ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.129
Committed: Sat Dec 1 20:22:13 2018 UTC (5 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.128: +0 -14 lines
Log Message:
slight cleanup

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.120 *
4 root 1.127 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 root 1.123 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 root 1.120 *
7 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
8     * the terms of the Affero GNU General Public License as published by the
9     * Free Software Foundation, either version 3 of the License, or (at your
10     * option) any later version.
11 root 1.120 *
12 root 1.51 * This program is distributed in the hope that it will be useful,
13     * but WITHOUT ANY WARRANTY; without even the implied warranty of
14     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15     * GNU General Public License for more details.
16 root 1.120 *
17 root 1.90 * You should have received a copy of the Affero GNU General Public License
18     * and the GNU General Public License along with this program. If not, see
19     * <http://www.gnu.org/licenses/>.
20 root 1.120 *
21 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
22 root 1.46 */
23    
24 root 1.1 #ifndef UTIL_H__
25     #define UTIL_H__
26    
27 root 1.93 #include <compiler.h>
28    
29 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
30 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
31     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
32 root 1.36
33 root 1.66 #include <pthread.h>
34    
35 root 1.11 #include <cstddef>
36 root 1.28 #include <cmath>
37 root 1.25 #include <new>
38     #include <vector>
39 root 1.11
40     #include <glib.h>
41    
42 root 1.128 #include <flat_hash_map.hpp>
43    
44 root 1.25 #include <shstr.h>
45     #include <traits.h>
46    
47 root 1.65 #if DEBUG_SALLOC
48 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
49     # define g_slice_alloc(s) debug_slice_alloc(s)
50     # define g_slice_free1(s,p) debug_slice_free1(s,p)
51     void *g_slice_alloc (unsigned long size);
52     void *g_slice_alloc0 (unsigned long size);
53     void g_slice_free1 (unsigned long size, void *ptr);
54 root 1.67 #elif PREFER_MALLOC
55     # define g_slice_alloc0(s) calloc (1, (s))
56     # define g_slice_alloc(s) malloc ((s))
57 root 1.68 # define g_slice_free1(s,p) free ((p))
58 root 1.60 #endif
59    
60 root 1.81 // very ugly macro that basically declares and initialises a variable
61 root 1.26 // that is in scope for the next statement only
62     // works only for stuff that can be assigned 0 and converts to false
63     // (note: works great for pointers)
64     // most ugly macro I ever wrote
65 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66 root 1.26
67 root 1.27 // in range including end
68     #define IN_RANGE_INC(val,beg,end) \
69     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70    
71     // in range excluding end
72     #define IN_RANGE_EXC(val,beg,end) \
73     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74    
75 root 1.126 ecb_cold void cleanup (const char *cause, bool make_core = false);
76     ecb_cold void fork_abort (const char *msg);
77 root 1.31
78 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
79     // as a is often a constant while b is the variable. it is still a bug, though.
80 root 1.116 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81     template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82 root 1.35 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 root 1.32
84 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87 root 1.78
88 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89    
90 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92    
93 root 1.79 // sign returns -1 or +1
94     template<typename T>
95     static inline T sign (T v) { return v < 0 ? -1 : +1; }
96     // relies on 2c representation
97     template<>
98 root 1.103 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99     template<>
100     inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101     template<>
102     inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103 root 1.79
104     // sign0 returns -1, 0 or +1
105     template<typename T>
106     static inline T sign0 (T v) { return v ? sign (v) : 0; }
107    
108 root 1.113 //clashes with C++0x
109 root 1.99 template<typename T, typename U>
110     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111    
112 root 1.88 // div* only work correctly for div > 0
113 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114 root 1.88 template<typename T> static inline T div (T val, T div)
115     {
116     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117     }
118 root 1.105
119     template<> inline float div (float val, float div) { return val / div; }
120     template<> inline double div (double val, double div) { return val / div; }
121    
122 root 1.78 // div, round-up
123 root 1.88 template<typename T> static inline T div_ru (T val, T div)
124     {
125     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126     }
127 root 1.78 // div, round-down
128 root 1.88 template<typename T> static inline T div_rd (T val, T div)
129     {
130     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131     }
132 root 1.78
133 root 1.88 // lerp* only work correctly for min_in < max_in
134     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135 root 1.44 template<typename T>
136     static inline T
137     lerp (T val, T min_in, T max_in, T min_out, T max_out)
138     {
139 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140     }
141    
142     // lerp, round-down
143     template<typename T>
144     static inline T
145     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146     {
147     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148     }
149    
150     // lerp, round-up
151     template<typename T>
152     static inline T
153     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154     {
155     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156 root 1.44 }
157    
158 root 1.37 // lots of stuff taken from FXT
159    
160     /* Rotate right. This is used in various places for checksumming */
161 root 1.38 //TODO: that sucks, use a better checksum algo
162 root 1.37 static inline uint32_t
163 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
164 root 1.37 {
165 root 1.38 return (c << (32 - count)) | (c >> count);
166     }
167    
168     static inline uint32_t
169     rotate_left (uint32_t c, uint32_t count = 1)
170     {
171     return (c >> (32 - count)) | (c << count);
172 root 1.37 }
173    
174     // Return abs(a-b)
175     // Both a and b must not have the most significant bit set
176     static inline uint32_t
177     upos_abs_diff (uint32_t a, uint32_t b)
178     {
179     long d1 = b - a;
180     long d2 = (d1 & (d1 >> 31)) << 1;
181    
182     return d1 - d2; // == (b - d) - (a + d);
183     }
184    
185     // Both a and b must not have the most significant bit set
186     static inline uint32_t
187     upos_min (uint32_t a, uint32_t b)
188     {
189     int32_t d = b - a;
190     d &= d >> 31;
191     return a + d;
192     }
193    
194     // Both a and b must not have the most significant bit set
195     static inline uint32_t
196     upos_max (uint32_t a, uint32_t b)
197     {
198     int32_t d = b - a;
199     d &= d >> 31;
200     return b - d;
201     }
202    
203 root 1.94 // this is much faster than crossfire's original algorithm
204 root 1.28 // on modern cpus
205     inline int
206     isqrt (int n)
207     {
208     return (int)sqrtf ((float)n);
209     }
210    
211 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
212     // more handy than it looks like, due to the implicit !! done on its arguments
213     inline bool
214     logical_xor (bool a, bool b)
215     {
216     return a != b;
217     }
218    
219     inline bool
220     logical_implies (bool a, bool b)
221     {
222     return a <= b;
223     }
224    
225 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
226     #if 0
227     // and has a max. error of 6 in the range -100..+100.
228     #else
229     // and has a max. error of 9 in the range -100..+100.
230     #endif
231 root 1.122 inline int
232 root 1.28 idistance (int dx, int dy)
233 root 1.122 {
234 root 1.28 unsigned int dx_ = abs (dx);
235     unsigned int dy_ = abs (dy);
236    
237     #if 0
238     return dx_ > dy_
239     ? (dx_ * 61685 + dy_ * 26870) >> 16
240     : (dy_ * 61685 + dx_ * 26870) >> 16;
241     #else
242 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
243 root 1.28 #endif
244     }
245    
246 root 1.115 // can be substantially faster than floor, if your value range allows for it
247     template<typename T>
248     inline T
249     fastfloor (T x)
250     {
251     return std::floor (x);
252     }
253    
254     inline float
255     fastfloor (float x)
256     {
257     return sint32(x) - (x < 0);
258     }
259    
260     inline double
261     fastfloor (double x)
262     {
263     return sint64(x) - (x < 0);
264     }
265    
266 root 1.29 /*
267     * absdir(int): Returns a number between 1 and 8, which represent
268     * the "absolute" direction of a number (it actually takes care of
269     * "overflow" in previous calculations of a direction).
270     */
271     inline int
272     absdir (int d)
273     {
274     return ((d - 1) & 7) + 1;
275     }
276 root 1.28
277 root 1.96 #define for_all_bits_sparse_32(mask, idxvar) \
278     for (uint32_t idxvar, mask_ = mask; \
279 root 1.126 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280 root 1.96
281 root 1.67 extern ssize_t slice_alloc; // statistics
282    
283 root 1.125 void *salloc_ (int n);
284     void *salloc_ (int n, void *src);
285 root 1.67
286     // strictly the same as g_slice_alloc, but never returns 0
287     template<typename T>
288 root 1.125 inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289 root 1.67
290     // also copies src into the new area, like "memdup"
291     // if src is 0, clears the memory
292     template<typename T>
293 root 1.125 inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294 root 1.67
295     // clears the memory
296     template<typename T>
297 root 1.125 inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298 root 1.67
299     // for symmetry
300     template<typename T>
301 root 1.125 inline void sfree (T *ptr, int n = 1) noexcept
302 root 1.67 {
303     if (expect_true (ptr))
304     {
305     slice_alloc -= n * sizeof (T);
306 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
308     }
309     }
310 root 1.57
311 root 1.72 // nulls the pointer
312     template<typename T>
313 root 1.125 inline void sfree0 (T *&ptr, int n = 1) noexcept
314 root 1.72 {
315     sfree<T> (ptr, n);
316     ptr = 0;
317     }
318    
319 root 1.1 // makes dynamically allocated objects zero-initialised
320     struct zero_initialised
321     {
322 root 1.11 void *operator new (size_t s, void *p)
323     {
324     memset (p, 0, s);
325     return p;
326     }
327    
328     void *operator new (size_t s)
329     {
330 root 1.67 return salloc0<char> (s);
331 root 1.11 }
332    
333     void *operator new[] (size_t s)
334     {
335 root 1.67 return salloc0<char> (s);
336 root 1.11 }
337    
338     void operator delete (void *p, size_t s)
339     {
340 root 1.67 sfree ((char *)p, s);
341 root 1.11 }
342    
343     void operator delete[] (void *p, size_t s)
344     {
345 root 1.67 sfree ((char *)p, s);
346 root 1.11 }
347     };
348    
349 root 1.73 // makes dynamically allocated objects zero-initialised
350     struct slice_allocated
351     {
352     void *operator new (size_t s, void *p)
353     {
354     return p;
355     }
356    
357     void *operator new (size_t s)
358     {
359     return salloc<char> (s);
360     }
361    
362     void *operator new[] (size_t s)
363     {
364     return salloc<char> (s);
365     }
366    
367     void operator delete (void *p, size_t s)
368     {
369     sfree ((char *)p, s);
370     }
371    
372     void operator delete[] (void *p, size_t s)
373     {
374     sfree ((char *)p, s);
375     }
376     };
377    
378 root 1.11 // a STL-compatible allocator that uses g_slice
379     // boy, this is verbose
380     template<typename Tp>
381     struct slice_allocator
382     {
383     typedef size_t size_type;
384     typedef ptrdiff_t difference_type;
385     typedef Tp *pointer;
386     typedef const Tp *const_pointer;
387     typedef Tp &reference;
388     typedef const Tp &const_reference;
389     typedef Tp value_type;
390    
391 root 1.122 template <class U>
392 root 1.11 struct rebind
393     {
394     typedef slice_allocator<U> other;
395     };
396    
397 root 1.125 slice_allocator () noexcept { }
398     slice_allocator (const slice_allocator &) noexcept { }
399 root 1.11 template<typename Tp2>
400 root 1.125 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
401 root 1.11
402     ~slice_allocator () { }
403    
404     pointer address (reference x) const { return &x; }
405     const_pointer address (const_reference x) const { return &x; }
406    
407     pointer allocate (size_type n, const_pointer = 0)
408     {
409 root 1.18 return salloc<Tp> (n);
410 root 1.11 }
411    
412     void deallocate (pointer p, size_type n)
413     {
414 root 1.19 sfree<Tp> (p, n);
415 root 1.11 }
416    
417 root 1.125 size_type max_size () const noexcept
418 root 1.11 {
419     return size_t (-1) / sizeof (Tp);
420     }
421    
422     void construct (pointer p, const Tp &val)
423     {
424     ::new (p) Tp (val);
425     }
426    
427     void destroy (pointer p)
428     {
429     p->~Tp ();
430     }
431 root 1.1 };
432    
433 root 1.117 // basically a memory area, but refcounted
434     struct refcnt_buf
435     {
436     char *data;
437    
438     refcnt_buf (size_t size = 0);
439     refcnt_buf (void *data, size_t size);
440    
441     refcnt_buf (const refcnt_buf &src)
442     {
443     data = src.data;
444 root 1.121 inc ();
445 root 1.117 }
446    
447     ~refcnt_buf ();
448    
449     refcnt_buf &operator =(const refcnt_buf &src);
450    
451     operator char *()
452     {
453     return data;
454     }
455    
456     size_t size () const
457     {
458     return _size ();
459     }
460    
461     protected:
462     enum {
463 root 1.121 overhead = sizeof (uint32_t) * 2
464 root 1.117 };
465    
466 root 1.121 uint32_t &_size () const
467 root 1.117 {
468     return ((unsigned int *)data)[-2];
469     }
470    
471 root 1.121 uint32_t &_refcnt () const
472 root 1.117 {
473     return ((unsigned int *)data)[-1];
474     }
475    
476 root 1.121 void _alloc (uint32_t size)
477 root 1.117 {
478     data = ((char *)salloc<char> (size + overhead)) + overhead;
479     _size () = size;
480     _refcnt () = 1;
481     }
482    
483 root 1.121 void _dealloc ();
484    
485     void inc ()
486     {
487     ++_refcnt ();
488     }
489    
490 root 1.117 void dec ()
491     {
492     if (!--_refcnt ())
493 root 1.121 _dealloc ();
494 root 1.117 }
495     };
496    
497 root 1.54 INTERFACE_CLASS (attachable)
498     struct refcnt_base
499     {
500     typedef int refcnt_t;
501     mutable refcnt_t ACC (RW, refcnt);
502    
503     MTH void refcnt_inc () const { ++refcnt; }
504     MTH void refcnt_dec () const { --refcnt; }
505    
506     refcnt_base () : refcnt (0) { }
507     };
508    
509 root 1.56 // to avoid branches with more advanced compilers
510 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
511    
512 root 1.7 template<class T>
513     struct refptr
514     {
515 root 1.54 // p if not null
516     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
517    
518     void refcnt_dec ()
519     {
520 root 1.126 if (!ecb_is_constant (p))
521 root 1.54 --*refcnt_ref ();
522     else if (p)
523     --p->refcnt;
524     }
525    
526     void refcnt_inc ()
527     {
528 root 1.126 if (!ecb_is_constant (p))
529 root 1.54 ++*refcnt_ref ();
530     else if (p)
531     ++p->refcnt;
532     }
533    
534 root 1.7 T *p;
535    
536     refptr () : p(0) { }
537 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
538     refptr (T *p) : p(p) { refcnt_inc (); }
539     ~refptr () { refcnt_dec (); }
540 root 1.7
541     const refptr<T> &operator =(T *o)
542     {
543 root 1.54 // if decrementing ever destroys we need to reverse the order here
544     refcnt_dec ();
545 root 1.7 p = o;
546 root 1.54 refcnt_inc ();
547 root 1.7 return *this;
548     }
549    
550 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
551 root 1.7 {
552     *this = o.p;
553     return *this;
554     }
555    
556     T &operator * () const { return *p; }
557 root 1.54 T *operator ->() const { return p; }
558 root 1.7
559     operator T *() const { return p; }
560     };
561    
562 root 1.24 typedef refptr<maptile> maptile_ptr;
563 root 1.22 typedef refptr<object> object_ptr;
564     typedef refptr<archetype> arch_ptr;
565 root 1.24 typedef refptr<client> client_ptr;
566     typedef refptr<player> player_ptr;
567 root 1.102 typedef refptr<region> region_ptr;
568 root 1.22
569 root 1.95 #define STRHSH_NULL 2166136261
570    
571     static inline uint32_t
572     strhsh (const char *s)
573     {
574     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575     // it is about twice as fast as the one-at-a-time one,
576     // with good distribution.
577     // FNV-1a is faster on many cpus because the multiplication
578     // runs concurrently with the looping logic.
579 root 1.112 // we modify the hash a bit to improve its distribution
580 root 1.95 uint32_t hash = STRHSH_NULL;
581 root 1.122
582 root 1.95 while (*s)
583 root 1.98 hash = (hash ^ *s++) * 16777619U;
584 root 1.95
585 root 1.112 return hash ^ (hash >> 16);
586 root 1.95 }
587    
588     static inline uint32_t
589     memhsh (const char *s, size_t len)
590     {
591     uint32_t hash = STRHSH_NULL;
592 root 1.122
593 root 1.95 while (len--)
594 root 1.98 hash = (hash ^ *s++) * 16777619U;
595 root 1.95
596     return hash;
597     }
598    
599 root 1.4 struct str_hash
600     {
601     std::size_t operator ()(const char *s) const
602     {
603 root 1.95 return strhsh (s);
604     }
605 root 1.4
606 root 1.95 std::size_t operator ()(const shstr &s) const
607     {
608     return strhsh (s);
609 root 1.4 }
610 root 1.128
611     typedef ska::power_of_two_hash_policy hash_policy;
612 root 1.4 };
613    
614     struct str_equal
615     {
616     bool operator ()(const char *a, const char *b) const
617     {
618     return !strcmp (a, b);
619     }
620     };
621    
622 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
623 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
624 root 1.49 //
625 root 1.52 // NOTE: only some forms of erase are available
626 root 1.26 template<class T>
627     struct unordered_vector : std::vector<T, slice_allocator<T> >
628 root 1.6 {
629 root 1.11 typedef typename unordered_vector::iterator iterator;
630 root 1.6
631     void erase (unsigned int pos)
632     {
633     if (pos < this->size () - 1)
634     (*this)[pos] = (*this)[this->size () - 1];
635    
636     this->pop_back ();
637     }
638    
639     void erase (iterator i)
640     {
641     erase ((unsigned int )(i - this->begin ()));
642     }
643     };
644    
645 root 1.49 // This container blends advantages of linked lists
646     // (efficiency) with vectors (random access) by
647 root 1.119 // using an unordered vector and storing the vector
648 root 1.49 // index inside the object.
649     //
650     // + memory-efficient on most 64 bit archs
651     // + O(1) insert/remove
652     // + free unique (but varying) id for inserted objects
653     // + cache-friendly iteration
654     // - only works for pointers to structs
655     //
656     // NOTE: only some forms of erase/insert are available
657 root 1.50 typedef int object_vector_index;
658    
659     template<class T, object_vector_index T::*indexmember>
660 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
661     {
662 root 1.48 typedef typename object_vector::iterator iterator;
663    
664     bool contains (const T *obj) const
665     {
666 root 1.50 return obj->*indexmember;
667 root 1.48 }
668    
669     iterator find (const T *obj)
670     {
671 root 1.50 return obj->*indexmember
672     ? this->begin () + obj->*indexmember - 1
673 root 1.48 : this->end ();
674     }
675    
676 root 1.53 void push_back (T *obj)
677     {
678     std::vector<T *, slice_allocator<T *> >::push_back (obj);
679     obj->*indexmember = this->size ();
680     }
681    
682 root 1.26 void insert (T *obj)
683     {
684     push_back (obj);
685     }
686    
687     void insert (T &obj)
688     {
689     insert (&obj);
690     }
691    
692     void erase (T *obj)
693     {
694 root 1.119 object_vector_index pos = obj->*indexmember;
695 root 1.50 obj->*indexmember = 0;
696 root 1.26
697     if (pos < this->size ())
698     {
699     (*this)[pos - 1] = (*this)[this->size () - 1];
700 root 1.50 (*this)[pos - 1]->*indexmember = pos;
701 root 1.26 }
702    
703     this->pop_back ();
704     }
705    
706     void erase (T &obj)
707     {
708 root 1.50 erase (&obj);
709 root 1.26 }
710     };
711    
712 root 1.111 /////////////////////////////////////////////////////////////////////////////
713    
714     // something like a vector or stack, but without
715     // out of bounds checking
716     template<typename T>
717     struct fixed_stack
718     {
719     T *data;
720     int size;
721     int max;
722    
723     fixed_stack ()
724     : size (0), data (0)
725     {
726     }
727    
728     fixed_stack (int max)
729     : size (0), max (max)
730     {
731     data = salloc<T> (max);
732     }
733    
734     void reset (int new_max)
735     {
736     sfree (data, max);
737     size = 0;
738     max = new_max;
739     data = salloc<T> (max);
740     }
741    
742     void free ()
743     {
744     sfree (data, max);
745     data = 0;
746     }
747    
748     ~fixed_stack ()
749     {
750     sfree (data, max);
751     }
752    
753     T &operator[](int idx)
754     {
755     return data [idx];
756     }
757    
758     void push (T v)
759     {
760     data [size++] = v;
761     }
762    
763     T &pop ()
764     {
765     return data [--size];
766     }
767    
768     T remove (int idx)
769     {
770     T v = data [idx];
771    
772     data [idx] = data [--size];
773    
774     return v;
775     }
776     };
777    
778     /////////////////////////////////////////////////////////////////////////////
779    
780 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
781 root 1.87 // returns the number of bytes actually used (including \0)
782     int assign (char *dst, const char *src, int maxsize);
783 root 1.10
784     // type-safe version of assign
785 root 1.9 template<int N>
786 root 1.87 inline int assign (char (&dst)[N], const char *src)
787 root 1.9 {
788 root 1.87 return assign ((char *)&dst, src, N);
789 root 1.9 }
790    
791 root 1.17 typedef double tstamp;
792    
793 root 1.59 // return current time as timestamp
794 root 1.17 tstamp now ();
795    
796 root 1.25 int similar_direction (int a, int b);
797    
798 root 1.91 // like v?sprintf, but returns a "static" buffer
799     char *vformat (const char *format, va_list ap);
800 root 1.126 char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
801 root 1.43
802 sf-marcmagus 1.89 // safety-check player input which will become object->msg
803     bool msg_is_safe (const char *msg);
804    
805 root 1.66 /////////////////////////////////////////////////////////////////////////////
806     // threads, very very thin wrappers around pthreads
807    
808     struct thread
809     {
810     pthread_t id;
811    
812     void start (void *(*start_routine)(void *), void *arg = 0);
813    
814     void cancel ()
815     {
816     pthread_cancel (id);
817     }
818    
819     void *join ()
820     {
821     void *ret;
822    
823     if (pthread_join (id, &ret))
824     cleanup ("pthread_join failed", 1);
825    
826     return ret;
827     }
828     };
829    
830     // note that mutexes are not classes
831     typedef pthread_mutex_t smutex;
832    
833     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
834     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
835     #else
836     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
837     #endif
838    
839     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
840 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
841 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
842    
843 root 1.68 typedef pthread_cond_t scond;
844    
845     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
846     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
847     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
848     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
849    
850 root 1.1 #endif
851