ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.46
Committed: Mon May 28 21:15:56 2007 UTC (16 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.45: +22 -0 lines
Log Message:
- update copyrights in .h files, where applicable
- rename preprocess to genkeywords

File Contents

# User Rev Content
1 root 1.46 /*
2     * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game.
3     *
4     * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team
5     *
6     * Crossfire TRT is free software; you can redistribute it and/or modify it
7     * under the terms of the GNU General Public License as published by the Free
8     * Software Foundation; either version 2 of the License, or (at your option)
9     * any later version.
10     *
11     * This program is distributed in the hope that it will be useful, but
12     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13     * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * for more details.
15     *
16     * You should have received a copy of the GNU General Public License along
17     * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51
18     * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19     *
20     * The authors can be reached via e-mail to <crossfire@schmorp.de>
21     */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.36 //#define PREFER_MALLOC
27    
28 root 1.2 #if __GNUC__ >= 3
29 root 1.45 # define is_constant(c) __builtin_constant_p (c)
30     # define expect(expr,value) __builtin_expect ((expr),(value))
31     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32 root 1.2 #else
33 root 1.45 # define is_constant(c) 0
34     # define expect(expr,value) (expr)
35     # define prefetch(addr,rw,locality)
36 root 1.2 #endif
37    
38 root 1.45 // put into ifs if you are very sure that the expression
39     // is mostly true or mosty false. note that these return
40     // booleans, not the expression.
41     #define expect_false(expr) expect ((expr) != 0, 0)
42     #define expect_true(expr) expect ((expr) != 0, 1)
43    
44 root 1.11 #include <cstddef>
45 root 1.28 #include <cmath>
46 root 1.25 #include <new>
47     #include <vector>
48 root 1.11
49     #include <glib.h>
50    
51 root 1.25 #include <shstr.h>
52     #include <traits.h>
53    
54 root 1.14 // use a gcc extension for auto declarations until ISO C++ sanctifies them
55 root 1.40 #define auto(var,expr) typeof(expr) var = (expr)
56 root 1.14
57 root 1.26 // very ugly macro that basicaly declares and initialises a variable
58     // that is in scope for the next statement only
59     // works only for stuff that can be assigned 0 and converts to false
60     // (note: works great for pointers)
61     // most ugly macro I ever wrote
62     #define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
63    
64 root 1.27 // in range including end
65     #define IN_RANGE_INC(val,beg,end) \
66     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
67    
68     // in range excluding end
69     #define IN_RANGE_EXC(val,beg,end) \
70     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
71    
72 root 1.31 void fork_abort (const char *msg);
73    
74 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
75     // as a is often a constant while b is the variable. it is still a bug, though.
76     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
77     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
78     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
79 root 1.32
80     template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
81    
82 root 1.44 template<typename T>
83     static inline T
84     lerp (T val, T min_in, T max_in, T min_out, T max_out)
85     {
86     return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
87     }
88    
89 root 1.37 // lots of stuff taken from FXT
90    
91     /* Rotate right. This is used in various places for checksumming */
92 root 1.38 //TODO: that sucks, use a better checksum algo
93 root 1.37 static inline uint32_t
94 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
95 root 1.37 {
96 root 1.38 return (c << (32 - count)) | (c >> count);
97     }
98    
99     static inline uint32_t
100     rotate_left (uint32_t c, uint32_t count = 1)
101     {
102     return (c >> (32 - count)) | (c << count);
103 root 1.37 }
104    
105     // Return abs(a-b)
106     // Both a and b must not have the most significant bit set
107     static inline uint32_t
108     upos_abs_diff (uint32_t a, uint32_t b)
109     {
110     long d1 = b - a;
111     long d2 = (d1 & (d1 >> 31)) << 1;
112    
113     return d1 - d2; // == (b - d) - (a + d);
114     }
115    
116     // Both a and b must not have the most significant bit set
117     static inline uint32_t
118     upos_min (uint32_t a, uint32_t b)
119     {
120     int32_t d = b - a;
121     d &= d >> 31;
122     return a + d;
123     }
124    
125     // Both a and b must not have the most significant bit set
126     static inline uint32_t
127     upos_max (uint32_t a, uint32_t b)
128     {
129     int32_t d = b - a;
130     d &= d >> 31;
131     return b - d;
132     }
133    
134 root 1.28 // this is much faster than crossfires original algorithm
135     // on modern cpus
136     inline int
137     isqrt (int n)
138     {
139     return (int)sqrtf ((float)n);
140     }
141    
142     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
143     #if 0
144     // and has a max. error of 6 in the range -100..+100.
145     #else
146     // and has a max. error of 9 in the range -100..+100.
147     #endif
148     inline int
149     idistance (int dx, int dy)
150     {
151     unsigned int dx_ = abs (dx);
152     unsigned int dy_ = abs (dy);
153    
154     #if 0
155     return dx_ > dy_
156     ? (dx_ * 61685 + dy_ * 26870) >> 16
157     : (dy_ * 61685 + dx_ * 26870) >> 16;
158     #else
159 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
160 root 1.28 #endif
161     }
162    
163 root 1.29 /*
164     * absdir(int): Returns a number between 1 and 8, which represent
165     * the "absolute" direction of a number (it actually takes care of
166     * "overflow" in previous calculations of a direction).
167     */
168     inline int
169     absdir (int d)
170     {
171     return ((d - 1) & 7) + 1;
172     }
173 root 1.28
174 root 1.1 // makes dynamically allocated objects zero-initialised
175     struct zero_initialised
176     {
177 root 1.11 void *operator new (size_t s, void *p)
178     {
179     memset (p, 0, s);
180     return p;
181     }
182    
183     void *operator new (size_t s)
184     {
185     return g_slice_alloc0 (s);
186     }
187    
188     void *operator new[] (size_t s)
189     {
190     return g_slice_alloc0 (s);
191     }
192    
193     void operator delete (void *p, size_t s)
194     {
195     g_slice_free1 (s, p);
196     }
197    
198     void operator delete[] (void *p, size_t s)
199     {
200     g_slice_free1 (s, p);
201     }
202     };
203    
204 root 1.20 void *salloc_ (int n) throw (std::bad_alloc);
205     void *salloc_ (int n, void *src) throw (std::bad_alloc);
206    
207 root 1.12 // strictly the same as g_slice_alloc, but never returns 0
208 root 1.20 template<typename T>
209     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
210    
211 root 1.17 // also copies src into the new area, like "memdup"
212 root 1.18 // if src is 0, clears the memory
213     template<typename T>
214 root 1.20 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
215 root 1.18
216 root 1.21 // clears the memory
217     template<typename T>
218     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
219    
220 root 1.12 // for symmetry
221 root 1.18 template<typename T>
222 root 1.20 inline void sfree (T *ptr, int n = 1) throw ()
223 root 1.12 {
224 root 1.36 #ifdef PREFER_MALLOC
225     free (ptr);
226     #else
227 root 1.20 g_slice_free1 (n * sizeof (T), (void *)ptr);
228 root 1.36 #endif
229 root 1.12 }
230 root 1.11
231     // a STL-compatible allocator that uses g_slice
232     // boy, this is verbose
233     template<typename Tp>
234     struct slice_allocator
235     {
236     typedef size_t size_type;
237     typedef ptrdiff_t difference_type;
238     typedef Tp *pointer;
239     typedef const Tp *const_pointer;
240     typedef Tp &reference;
241     typedef const Tp &const_reference;
242     typedef Tp value_type;
243    
244     template <class U>
245     struct rebind
246     {
247     typedef slice_allocator<U> other;
248     };
249    
250     slice_allocator () throw () { }
251     slice_allocator (const slice_allocator &o) throw () { }
252     template<typename Tp2>
253     slice_allocator (const slice_allocator<Tp2> &) throw () { }
254    
255     ~slice_allocator () { }
256    
257     pointer address (reference x) const { return &x; }
258     const_pointer address (const_reference x) const { return &x; }
259    
260     pointer allocate (size_type n, const_pointer = 0)
261     {
262 root 1.18 return salloc<Tp> (n);
263 root 1.11 }
264    
265     void deallocate (pointer p, size_type n)
266     {
267 root 1.19 sfree<Tp> (p, n);
268 root 1.11 }
269    
270     size_type max_size ()const throw ()
271     {
272     return size_t (-1) / sizeof (Tp);
273     }
274    
275     void construct (pointer p, const Tp &val)
276     {
277     ::new (p) Tp (val);
278     }
279    
280     void destroy (pointer p)
281     {
282     p->~Tp ();
283     }
284 root 1.1 };
285    
286 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
287     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
288     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
289     struct tausworthe_random_generator
290     {
291 root 1.34 // generator
292 root 1.32 uint32_t state [4];
293    
294 root 1.34 void operator =(const tausworthe_random_generator &src)
295     {
296     state [0] = src.state [0];
297     state [1] = src.state [1];
298     state [2] = src.state [2];
299     state [3] = src.state [3];
300     }
301    
302     void seed (uint32_t seed);
303 root 1.32 uint32_t next ();
304    
305 root 1.34 // uniform distribution
306 root 1.42 uint32_t operator ()(uint32_t num)
307 root 1.32 {
308 root 1.42 return is_constant (num)
309     ? (next () * (uint64_t)num) >> 32U
310     : get_range (num);
311 root 1.32 }
312    
313     // return a number within (min .. max)
314     int operator () (int r_min, int r_max)
315     {
316 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
317     ? r_min + operator ()(r_max - r_min + 1)
318 root 1.34 : get_range (r_min, r_max);
319 root 1.32 }
320    
321     double operator ()()
322     {
323 root 1.34 return this->next () / (double)0xFFFFFFFFU;
324 root 1.32 }
325 root 1.34
326     protected:
327     uint32_t get_range (uint32_t r_max);
328     int get_range (int r_min, int r_max);
329 root 1.32 };
330    
331     typedef tausworthe_random_generator rand_gen;
332    
333     extern rand_gen rndm;
334    
335 root 1.7 template<class T>
336     struct refptr
337     {
338     T *p;
339    
340     refptr () : p(0) { }
341     refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); }
342     refptr (T *p) : p(p) { if (p) p->refcnt_inc (); }
343     ~refptr () { if (p) p->refcnt_dec (); }
344    
345     const refptr<T> &operator =(T *o)
346     {
347     if (p) p->refcnt_dec ();
348     p = o;
349     if (p) p->refcnt_inc ();
350    
351     return *this;
352     }
353    
354     const refptr<T> &operator =(const refptr<T> o)
355     {
356     *this = o.p;
357     return *this;
358     }
359    
360     T &operator * () const { return *p; }
361     T *operator ->() const { return p; }
362    
363     operator T *() const { return p; }
364     };
365    
366 root 1.24 typedef refptr<maptile> maptile_ptr;
367 root 1.22 typedef refptr<object> object_ptr;
368     typedef refptr<archetype> arch_ptr;
369 root 1.24 typedef refptr<client> client_ptr;
370     typedef refptr<player> player_ptr;
371 root 1.22
372 root 1.4 struct str_hash
373     {
374     std::size_t operator ()(const char *s) const
375     {
376     unsigned long hash = 0;
377    
378     /* use the one-at-a-time hash function, which supposedly is
379     * better than the djb2-like one used by perl5.005, but
380     * certainly is better then the bug used here before.
381     * see http://burtleburtle.net/bob/hash/doobs.html
382     */
383     while (*s)
384     {
385     hash += *s++;
386     hash += hash << 10;
387     hash ^= hash >> 6;
388     }
389    
390     hash += hash << 3;
391     hash ^= hash >> 11;
392     hash += hash << 15;
393    
394     return hash;
395     }
396     };
397    
398     struct str_equal
399     {
400     bool operator ()(const char *a, const char *b) const
401     {
402     return !strcmp (a, b);
403     }
404     };
405    
406 root 1.26 template<class T>
407     struct unordered_vector : std::vector<T, slice_allocator<T> >
408 root 1.6 {
409 root 1.11 typedef typename unordered_vector::iterator iterator;
410 root 1.6
411     void erase (unsigned int pos)
412     {
413     if (pos < this->size () - 1)
414     (*this)[pos] = (*this)[this->size () - 1];
415    
416     this->pop_back ();
417     }
418    
419     void erase (iterator i)
420     {
421     erase ((unsigned int )(i - this->begin ()));
422     }
423     };
424    
425 root 1.26 template<class T, int T::* index>
426     struct object_vector : std::vector<T *, slice_allocator<T *> >
427     {
428     void insert (T *obj)
429     {
430     assert (!(obj->*index));
431     push_back (obj);
432     obj->*index = this->size ();
433     }
434    
435     void insert (T &obj)
436     {
437     insert (&obj);
438     }
439    
440     void erase (T *obj)
441     {
442     assert (obj->*index);
443 pippijn 1.39 unsigned int pos = obj->*index;
444 root 1.26 obj->*index = 0;
445    
446     if (pos < this->size ())
447     {
448     (*this)[pos - 1] = (*this)[this->size () - 1];
449     (*this)[pos - 1]->*index = pos;
450     }
451    
452     this->pop_back ();
453     }
454    
455     void erase (T &obj)
456     {
457     errase (&obj);
458     }
459     };
460    
461 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
462     void assign (char *dst, const char *src, int maxlen);
463    
464     // type-safe version of assign
465 root 1.9 template<int N>
466     inline void assign (char (&dst)[N], const char *src)
467     {
468 root 1.10 assign ((char *)&dst, src, N);
469 root 1.9 }
470    
471 root 1.17 typedef double tstamp;
472    
473     // return current time as timestampe
474     tstamp now ();
475    
476 root 1.25 int similar_direction (int a, int b);
477    
478 root 1.43 // like printf, but returns a std::string
479     const std::string format (const char *format, ...);
480    
481 root 1.1 #endif
482