ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.59
Committed: Sun Dec 16 02:50:33 2007 UTC (16 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_4
Changes since 1.58: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.58 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.58 * Deliantra is free software: you can redistribute it and/or modify
7 root 1.51 * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation, either version 3 of the License, or
9     * (at your option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.51 * You should have received a copy of the GNU General Public License
17     * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 root 1.46 *
19 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
20 root 1.46 */
21    
22 root 1.1 #ifndef UTIL_H__
23     #define UTIL_H__
24    
25 root 1.36 //#define PREFER_MALLOC
26    
27 root 1.2 #if __GNUC__ >= 3
28 root 1.45 # define is_constant(c) __builtin_constant_p (c)
29     # define expect(expr,value) __builtin_expect ((expr),(value))
30     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
31 root 1.2 #else
32 root 1.45 # define is_constant(c) 0
33     # define expect(expr,value) (expr)
34     # define prefetch(addr,rw,locality)
35 root 1.2 #endif
36    
37 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
38     # define decltype(x) typeof(x)
39     #endif
40    
41 root 1.45 // put into ifs if you are very sure that the expression
42     // is mostly true or mosty false. note that these return
43     // booleans, not the expression.
44     #define expect_false(expr) expect ((expr) != 0, 0)
45     #define expect_true(expr) expect ((expr) != 0, 1)
46    
47 root 1.11 #include <cstddef>
48 root 1.28 #include <cmath>
49 root 1.25 #include <new>
50     #include <vector>
51 root 1.11
52     #include <glib.h>
53    
54 root 1.25 #include <shstr.h>
55     #include <traits.h>
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.26 // very ugly macro that basicaly declares and initialises a variable
61     // that is in scope for the next statement only
62     // works only for stuff that can be assigned 0 and converts to false
63     // (note: works great for pointers)
64     // most ugly macro I ever wrote
65 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66 root 1.26
67 root 1.27 // in range including end
68     #define IN_RANGE_INC(val,beg,end) \
69     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70    
71     // in range excluding end
72     #define IN_RANGE_EXC(val,beg,end) \
73     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74    
75 root 1.31 void fork_abort (const char *msg);
76    
77 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
78     // as a is often a constant while b is the variable. it is still a bug, though.
79     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82 root 1.32
83     template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
84    
85 root 1.44 template<typename T>
86     static inline T
87     lerp (T val, T min_in, T max_in, T min_out, T max_out)
88     {
89     return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
90     }
91    
92 root 1.37 // lots of stuff taken from FXT
93    
94     /* Rotate right. This is used in various places for checksumming */
95 root 1.38 //TODO: that sucks, use a better checksum algo
96 root 1.37 static inline uint32_t
97 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
98 root 1.37 {
99 root 1.38 return (c << (32 - count)) | (c >> count);
100     }
101    
102     static inline uint32_t
103     rotate_left (uint32_t c, uint32_t count = 1)
104     {
105     return (c >> (32 - count)) | (c << count);
106 root 1.37 }
107    
108     // Return abs(a-b)
109     // Both a and b must not have the most significant bit set
110     static inline uint32_t
111     upos_abs_diff (uint32_t a, uint32_t b)
112     {
113     long d1 = b - a;
114     long d2 = (d1 & (d1 >> 31)) << 1;
115    
116     return d1 - d2; // == (b - d) - (a + d);
117     }
118    
119     // Both a and b must not have the most significant bit set
120     static inline uint32_t
121     upos_min (uint32_t a, uint32_t b)
122     {
123     int32_t d = b - a;
124     d &= d >> 31;
125     return a + d;
126     }
127    
128     // Both a and b must not have the most significant bit set
129     static inline uint32_t
130     upos_max (uint32_t a, uint32_t b)
131     {
132     int32_t d = b - a;
133     d &= d >> 31;
134     return b - d;
135     }
136    
137 root 1.28 // this is much faster than crossfires original algorithm
138     // on modern cpus
139     inline int
140     isqrt (int n)
141     {
142     return (int)sqrtf ((float)n);
143     }
144    
145     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
146     #if 0
147     // and has a max. error of 6 in the range -100..+100.
148     #else
149     // and has a max. error of 9 in the range -100..+100.
150     #endif
151     inline int
152     idistance (int dx, int dy)
153     {
154     unsigned int dx_ = abs (dx);
155     unsigned int dy_ = abs (dy);
156    
157     #if 0
158     return dx_ > dy_
159     ? (dx_ * 61685 + dy_ * 26870) >> 16
160     : (dy_ * 61685 + dx_ * 26870) >> 16;
161     #else
162 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
163 root 1.28 #endif
164     }
165    
166 root 1.29 /*
167     * absdir(int): Returns a number between 1 and 8, which represent
168     * the "absolute" direction of a number (it actually takes care of
169     * "overflow" in previous calculations of a direction).
170     */
171     inline int
172     absdir (int d)
173     {
174     return ((d - 1) & 7) + 1;
175     }
176 root 1.28
177 root 1.57 extern size_t slice_alloc; // statistics
178    
179 root 1.1 // makes dynamically allocated objects zero-initialised
180     struct zero_initialised
181     {
182 root 1.11 void *operator new (size_t s, void *p)
183     {
184     memset (p, 0, s);
185     return p;
186     }
187    
188     void *operator new (size_t s)
189     {
190 root 1.57 slice_alloc += s;
191 root 1.11 return g_slice_alloc0 (s);
192     }
193    
194     void *operator new[] (size_t s)
195     {
196 root 1.57 slice_alloc += s;
197 root 1.11 return g_slice_alloc0 (s);
198     }
199    
200     void operator delete (void *p, size_t s)
201     {
202 root 1.57 slice_alloc -= s;
203 root 1.11 g_slice_free1 (s, p);
204     }
205    
206     void operator delete[] (void *p, size_t s)
207     {
208 root 1.57 slice_alloc -= s;
209 root 1.11 g_slice_free1 (s, p);
210     }
211     };
212    
213 root 1.20 void *salloc_ (int n) throw (std::bad_alloc);
214     void *salloc_ (int n, void *src) throw (std::bad_alloc);
215    
216 root 1.12 // strictly the same as g_slice_alloc, but never returns 0
217 root 1.20 template<typename T>
218     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
219    
220 root 1.17 // also copies src into the new area, like "memdup"
221 root 1.18 // if src is 0, clears the memory
222     template<typename T>
223 root 1.20 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
224 root 1.18
225 root 1.21 // clears the memory
226     template<typename T>
227     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
228    
229 root 1.12 // for symmetry
230 root 1.18 template<typename T>
231 root 1.20 inline void sfree (T *ptr, int n = 1) throw ()
232 root 1.12 {
233 root 1.36 #ifdef PREFER_MALLOC
234     free (ptr);
235     #else
236 root 1.57 slice_alloc -= n * sizeof (T);
237 root 1.20 g_slice_free1 (n * sizeof (T), (void *)ptr);
238 root 1.36 #endif
239 root 1.12 }
240 root 1.11
241     // a STL-compatible allocator that uses g_slice
242     // boy, this is verbose
243     template<typename Tp>
244     struct slice_allocator
245     {
246     typedef size_t size_type;
247     typedef ptrdiff_t difference_type;
248     typedef Tp *pointer;
249     typedef const Tp *const_pointer;
250     typedef Tp &reference;
251     typedef const Tp &const_reference;
252     typedef Tp value_type;
253    
254     template <class U>
255     struct rebind
256     {
257     typedef slice_allocator<U> other;
258     };
259    
260     slice_allocator () throw () { }
261     slice_allocator (const slice_allocator &o) throw () { }
262     template<typename Tp2>
263     slice_allocator (const slice_allocator<Tp2> &) throw () { }
264    
265     ~slice_allocator () { }
266    
267     pointer address (reference x) const { return &x; }
268     const_pointer address (const_reference x) const { return &x; }
269    
270     pointer allocate (size_type n, const_pointer = 0)
271     {
272 root 1.18 return salloc<Tp> (n);
273 root 1.11 }
274    
275     void deallocate (pointer p, size_type n)
276     {
277 root 1.19 sfree<Tp> (p, n);
278 root 1.11 }
279    
280     size_type max_size ()const throw ()
281     {
282     return size_t (-1) / sizeof (Tp);
283     }
284    
285     void construct (pointer p, const Tp &val)
286     {
287     ::new (p) Tp (val);
288     }
289    
290     void destroy (pointer p)
291     {
292     p->~Tp ();
293     }
294 root 1.1 };
295    
296 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
297     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
298     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
299     struct tausworthe_random_generator
300     {
301 root 1.34 // generator
302 root 1.32 uint32_t state [4];
303    
304 root 1.34 void operator =(const tausworthe_random_generator &src)
305     {
306     state [0] = src.state [0];
307     state [1] = src.state [1];
308     state [2] = src.state [2];
309     state [3] = src.state [3];
310     }
311    
312     void seed (uint32_t seed);
313 root 1.32 uint32_t next ();
314    
315 root 1.34 // uniform distribution
316 root 1.42 uint32_t operator ()(uint32_t num)
317 root 1.32 {
318 root 1.42 return is_constant (num)
319     ? (next () * (uint64_t)num) >> 32U
320     : get_range (num);
321 root 1.32 }
322    
323     // return a number within (min .. max)
324     int operator () (int r_min, int r_max)
325     {
326 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
327     ? r_min + operator ()(r_max - r_min + 1)
328 root 1.34 : get_range (r_min, r_max);
329 root 1.32 }
330    
331     double operator ()()
332     {
333 root 1.34 return this->next () / (double)0xFFFFFFFFU;
334 root 1.32 }
335 root 1.34
336     protected:
337     uint32_t get_range (uint32_t r_max);
338     int get_range (int r_min, int r_max);
339 root 1.32 };
340    
341     typedef tausworthe_random_generator rand_gen;
342    
343     extern rand_gen rndm;
344    
345 root 1.54 INTERFACE_CLASS (attachable)
346     struct refcnt_base
347     {
348     typedef int refcnt_t;
349     mutable refcnt_t ACC (RW, refcnt);
350    
351     MTH void refcnt_inc () const { ++refcnt; }
352     MTH void refcnt_dec () const { --refcnt; }
353    
354     refcnt_base () : refcnt (0) { }
355     };
356    
357 root 1.56 // to avoid branches with more advanced compilers
358 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
359    
360 root 1.7 template<class T>
361     struct refptr
362     {
363 root 1.54 // p if not null
364     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
365    
366     void refcnt_dec ()
367     {
368     if (!is_constant (p))
369     --*refcnt_ref ();
370     else if (p)
371     --p->refcnt;
372     }
373    
374     void refcnt_inc ()
375     {
376     if (!is_constant (p))
377     ++*refcnt_ref ();
378     else if (p)
379     ++p->refcnt;
380     }
381    
382 root 1.7 T *p;
383    
384     refptr () : p(0) { }
385 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
386     refptr (T *p) : p(p) { refcnt_inc (); }
387     ~refptr () { refcnt_dec (); }
388 root 1.7
389     const refptr<T> &operator =(T *o)
390     {
391 root 1.54 // if decrementing ever destroys we need to reverse the order here
392     refcnt_dec ();
393 root 1.7 p = o;
394 root 1.54 refcnt_inc ();
395 root 1.7 return *this;
396     }
397    
398 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
399 root 1.7 {
400     *this = o.p;
401     return *this;
402     }
403    
404     T &operator * () const { return *p; }
405 root 1.54 T *operator ->() const { return p; }
406 root 1.7
407     operator T *() const { return p; }
408     };
409    
410 root 1.24 typedef refptr<maptile> maptile_ptr;
411 root 1.22 typedef refptr<object> object_ptr;
412     typedef refptr<archetype> arch_ptr;
413 root 1.24 typedef refptr<client> client_ptr;
414     typedef refptr<player> player_ptr;
415 root 1.22
416 root 1.4 struct str_hash
417     {
418     std::size_t operator ()(const char *s) const
419     {
420     unsigned long hash = 0;
421    
422     /* use the one-at-a-time hash function, which supposedly is
423     * better than the djb2-like one used by perl5.005, but
424     * certainly is better then the bug used here before.
425     * see http://burtleburtle.net/bob/hash/doobs.html
426     */
427     while (*s)
428     {
429     hash += *s++;
430     hash += hash << 10;
431     hash ^= hash >> 6;
432     }
433    
434     hash += hash << 3;
435     hash ^= hash >> 11;
436     hash += hash << 15;
437    
438     return hash;
439     }
440     };
441    
442     struct str_equal
443     {
444     bool operator ()(const char *a, const char *b) const
445     {
446     return !strcmp (a, b);
447     }
448     };
449    
450 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
451 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
452 root 1.49 //
453 root 1.52 // NOTE: only some forms of erase are available
454 root 1.26 template<class T>
455     struct unordered_vector : std::vector<T, slice_allocator<T> >
456 root 1.6 {
457 root 1.11 typedef typename unordered_vector::iterator iterator;
458 root 1.6
459     void erase (unsigned int pos)
460     {
461     if (pos < this->size () - 1)
462     (*this)[pos] = (*this)[this->size () - 1];
463    
464     this->pop_back ();
465     }
466    
467     void erase (iterator i)
468     {
469     erase ((unsigned int )(i - this->begin ()));
470     }
471     };
472    
473 root 1.49 // This container blends advantages of linked lists
474     // (efficiency) with vectors (random access) by
475     // by using an unordered vector and storing the vector
476     // index inside the object.
477     //
478     // + memory-efficient on most 64 bit archs
479     // + O(1) insert/remove
480     // + free unique (but varying) id for inserted objects
481     // + cache-friendly iteration
482     // - only works for pointers to structs
483     //
484     // NOTE: only some forms of erase/insert are available
485 root 1.50 typedef int object_vector_index;
486    
487     template<class T, object_vector_index T::*indexmember>
488 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
489     {
490 root 1.48 typedef typename object_vector::iterator iterator;
491    
492     bool contains (const T *obj) const
493     {
494 root 1.50 return obj->*indexmember;
495 root 1.48 }
496    
497     iterator find (const T *obj)
498     {
499 root 1.50 return obj->*indexmember
500     ? this->begin () + obj->*indexmember - 1
501 root 1.48 : this->end ();
502     }
503    
504 root 1.53 void push_back (T *obj)
505     {
506     std::vector<T *, slice_allocator<T *> >::push_back (obj);
507     obj->*indexmember = this->size ();
508     }
509    
510 root 1.26 void insert (T *obj)
511     {
512     push_back (obj);
513     }
514    
515     void insert (T &obj)
516     {
517     insert (&obj);
518     }
519    
520     void erase (T *obj)
521     {
522 root 1.50 unsigned int pos = obj->*indexmember;
523     obj->*indexmember = 0;
524 root 1.26
525     if (pos < this->size ())
526     {
527     (*this)[pos - 1] = (*this)[this->size () - 1];
528 root 1.50 (*this)[pos - 1]->*indexmember = pos;
529 root 1.26 }
530    
531     this->pop_back ();
532     }
533    
534     void erase (T &obj)
535     {
536 root 1.50 erase (&obj);
537 root 1.26 }
538     };
539    
540 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
541     void assign (char *dst, const char *src, int maxlen);
542    
543     // type-safe version of assign
544 root 1.9 template<int N>
545     inline void assign (char (&dst)[N], const char *src)
546     {
547 root 1.10 assign ((char *)&dst, src, N);
548 root 1.9 }
549    
550 root 1.17 typedef double tstamp;
551    
552 root 1.59 // return current time as timestamp
553 root 1.17 tstamp now ();
554    
555 root 1.25 int similar_direction (int a, int b);
556    
557 root 1.55 // like sprintf, but returns a "static" buffer
558     const char *format (const char *format, ...);
559 root 1.43
560 root 1.1 #endif
561