ACC (RW, refcnt);
516    
517     MTH void refcnt_inc () const { ++refcnt; }
518     MTH void refcnt_dec () const { --refcnt; }
519    
520     refcnt_base () : refcnt (0) { }
521     };
522    
523 root 1.56 // to avoid branches with more advanced compilers
524 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
525    
526 root 1.7 template<class T>
527     struct refptr
528     {
529 root 1.54 // p if not null
530     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
531    
532     void refcnt_dec ()
533     {
534 root 1.126 if (!ecb_is_constant (p))
535 root 1.54 --*refcnt_ref ();
536     else if (p)
537     --p->refcnt;
538     }
539    
540     void refcnt_inc ()
541     {
542 root 1.126 if (!ecb_is_constant (p))
543 root 1.54 ++*refcnt_ref ();
544     else if (p)
545     ++p->refcnt;
546     }
547    
548 root 1.7 T *p;
549    
550     refptr () : p(0) { }
551 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
552     refptr (T *p) : p(p) { refcnt_inc (); }
553     ~refptr () { refcnt_dec (); }
554 root 1.7
555     const refptr<T> &operator =(T *o)
556     {
557 root 1.54 // if decrementing ever destroys we need to reverse the order here
558     refcnt_dec ();
559 root 1.7 p = o;
560 root 1.54 refcnt_inc ();
561 root 1.7 return *this;
562     }
563    
564 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
565 root 1.7 {
566     *this = o.p;
567     return *this;
568     }
569    
570     T &operator * () const { return *p; }
571 root 1.54 T *operator ->() const { return p; }
572 root 1.7
573     operator T *() const { return p; }
574     };
575    
576 root 1.24 typedef refptr<maptile> maptile_ptr;
577 root 1.22 typedef refptr<object> object_ptr;
578     typedef refptr<archetype> arch_ptr;
579 root 1.24 typedef refptr<client> client_ptr;
580     typedef refptr<player> player_ptr;
581 root 1.102 typedef refptr<region> region_ptr;
582 root 1.22
583 root 1.95 #define STRHSH_NULL 2166136261
584    
585     static inline uint32_t
586     strhsh (const char *s)
587     {
588     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589     // it is about twice as fast as the one-at-a-time one,
590     // with good distribution.
591     // FNV-1a is faster on many cpus because the multiplication
592     // runs concurrently with the looping logic.
593 root 1.112 // we modify the hash a bit to improve its distribution
594 root 1.95 uint32_t hash = STRHSH_NULL;
595 root 1.122
596 root 1.95 while (*s)
597 root 1.98 hash = (hash ^ *s++) * 16777619U;
598 root 1.95
599 root 1.112 return hash ^ (hash >> 16);
600 root 1.95 }
601    
602     static inline uint32_t
603     memhsh (const char *s, size_t len)
604     {
605     uint32_t hash = STRHSH_NULL;
606 root 1.122
607 root 1.95 while (len--)
608 root 1.98 hash = (hash ^ *s++) * 16777619U;
609 root 1.95
610     return hash;
611     }
612    
613 root 1.4 struct str_hash
614     {
615     std::size_t operator ()(const char *s) const
616     {
617 root 1.95 return strhsh (s);
618     }
619 root 1.4
620 root 1.95 std::size_t operator ()(const shstr &s) const
621     {
622     return strhsh (s);
623 root 1.4 }
624 root 1.128
625     typedef ska::power_of_two_hash_policy hash_policy;
626 root 1.4 };
627    
628     struct str_equal
629     {
630     bool operator ()(const char *a, const char *b) const
631     {
632     return !strcmp (a, b);
633     }
634     };
635    
636 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
637 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
638 root 1.49 //
639 root 1.52 // NOTE: only some forms of erase are available
640 root 1.26 template<class T>
641     struct unordered_vector : std::vector<T, slice_allocator<T> >
642 root 1.6 {
643 root 1.11 typedef typename unordered_vector::iterator iterator;
644 root 1.6
645     void erase (unsigned int pos)
646     {
647     if (pos < this->size () - 1)
648     (*this)[pos] = (*this)[this->size () - 1];
649    
650     this->pop_back ();
651     }
652    
653     void erase (iterator i)
654     {
655     erase ((unsigned int )(i - this->begin ()));
656     }
657     };
658    
659 root 1.49 // This container blends advantages of linked lists
660     // (efficiency) with vectors (random access) by
661 root 1.119 // using an unordered vector and storing the vector
662 root 1.49 // index inside the object.
663     //
664     // + memory-efficient on most 64 bit archs
665     // + O(1) insert/remove
666     // + free unique (but varying) id for inserted objects
667     // + cache-friendly iteration
668     // - only works for pointers to structs
669     //
670     // NOTE: only some forms of erase/insert are available
671 root 1.50 typedef int object_vector_index;
672    
673     template<class T, object_vector_index T::*indexmember>
674 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
675     {
676 root 1.48 typedef typename object_vector::iterator iterator;
677    
678     bool contains (const T *obj) const
679     {
680 root 1.50 return obj->*indexmember;
681 root 1.48 }
682    
683     iterator find (const T *obj)
684     {
685 root 1.50 return obj->*indexmember
686     ? this->begin () + obj->*indexmember - 1
687 root 1.48 : this->end ();
688     }
689    
690 root 1.53 void push_back (T *obj)
691     {
692     std::vector<T *, slice_allocator<T *> >::push_back (obj);
693     obj->*indexmember = this->size ();
694     }
695    
696 root 1.26 void insert (T *obj)
697     {
698     push_back (obj);
699     }
700    
701     void insert (T &obj)
702     {
703     insert (&obj);
704     }
705    
706     void erase (T *obj)
707     {
708 root 1.119 object_vector_index pos = obj->*indexmember;
709 root 1.50 obj->*indexmember = 0;
710 root 1.26
711     if (pos < this->size ())
712     {
713     (*this)[pos - 1] = (*this)[this->size () - 1];
714 root 1.50 (*this)[pos - 1]->*indexmember = pos;
715 root 1.26 }
716    
717     this->pop_back ();
718     }
719    
720     void erase (T &obj)
721     {
722 root 1.50 erase (&obj);
723 root 1.26 }
724     };
725    
726 root 1.111 /////////////////////////////////////////////////////////////////////////////
727    
728     // something like a vector or stack, but without
729     // out of bounds checking
730     template<typename T>
731     struct fixed_stack
732     {
733     T *data;
734     int size;
735     int max;
736    
737     fixed_stack ()
738     : size (0), data (0)
739     {
740     }
741    
742     fixed_stack (int max)
743     : size (0), max (max)
744     {
745     data = salloc<T> (max);
746     }
747    
748     void reset (int new_max)
749     {
750     sfree (data, max);
751     size = 0;
752     max = new_max;
753     data = salloc<T> (max);
754     }
755    
756     void free ()
757     {
758     sfree (data, max);
759     data = 0;
760     }
761    
762     ~fixed_stack ()
763     {
764     sfree (data, max);
765     }
766    
767     T &operator[](int idx)
768     {
769     return data [idx];
770     }
771    
772     void push (T v)
773     {
774     data [size++] = v;
775     }
776    
777     T &pop ()
778     {
779     return data [--size];
780     }
781    
782     T remove (int idx)
783     {
784     T v = data [idx];
785    
786     data [idx] = data [--size];
787    
788     return v;
789     }
790     };
791    
792     /////////////////////////////////////////////////////////////////////////////
793    
794 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
795 root 1.87 // returns the number of bytes actually used (including \0)
796     int assign (char *dst, const char *src, int maxsize);
797 root 1.10
798     // type-safe version of assign
799 root 1.9 template<int N>
800 root 1.87 inline int assign (char (&dst)[N], const char *src)
801 root 1.9 {
802 root 1.87 return assign ((char *)&dst, src, N);
803 root 1.9 }
804    
805 root 1.17 typedef double tstamp;
806    
807 root 1.59 // return current time as timestamp
808 root 1.17 tstamp now ();
809    
810 root 1.25 int similar_direction (int a, int b);
811    
812 root 1.91 // like v?sprintf, but returns a "static" buffer
813     char *vformat (const char *format, va_list ap);
814 root 1.126 char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
815 root 1.43
816 sf-marcmagus 1.89 // safety-check player input which will become object->msg
817     bool msg_is_safe (const char *msg);
818    
819 root 1.66 /////////////////////////////////////////////////////////////////////////////
820     // threads, very very thin wrappers around pthreads
821    
822     struct thread
823     {
824     pthread_t id;
825    
826     void start (void *(*start_routine)(void *), void *arg = 0);
827    
828     void cancel ()
829     {
830     pthread_cancel (id);
831     }
832    
833     void *join ()
834     {
835     void *ret;
836    
837     if (pthread_join (id, &ret))
838     cleanup ("pthread_join failed", 1);
839    
840     return ret;
841     }
842     };
843    
844     // note that mutexes are not classes
845     typedef pthread_mutex_t smutex;
846    
847     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
848     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
849     #else
850     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
851     #endif
852    
853     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
854 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
855 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
856    
857 root 1.68 typedef pthread_cond_t scond;
858    
859     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
860     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
861     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
862     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
863    
864 root 1.1 #endif
865