ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.133
Committed: Sat Oct 8 21:54:05 2022 UTC (19 months, 2 weeks ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 1.132: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.120 *
4 root 1.127 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 root 1.123 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 root 1.120 *
7 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
8     * the terms of the Affero GNU General Public License as published by the
9     * Free Software Foundation, either version 3 of the License, or (at your
10     * option) any later version.
11 root 1.120 *
12 root 1.51 * This program is distributed in the hope that it will be useful,
13     * but WITHOUT ANY WARRANTY; without even the implied warranty of
14     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15     * GNU General Public License for more details.
16 root 1.120 *
17 root 1.90 * You should have received a copy of the Affero GNU General Public License
18     * and the GNU General Public License along with this program. If not, see
19     * <http://www.gnu.org/licenses/>.
20 root 1.120 *
21 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
22 root 1.46 */
23    
24 root 1.1 #ifndef UTIL_H__
25     #define UTIL_H__
26    
27 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
28 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
29     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
30 root 1.36
31 root 1.66 #include <pthread.h>
32    
33 root 1.11 #include <cstddef>
34 root 1.28 #include <cmath>
35 root 1.25 #include <new>
36     #include <vector>
37 root 1.11
38     #include <glib.h>
39    
40 root 1.128 #include <flat_hash_map.hpp>
41    
42 root 1.25 #include <shstr.h>
43     #include <traits.h>
44    
45 root 1.131 #include "ecb.h"
46    
47 root 1.65 #if DEBUG_SALLOC
48 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
49     # define g_slice_alloc(s) debug_slice_alloc(s)
50     # define g_slice_free1(s,p) debug_slice_free1(s,p)
51     void *g_slice_alloc (unsigned long size);
52     void *g_slice_alloc0 (unsigned long size);
53     void g_slice_free1 (unsigned long size, void *ptr);
54 root 1.67 #elif PREFER_MALLOC
55     # define g_slice_alloc0(s) calloc (1, (s))
56     # define g_slice_alloc(s) malloc ((s))
57 root 1.68 # define g_slice_free1(s,p) free ((p))
58 root 1.60 #endif
59    
60 root 1.81 // very ugly macro that basically declares and initialises a variable
61 root 1.26 // that is in scope for the next statement only
62     // works only for stuff that can be assigned 0 and converts to false
63     // (note: works great for pointers)
64     // most ugly macro I ever wrote
65 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66 root 1.26
67 root 1.27 // in range including end
68     #define IN_RANGE_INC(val,beg,end) \
69     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70    
71     // in range excluding end
72     #define IN_RANGE_EXC(val,beg,end) \
73     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74    
75 root 1.126 ecb_cold void cleanup (const char *cause, bool make_core = false);
76     ecb_cold void fork_abort (const char *msg);
77 root 1.31
78 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
79     // as a is often a constant while b is the variable. it is still a bug, though.
80 root 1.116 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81     template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82 root 1.35 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 root 1.32
84 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87 root 1.78
88 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89    
90 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92    
93 root 1.79 // sign returns -1 or +1
94     template<typename T>
95     static inline T sign (T v) { return v < 0 ? -1 : +1; }
96     // relies on 2c representation
97     template<>
98 root 1.103 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99     template<>
100     inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101     template<>
102     inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103 root 1.79
104     // sign0 returns -1, 0 or +1
105     template<typename T>
106     static inline T sign0 (T v) { return v ? sign (v) : 0; }
107    
108 root 1.113 //clashes with C++0x
109 root 1.99 template<typename T, typename U>
110     static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111    
112 root 1.88 // div* only work correctly for div > 0
113 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114 root 1.88 template<typename T> static inline T div (T val, T div)
115     {
116 root 1.130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117 root 1.88 }
118 root 1.105
119     template<> inline float div (float val, float div) { return val / div; }
120     template<> inline double div (double val, double div) { return val / div; }
121    
122 root 1.78 // div, round-up
123 root 1.88 template<typename T> static inline T div_ru (T val, T div)
124     {
125 root 1.130 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126 root 1.88 }
127 root 1.78 // div, round-down
128 root 1.88 template<typename T> static inline T div_rd (T val, T div)
129     {
130 root 1.130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131 root 1.88 }
132 root 1.78
133 root 1.88 // lerp* only work correctly for min_in < max_in
134     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135 root 1.44 template<typename T>
136     static inline T
137     lerp (T val, T min_in, T max_in, T min_out, T max_out)
138     {
139 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140     }
141    
142     // lerp, round-down
143     template<typename T>
144     static inline T
145     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146     {
147     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148     }
149    
150     // lerp, round-up
151     template<typename T>
152     static inline T
153     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154     {
155     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156 root 1.44 }
157    
158 root 1.37 // lots of stuff taken from FXT
159    
160     /* Rotate right. This is used in various places for checksumming */
161 root 1.38 //TODO: that sucks, use a better checksum algo
162 root 1.37 static inline uint32_t
163 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
164 root 1.37 {
165 root 1.38 return (c << (32 - count)) | (c >> count);
166     }
167    
168     static inline uint32_t
169     rotate_left (uint32_t c, uint32_t count = 1)
170     {
171     return (c >> (32 - count)) | (c << count);
172 root 1.37 }
173    
174     // Return abs(a-b)
175     // Both a and b must not have the most significant bit set
176     static inline uint32_t
177     upos_abs_diff (uint32_t a, uint32_t b)
178     {
179     long d1 = b - a;
180     long d2 = (d1 & (d1 >> 31)) << 1;
181    
182     return d1 - d2; // == (b - d) - (a + d);
183     }
184    
185     // Both a and b must not have the most significant bit set
186     static inline uint32_t
187     upos_min (uint32_t a, uint32_t b)
188     {
189     int32_t d = b - a;
190     d &= d >> 31;
191     return a + d;
192     }
193    
194     // Both a and b must not have the most significant bit set
195     static inline uint32_t
196     upos_max (uint32_t a, uint32_t b)
197     {
198     int32_t d = b - a;
199     d &= d >> 31;
200     return b - d;
201     }
202    
203 root 1.94 // this is much faster than crossfire's original algorithm
204 root 1.28 // on modern cpus
205     inline int
206     isqrt (int n)
207     {
208     return (int)sqrtf ((float)n);
209     }
210    
211 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
212     // more handy than it looks like, due to the implicit !! done on its arguments
213     inline bool
214     logical_xor (bool a, bool b)
215     {
216     return a != b;
217     }
218    
219     inline bool
220     logical_implies (bool a, bool b)
221     {
222     return a <= b;
223     }
224    
225 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
226     #if 0
227     // and has a max. error of 6 in the range -100..+100.
228     #else
229     // and has a max. error of 9 in the range -100..+100.
230     #endif
231 root 1.122 inline int
232 root 1.28 idistance (int dx, int dy)
233 root 1.122 {
234 root 1.28 unsigned int dx_ = abs (dx);
235     unsigned int dy_ = abs (dy);
236    
237     #if 0
238     return dx_ > dy_
239     ? (dx_ * 61685 + dy_ * 26870) >> 16
240     : (dy_ * 61685 + dx_ * 26870) >> 16;
241     #else
242 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
243 root 1.28 #endif
244     }
245    
246 root 1.115 // can be substantially faster than floor, if your value range allows for it
247     template<typename T>
248     inline T
249     fastfloor (T x)
250     {
251     return std::floor (x);
252     }
253    
254     inline float
255     fastfloor (float x)
256     {
257     return sint32(x) - (x < 0);
258     }
259    
260     inline double
261     fastfloor (double x)
262     {
263     return sint64(x) - (x < 0);
264     }
265    
266 root 1.29 /*
267     * absdir(int): Returns a number between 1 and 8, which represent
268     * the "absolute" direction of a number (it actually takes care of
269     * "overflow" in previous calculations of a direction).
270     */
271     inline int
272     absdir (int d)
273     {
274     return ((d - 1) & 7) + 1;
275     }
276 root 1.28
277 root 1.96 #define for_all_bits_sparse_32(mask, idxvar) \
278     for (uint32_t idxvar, mask_ = mask; \
279 root 1.126 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280 root 1.96
281 root 1.67 extern ssize_t slice_alloc; // statistics
282    
283 root 1.133 void *salloc_ (int n) noexcept;
284     void *salloc_ (int n, void *src) noexcept;
285 root 1.67
286     // strictly the same as g_slice_alloc, but never returns 0
287     template<typename T>
288 root 1.125 inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289 root 1.67
290     // also copies src into the new area, like "memdup"
291     // if src is 0, clears the memory
292     template<typename T>
293 root 1.125 inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294 root 1.67
295     // clears the memory
296     template<typename T>
297 root 1.125 inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298 root 1.67
299     // for symmetry
300     template<typename T>
301 root 1.125 inline void sfree (T *ptr, int n = 1) noexcept
302 root 1.67 {
303 root 1.130 if (ecb_expect_true (ptr))
304 root 1.67 {
305     slice_alloc -= n * sizeof (T);
306 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
308     }
309     }
310 root 1.57
311 root 1.72 // nulls the pointer
312     template<typename T>
313 root 1.125 inline void sfree0 (T *&ptr, int n = 1) noexcept
314 root 1.72 {
315     sfree<T> (ptr, n);
316     ptr = 0;
317     }
318    
319 root 1.1 // makes dynamically allocated objects zero-initialised
320     struct zero_initialised
321     {
322 root 1.11 void *operator new (size_t s, void *p)
323     {
324     memset (p, 0, s);
325     return p;
326     }
327    
328     void *operator new (size_t s)
329     {
330 root 1.67 return salloc0<char> (s);
331 root 1.11 }
332    
333     void *operator new[] (size_t s)
334     {
335 root 1.67 return salloc0<char> (s);
336 root 1.11 }
337    
338     void operator delete (void *p, size_t s)
339     {
340 root 1.67 sfree ((char *)p, s);
341 root 1.11 }
342    
343     void operator delete[] (void *p, size_t s)
344     {
345 root 1.67 sfree ((char *)p, s);
346 root 1.11 }
347     };
348    
349 root 1.73 // makes dynamically allocated objects zero-initialised
350     struct slice_allocated
351     {
352     void *operator new (size_t s, void *p)
353     {
354     return p;
355     }
356    
357     void *operator new (size_t s)
358     {
359     return salloc<char> (s);
360     }
361    
362     void *operator new[] (size_t s)
363     {
364     return salloc<char> (s);
365     }
366    
367     void operator delete (void *p, size_t s)
368     {
369     sfree ((char *)p, s);
370     }
371    
372     void operator delete[] (void *p, size_t s)
373     {
374     sfree ((char *)p, s);
375     }
376     };
377    
378 root 1.11 // a STL-compatible allocator that uses g_slice
379 root 1.132 // boy, this is much less verbose in newer C++ versions
380 root 1.11 template<typename Tp>
381     struct slice_allocator
382     {
383 root 1.132 using value_type = Tp;
384 root 1.11
385 root 1.125 slice_allocator () noexcept { }
386 root 1.132 template<class U> slice_allocator (const slice_allocator<U> &) noexcept {}
387 root 1.11
388 root 1.132 value_type *allocate (std::size_t n)
389 root 1.11 {
390 root 1.18 return salloc<Tp> (n);
391 root 1.11 }
392    
393 root 1.132 void deallocate (value_type *p, std::size_t n)
394 root 1.11 {
395 root 1.19 sfree<Tp> (p, n);
396 root 1.11 }
397 root 1.132 };
398 root 1.11
399 root 1.132 template<class T, class U>
400     bool operator == (const slice_allocator<T> &, const slice_allocator<U> &) noexcept
401     {
402     return true;
403     }
404 root 1.11
405 root 1.132 template<class T, class U>
406     bool operator != (const slice_allocator<T> &x, const slice_allocator<U> &y) noexcept
407     {
408     return !(x == y);
409     }
410 root 1.1
411 root 1.117 // basically a memory area, but refcounted
412     struct refcnt_buf
413     {
414     char *data;
415    
416     refcnt_buf (size_t size = 0);
417     refcnt_buf (void *data, size_t size);
418    
419     refcnt_buf (const refcnt_buf &src)
420     {
421     data = src.data;
422 root 1.121 inc ();
423 root 1.117 }
424    
425     ~refcnt_buf ();
426    
427     refcnt_buf &operator =(const refcnt_buf &src);
428    
429     operator char *()
430     {
431     return data;
432     }
433    
434     size_t size () const
435     {
436     return _size ();
437     }
438    
439     protected:
440     enum {
441 root 1.121 overhead = sizeof (uint32_t) * 2
442 root 1.117 };
443    
444 root 1.121 uint32_t &_size () const
445 root 1.117 {
446     return ((unsigned int *)data)[-2];
447     }
448    
449 root 1.121 uint32_t &_refcnt () const
450 root 1.117 {
451     return ((unsigned int *)data)[-1];
452     }
453    
454 root 1.121 void _alloc (uint32_t size)
455 root 1.117 {
456     data = ((char *)salloc<char> (size + overhead)) + overhead;
457     _size () = size;
458     _refcnt () = 1;
459     }
460    
461 root 1.121 void _dealloc ();
462    
463     void inc ()
464     {
465     ++_refcnt ();
466     }
467    
468 root 1.117 void dec ()
469     {
470     if (!--_refcnt ())
471 root 1.121 _dealloc ();
472 root 1.117 }
473     };
474    
475 root 1.54 INTERFACE_CLASS (attachable)
476     struct refcnt_base
477     {
478     typedef int refcnt_t;
479     mutable refcnt_t ACC (RW, refcnt);
480    
481     MTH void refcnt_inc () const { ++refcnt; }
482     MTH void refcnt_dec () const { --refcnt; }
483    
484     refcnt_base () : refcnt (0) { }
485     };
486    
487 root 1.56 // to avoid branches with more advanced compilers
488 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
489    
490 root 1.7 template<class T>
491     struct refptr
492     {
493 root 1.54 // p if not null
494     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
495    
496     void refcnt_dec ()
497     {
498 root 1.126 if (!ecb_is_constant (p))
499 root 1.54 --*refcnt_ref ();
500     else if (p)
501     --p->refcnt;
502     }
503    
504     void refcnt_inc ()
505     {
506 root 1.126 if (!ecb_is_constant (p))
507 root 1.54 ++*refcnt_ref ();
508     else if (p)
509     ++p->refcnt;
510     }
511    
512 root 1.7 T *p;
513    
514     refptr () : p(0) { }
515 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
516     refptr (T *p) : p(p) { refcnt_inc (); }
517     ~refptr () { refcnt_dec (); }
518 root 1.7
519     const refptr<T> &operator =(T *o)
520     {
521 root 1.54 // if decrementing ever destroys we need to reverse the order here
522     refcnt_dec ();
523 root 1.7 p = o;
524 root 1.54 refcnt_inc ();
525 root 1.7 return *this;
526     }
527    
528 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
529 root 1.7 {
530     *this = o.p;
531     return *this;
532     }
533    
534     T &operator * () const { return *p; }
535 root 1.54 T *operator ->() const { return p; }
536 root 1.7
537     operator T *() const { return p; }
538     };
539    
540 root 1.24 typedef refptr<maptile> maptile_ptr;
541 root 1.22 typedef refptr<object> object_ptr;
542     typedef refptr<archetype> arch_ptr;
543 root 1.24 typedef refptr<client> client_ptr;
544     typedef refptr<player> player_ptr;
545 root 1.102 typedef refptr<region> region_ptr;
546 root 1.22
547 root 1.95 #define STRHSH_NULL 2166136261
548    
549     static inline uint32_t
550     strhsh (const char *s)
551     {
552     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
553     // it is about twice as fast as the one-at-a-time one,
554     // with good distribution.
555     // FNV-1a is faster on many cpus because the multiplication
556     // runs concurrently with the looping logic.
557 root 1.112 // we modify the hash a bit to improve its distribution
558 root 1.95 uint32_t hash = STRHSH_NULL;
559 root 1.122
560 root 1.95 while (*s)
561 root 1.98 hash = (hash ^ *s++) * 16777619U;
562 root 1.95
563 root 1.112 return hash ^ (hash >> 16);
564 root 1.95 }
565    
566     static inline uint32_t
567     memhsh (const char *s, size_t len)
568     {
569     uint32_t hash = STRHSH_NULL;
570 root 1.122
571 root 1.95 while (len--)
572 root 1.98 hash = (hash ^ *s++) * 16777619U;
573 root 1.95
574     return hash;
575     }
576    
577 root 1.4 struct str_hash
578     {
579     std::size_t operator ()(const char *s) const
580     {
581 root 1.95 return strhsh (s);
582     }
583 root 1.4
584 root 1.95 std::size_t operator ()(const shstr &s) const
585     {
586     return strhsh (s);
587 root 1.4 }
588 root 1.128
589     typedef ska::power_of_two_hash_policy hash_policy;
590 root 1.4 };
591    
592     struct str_equal
593     {
594     bool operator ()(const char *a, const char *b) const
595     {
596     return !strcmp (a, b);
597     }
598     };
599    
600 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
601 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
602 root 1.49 //
603 root 1.52 // NOTE: only some forms of erase are available
604 root 1.26 template<class T>
605     struct unordered_vector : std::vector<T, slice_allocator<T> >
606 root 1.6 {
607 root 1.11 typedef typename unordered_vector::iterator iterator;
608 root 1.6
609     void erase (unsigned int pos)
610     {
611     if (pos < this->size () - 1)
612     (*this)[pos] = (*this)[this->size () - 1];
613    
614     this->pop_back ();
615     }
616    
617     void erase (iterator i)
618     {
619     erase ((unsigned int )(i - this->begin ()));
620     }
621     };
622    
623 root 1.49 // This container blends advantages of linked lists
624     // (efficiency) with vectors (random access) by
625 root 1.119 // using an unordered vector and storing the vector
626 root 1.49 // index inside the object.
627     //
628     // + memory-efficient on most 64 bit archs
629     // + O(1) insert/remove
630     // + free unique (but varying) id for inserted objects
631     // + cache-friendly iteration
632     // - only works for pointers to structs
633     //
634     // NOTE: only some forms of erase/insert are available
635 root 1.50 typedef int object_vector_index;
636    
637     template<class T, object_vector_index T::*indexmember>
638 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
639     {
640 root 1.48 typedef typename object_vector::iterator iterator;
641    
642     bool contains (const T *obj) const
643     {
644 root 1.50 return obj->*indexmember;
645 root 1.48 }
646    
647     iterator find (const T *obj)
648     {
649 root 1.50 return obj->*indexmember
650     ? this->begin () + obj->*indexmember - 1
651 root 1.48 : this->end ();
652     }
653    
654 root 1.53 void push_back (T *obj)
655     {
656     std::vector<T *, slice_allocator<T *> >::push_back (obj);
657     obj->*indexmember = this->size ();
658     }
659    
660 root 1.26 void insert (T *obj)
661     {
662     push_back (obj);
663     }
664    
665     void insert (T &obj)
666     {
667     insert (&obj);
668     }
669    
670     void erase (T *obj)
671     {
672 root 1.119 object_vector_index pos = obj->*indexmember;
673 root 1.50 obj->*indexmember = 0;
674 root 1.26
675     if (pos < this->size ())
676     {
677     (*this)[pos - 1] = (*this)[this->size () - 1];
678 root 1.50 (*this)[pos - 1]->*indexmember = pos;
679 root 1.26 }
680    
681     this->pop_back ();
682     }
683    
684     void erase (T &obj)
685     {
686 root 1.50 erase (&obj);
687 root 1.26 }
688     };
689    
690 root 1.111 /////////////////////////////////////////////////////////////////////////////
691    
692     // something like a vector or stack, but without
693     // out of bounds checking
694     template<typename T>
695     struct fixed_stack
696     {
697     T *data;
698     int size;
699     int max;
700    
701     fixed_stack ()
702     : size (0), data (0)
703     {
704     }
705    
706     fixed_stack (int max)
707     : size (0), max (max)
708     {
709     data = salloc<T> (max);
710     }
711    
712     void reset (int new_max)
713     {
714     sfree (data, max);
715     size = 0;
716     max = new_max;
717     data = salloc<T> (max);
718     }
719    
720     void free ()
721     {
722     sfree (data, max);
723     data = 0;
724     }
725    
726     ~fixed_stack ()
727     {
728     sfree (data, max);
729     }
730    
731     T &operator[](int idx)
732     {
733     return data [idx];
734     }
735    
736     void push (T v)
737     {
738     data [size++] = v;
739     }
740    
741     T &pop ()
742     {
743     return data [--size];
744     }
745    
746     T remove (int idx)
747     {
748     T v = data [idx];
749    
750     data [idx] = data [--size];
751    
752     return v;
753     }
754     };
755    
756     /////////////////////////////////////////////////////////////////////////////
757    
758 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
759 root 1.87 // returns the number of bytes actually used (including \0)
760     int assign (char *dst, const char *src, int maxsize);
761 root 1.10
762     // type-safe version of assign
763 root 1.9 template<int N>
764 root 1.87 inline int assign (char (&dst)[N], const char *src)
765 root 1.9 {
766 root 1.87 return assign ((char *)&dst, src, N);
767 root 1.9 }
768    
769 root 1.17 typedef double tstamp;
770    
771 root 1.59 // return current time as timestamp
772 root 1.17 tstamp now ();
773    
774 root 1.25 int similar_direction (int a, int b);
775    
776 root 1.91 // like v?sprintf, but returns a "static" buffer
777     char *vformat (const char *format, va_list ap);
778 root 1.126 char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
779 root 1.43
780 sf-marcmagus 1.89 // safety-check player input which will become object->msg
781     bool msg_is_safe (const char *msg);
782    
783 root 1.66 /////////////////////////////////////////////////////////////////////////////
784     // threads, very very thin wrappers around pthreads
785    
786     struct thread
787     {
788     pthread_t id;
789    
790     void start (void *(*start_routine)(void *), void *arg = 0);
791    
792     void cancel ()
793     {
794     pthread_cancel (id);
795     }
796    
797     void *join ()
798     {
799     void *ret;
800    
801     if (pthread_join (id, &ret))
802     cleanup ("pthread_join failed", 1);
803    
804     return ret;
805     }
806     };
807    
808     // note that mutexes are not classes
809     typedef pthread_mutex_t smutex;
810    
811     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
812     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
813     #else
814     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
815     #endif
816    
817     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
818 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
819 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
820    
821 root 1.68 typedef pthread_cond_t scond;
822    
823     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
824     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
825     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
826     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
827    
828 root 1.1 #endif
829