ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.66
Committed: Wed Apr 2 11:13:55 2008 UTC (16 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_43
Changes since 1.65: +41 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.58 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.58 * Deliantra is free software: you can redistribute it and/or modify
7 root 1.51 * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation, either version 3 of the License, or
9     * (at your option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.51 * You should have received a copy of the GNU General Public License
17     * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 root 1.46 *
19 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
20 root 1.46 */
21    
22 root 1.1 #ifndef UTIL_H__
23     #define UTIL_H__
24    
25 root 1.65 #define DEBUG_SALLOC 0
26     #define PREFER_MALLOC 0
27 root 1.36
28 root 1.2 #if __GNUC__ >= 3
29 root 1.45 # define is_constant(c) __builtin_constant_p (c)
30     # define expect(expr,value) __builtin_expect ((expr),(value))
31     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32 root 1.2 #else
33 root 1.45 # define is_constant(c) 0
34     # define expect(expr,value) (expr)
35     # define prefetch(addr,rw,locality)
36 root 1.2 #endif
37    
38 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39     # define decltype(x) typeof(x)
40     #endif
41    
42 root 1.45 // put into ifs if you are very sure that the expression
43     // is mostly true or mosty false. note that these return
44     // booleans, not the expression.
45     #define expect_false(expr) expect ((expr) != 0, 0)
46     #define expect_true(expr) expect ((expr) != 0, 1)
47    
48 root 1.66 #include <pthread.h>
49    
50 root 1.11 #include <cstddef>
51 root 1.28 #include <cmath>
52 root 1.25 #include <new>
53     #include <vector>
54 root 1.11
55     #include <glib.h>
56    
57 root 1.25 #include <shstr.h>
58     #include <traits.h>
59    
60 root 1.65 #if DEBUG_SALLOC
61 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
62     # define g_slice_alloc(s) debug_slice_alloc(s)
63     # define g_slice_free1(s,p) debug_slice_free1(s,p)
64     void *g_slice_alloc (unsigned long size);
65     void *g_slice_alloc0 (unsigned long size);
66     void g_slice_free1 (unsigned long size, void *ptr);
67     #endif
68    
69 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
70 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
71 root 1.14
72 root 1.26 // very ugly macro that basicaly declares and initialises a variable
73     // that is in scope for the next statement only
74     // works only for stuff that can be assigned 0 and converts to false
75     // (note: works great for pointers)
76     // most ugly macro I ever wrote
77 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
78 root 1.26
79 root 1.27 // in range including end
80     #define IN_RANGE_INC(val,beg,end) \
81     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
82    
83     // in range excluding end
84     #define IN_RANGE_EXC(val,beg,end) \
85     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
86    
87 root 1.66 void cleanup (const char *cause, bool make_core = false);
88 root 1.31 void fork_abort (const char *msg);
89    
90 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
91     // as a is often a constant while b is the variable. it is still a bug, though.
92     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
93     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
94     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
95 root 1.32
96     template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
97    
98 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
99     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
100    
101 root 1.44 template<typename T>
102     static inline T
103     lerp (T val, T min_in, T max_in, T min_out, T max_out)
104     {
105     return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
106     }
107    
108 root 1.37 // lots of stuff taken from FXT
109    
110     /* Rotate right. This is used in various places for checksumming */
111 root 1.38 //TODO: that sucks, use a better checksum algo
112 root 1.37 static inline uint32_t
113 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
114 root 1.37 {
115 root 1.38 return (c << (32 - count)) | (c >> count);
116     }
117    
118     static inline uint32_t
119     rotate_left (uint32_t c, uint32_t count = 1)
120     {
121     return (c >> (32 - count)) | (c << count);
122 root 1.37 }
123    
124     // Return abs(a-b)
125     // Both a and b must not have the most significant bit set
126     static inline uint32_t
127     upos_abs_diff (uint32_t a, uint32_t b)
128     {
129     long d1 = b - a;
130     long d2 = (d1 & (d1 >> 31)) << 1;
131    
132     return d1 - d2; // == (b - d) - (a + d);
133     }
134    
135     // Both a and b must not have the most significant bit set
136     static inline uint32_t
137     upos_min (uint32_t a, uint32_t b)
138     {
139     int32_t d = b - a;
140     d &= d >> 31;
141     return a + d;
142     }
143    
144     // Both a and b must not have the most significant bit set
145     static inline uint32_t
146     upos_max (uint32_t a, uint32_t b)
147     {
148     int32_t d = b - a;
149     d &= d >> 31;
150     return b - d;
151     }
152    
153 root 1.28 // this is much faster than crossfires original algorithm
154     // on modern cpus
155     inline int
156     isqrt (int n)
157     {
158     return (int)sqrtf ((float)n);
159     }
160    
161     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
162     #if 0
163     // and has a max. error of 6 in the range -100..+100.
164     #else
165     // and has a max. error of 9 in the range -100..+100.
166     #endif
167     inline int
168     idistance (int dx, int dy)
169     {
170     unsigned int dx_ = abs (dx);
171     unsigned int dy_ = abs (dy);
172    
173     #if 0
174     return dx_ > dy_
175     ? (dx_ * 61685 + dy_ * 26870) >> 16
176     : (dy_ * 61685 + dx_ * 26870) >> 16;
177     #else
178 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
179 root 1.28 #endif
180     }
181    
182 root 1.29 /*
183     * absdir(int): Returns a number between 1 and 8, which represent
184     * the "absolute" direction of a number (it actually takes care of
185     * "overflow" in previous calculations of a direction).
186     */
187     inline int
188     absdir (int d)
189     {
190     return ((d - 1) & 7) + 1;
191     }
192 root 1.28
193 root 1.57 extern size_t slice_alloc; // statistics
194    
195 root 1.1 // makes dynamically allocated objects zero-initialised
196     struct zero_initialised
197     {
198 root 1.11 void *operator new (size_t s, void *p)
199     {
200     memset (p, 0, s);
201     return p;
202     }
203    
204     void *operator new (size_t s)
205     {
206 root 1.57 slice_alloc += s;
207 root 1.11 return g_slice_alloc0 (s);
208     }
209    
210     void *operator new[] (size_t s)
211     {
212 root 1.57 slice_alloc += s;
213 root 1.11 return g_slice_alloc0 (s);
214     }
215    
216     void operator delete (void *p, size_t s)
217     {
218 root 1.57 slice_alloc -= s;
219 root 1.11 g_slice_free1 (s, p);
220     }
221    
222     void operator delete[] (void *p, size_t s)
223     {
224 root 1.57 slice_alloc -= s;
225 root 1.11 g_slice_free1 (s, p);
226     }
227     };
228    
229 root 1.20 void *salloc_ (int n) throw (std::bad_alloc);
230     void *salloc_ (int n, void *src) throw (std::bad_alloc);
231    
232 root 1.12 // strictly the same as g_slice_alloc, but never returns 0
233 root 1.20 template<typename T>
234     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
235    
236 root 1.17 // also copies src into the new area, like "memdup"
237 root 1.18 // if src is 0, clears the memory
238     template<typename T>
239 root 1.20 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
240 root 1.18
241 root 1.21 // clears the memory
242     template<typename T>
243     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
244    
245 root 1.12 // for symmetry
246 root 1.18 template<typename T>
247 root 1.20 inline void sfree (T *ptr, int n = 1) throw ()
248 root 1.12 {
249 root 1.65 #if PREFER_MALLOC
250 root 1.36 free (ptr);
251     #else
252 root 1.57 slice_alloc -= n * sizeof (T);
253 root 1.20 g_slice_free1 (n * sizeof (T), (void *)ptr);
254 root 1.36 #endif
255 root 1.12 }
256 root 1.11
257     // a STL-compatible allocator that uses g_slice
258     // boy, this is verbose
259     template<typename Tp>
260     struct slice_allocator
261     {
262     typedef size_t size_type;
263     typedef ptrdiff_t difference_type;
264     typedef Tp *pointer;
265     typedef const Tp *const_pointer;
266     typedef Tp &reference;
267     typedef const Tp &const_reference;
268     typedef Tp value_type;
269    
270     template <class U>
271     struct rebind
272     {
273     typedef slice_allocator<U> other;
274     };
275    
276     slice_allocator () throw () { }
277 root 1.64 slice_allocator (const slice_allocator &) throw () { }
278 root 1.11 template<typename Tp2>
279     slice_allocator (const slice_allocator<Tp2> &) throw () { }
280    
281     ~slice_allocator () { }
282    
283     pointer address (reference x) const { return &x; }
284     const_pointer address (const_reference x) const { return &x; }
285    
286     pointer allocate (size_type n, const_pointer = 0)
287     {
288 root 1.18 return salloc<Tp> (n);
289 root 1.11 }
290    
291     void deallocate (pointer p, size_type n)
292     {
293 root 1.19 sfree<Tp> (p, n);
294 root 1.11 }
295    
296 root 1.64 size_type max_size () const throw ()
297 root 1.11 {
298     return size_t (-1) / sizeof (Tp);
299     }
300    
301     void construct (pointer p, const Tp &val)
302     {
303     ::new (p) Tp (val);
304     }
305    
306     void destroy (pointer p)
307     {
308     p->~Tp ();
309     }
310 root 1.1 };
311    
312 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
313     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
314     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
315     struct tausworthe_random_generator
316     {
317 root 1.34 // generator
318 root 1.32 uint32_t state [4];
319    
320 root 1.34 void operator =(const tausworthe_random_generator &src)
321     {
322     state [0] = src.state [0];
323     state [1] = src.state [1];
324     state [2] = src.state [2];
325     state [3] = src.state [3];
326     }
327    
328     void seed (uint32_t seed);
329 root 1.32 uint32_t next ();
330    
331 root 1.34 // uniform distribution
332 root 1.42 uint32_t operator ()(uint32_t num)
333 root 1.32 {
334 root 1.42 return is_constant (num)
335     ? (next () * (uint64_t)num) >> 32U
336     : get_range (num);
337 root 1.32 }
338    
339     // return a number within (min .. max)
340     int operator () (int r_min, int r_max)
341     {
342 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
343     ? r_min + operator ()(r_max - r_min + 1)
344 root 1.34 : get_range (r_min, r_max);
345 root 1.32 }
346    
347     double operator ()()
348     {
349 root 1.34 return this->next () / (double)0xFFFFFFFFU;
350 root 1.32 }
351 root 1.34
352     protected:
353     uint32_t get_range (uint32_t r_max);
354     int get_range (int r_min, int r_max);
355 root 1.32 };
356    
357     typedef tausworthe_random_generator rand_gen;
358    
359     extern rand_gen rndm;
360    
361 root 1.54 INTERFACE_CLASS (attachable)
362     struct refcnt_base
363     {
364     typedef int refcnt_t;
365     mutable refcnt_t ACC (RW, refcnt);
366    
367     MTH void refcnt_inc () const { ++refcnt; }
368     MTH void refcnt_dec () const { --refcnt; }
369    
370     refcnt_base () : refcnt (0) { }
371     };
372    
373 root 1.56 // to avoid branches with more advanced compilers
374 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
375    
376 root 1.7 template<class T>
377     struct refptr
378     {
379 root 1.54 // p if not null
380     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
381    
382     void refcnt_dec ()
383     {
384     if (!is_constant (p))
385     --*refcnt_ref ();
386     else if (p)
387     --p->refcnt;
388     }
389    
390     void refcnt_inc ()
391     {
392     if (!is_constant (p))
393     ++*refcnt_ref ();
394     else if (p)
395     ++p->refcnt;
396     }
397    
398 root 1.7 T *p;
399    
400     refptr () : p(0) { }
401 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
402     refptr (T *p) : p(p) { refcnt_inc (); }
403     ~refptr () { refcnt_dec (); }
404 root 1.7
405     const refptr<T> &operator =(T *o)
406     {
407 root 1.54 // if decrementing ever destroys we need to reverse the order here
408     refcnt_dec ();
409 root 1.7 p = o;
410 root 1.54 refcnt_inc ();
411 root 1.7 return *this;
412     }
413    
414 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
415 root 1.7 {
416     *this = o.p;
417     return *this;
418     }
419    
420     T &operator * () const { return *p; }
421 root 1.54 T *operator ->() const { return p; }
422 root 1.7
423     operator T *() const { return p; }
424     };
425    
426 root 1.24 typedef refptr<maptile> maptile_ptr;
427 root 1.22 typedef refptr<object> object_ptr;
428     typedef refptr<archetype> arch_ptr;
429 root 1.24 typedef refptr<client> client_ptr;
430     typedef refptr<player> player_ptr;
431 root 1.22
432 root 1.4 struct str_hash
433     {
434     std::size_t operator ()(const char *s) const
435     {
436     unsigned long hash = 0;
437    
438     /* use the one-at-a-time hash function, which supposedly is
439     * better than the djb2-like one used by perl5.005, but
440     * certainly is better then the bug used here before.
441     * see http://burtleburtle.net/bob/hash/doobs.html
442     */
443     while (*s)
444     {
445     hash += *s++;
446     hash += hash << 10;
447     hash ^= hash >> 6;
448     }
449    
450     hash += hash << 3;
451     hash ^= hash >> 11;
452     hash += hash << 15;
453    
454     return hash;
455     }
456     };
457    
458     struct str_equal
459     {
460     bool operator ()(const char *a, const char *b) const
461     {
462     return !strcmp (a, b);
463     }
464     };
465    
466 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
467 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
468 root 1.49 //
469 root 1.52 // NOTE: only some forms of erase are available
470 root 1.26 template<class T>
471     struct unordered_vector : std::vector<T, slice_allocator<T> >
472 root 1.6 {
473 root 1.11 typedef typename unordered_vector::iterator iterator;
474 root 1.6
475     void erase (unsigned int pos)
476     {
477     if (pos < this->size () - 1)
478     (*this)[pos] = (*this)[this->size () - 1];
479    
480     this->pop_back ();
481     }
482    
483     void erase (iterator i)
484     {
485     erase ((unsigned int )(i - this->begin ()));
486     }
487     };
488    
489 root 1.49 // This container blends advantages of linked lists
490     // (efficiency) with vectors (random access) by
491     // by using an unordered vector and storing the vector
492     // index inside the object.
493     //
494     // + memory-efficient on most 64 bit archs
495     // + O(1) insert/remove
496     // + free unique (but varying) id for inserted objects
497     // + cache-friendly iteration
498     // - only works for pointers to structs
499     //
500     // NOTE: only some forms of erase/insert are available
501 root 1.50 typedef int object_vector_index;
502    
503     template<class T, object_vector_index T::*indexmember>
504 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
505     {
506 root 1.48 typedef typename object_vector::iterator iterator;
507    
508     bool contains (const T *obj) const
509     {
510 root 1.50 return obj->*indexmember;
511 root 1.48 }
512    
513     iterator find (const T *obj)
514     {
515 root 1.50 return obj->*indexmember
516     ? this->begin () + obj->*indexmember - 1
517 root 1.48 : this->end ();
518     }
519    
520 root 1.53 void push_back (T *obj)
521     {
522     std::vector<T *, slice_allocator<T *> >::push_back (obj);
523     obj->*indexmember = this->size ();
524     }
525    
526 root 1.26 void insert (T *obj)
527     {
528     push_back (obj);
529     }
530    
531     void insert (T &obj)
532     {
533     insert (&obj);
534     }
535    
536     void erase (T *obj)
537     {
538 root 1.50 unsigned int pos = obj->*indexmember;
539     obj->*indexmember = 0;
540 root 1.26
541     if (pos < this->size ())
542     {
543     (*this)[pos - 1] = (*this)[this->size () - 1];
544 root 1.50 (*this)[pos - 1]->*indexmember = pos;
545 root 1.26 }
546    
547     this->pop_back ();
548     }
549    
550     void erase (T &obj)
551     {
552 root 1.50 erase (&obj);
553 root 1.26 }
554     };
555    
556 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
557     void assign (char *dst, const char *src, int maxlen);
558    
559     // type-safe version of assign
560 root 1.9 template<int N>
561     inline void assign (char (&dst)[N], const char *src)
562     {
563 root 1.10 assign ((char *)&dst, src, N);
564 root 1.9 }
565    
566 root 1.17 typedef double tstamp;
567    
568 root 1.59 // return current time as timestamp
569 root 1.17 tstamp now ();
570    
571 root 1.25 int similar_direction (int a, int b);
572    
573 root 1.55 // like sprintf, but returns a "static" buffer
574     const char *format (const char *format, ...);
575 root 1.43
576 root 1.66 /////////////////////////////////////////////////////////////////////////////
577     // threads, very very thin wrappers around pthreads
578    
579     struct thread
580     {
581     pthread_t id;
582    
583     void start (void *(*start_routine)(void *), void *arg = 0);
584    
585     void cancel ()
586     {
587     pthread_cancel (id);
588     }
589    
590     void *join ()
591     {
592     void *ret;
593    
594     if (pthread_join (id, &ret))
595     cleanup ("pthread_join failed", 1);
596    
597     return ret;
598     }
599     };
600    
601     // note that mutexes are not classes
602     typedef pthread_mutex_t smutex;
603    
604     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
605     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
606     #else
607     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
608     #endif
609    
610     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
611     #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
612     #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
613    
614 root 1.1 #endif
615