ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.71
Committed: Sun Apr 20 06:20:38 2008 UTC (16 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_52
Changes since 1.70: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.58 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.58 * Deliantra is free software: you can redistribute it and/or modify
7 root 1.51 * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation, either version 3 of the License, or
9     * (at your option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.51 * You should have received a copy of the GNU General Public License
17     * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 root 1.46 *
19 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
20 root 1.46 */
21    
22 root 1.1 #ifndef UTIL_H__
23     #define UTIL_H__
24    
25 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28 root 1.36
29 root 1.2 #if __GNUC__ >= 3
30 root 1.45 # define is_constant(c) __builtin_constant_p (c)
31     # define expect(expr,value) __builtin_expect ((expr),(value))
32     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 root 1.2 #else
34 root 1.45 # define is_constant(c) 0
35     # define expect(expr,value) (expr)
36     # define prefetch(addr,rw,locality)
37 root 1.2 #endif
38    
39 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40     # define decltype(x) typeof(x)
41     #endif
42    
43 root 1.45 // put into ifs if you are very sure that the expression
44     // is mostly true or mosty false. note that these return
45     // booleans, not the expression.
46     #define expect_false(expr) expect ((expr) != 0, 0)
47     #define expect_true(expr) expect ((expr) != 0, 1)
48    
49 root 1.66 #include <pthread.h>
50    
51 root 1.11 #include <cstddef>
52 root 1.28 #include <cmath>
53 root 1.25 #include <new>
54     #include <vector>
55 root 1.11
56     #include <glib.h>
57    
58 root 1.25 #include <shstr.h>
59     #include <traits.h>
60    
61 root 1.65 #if DEBUG_SALLOC
62 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63     # define g_slice_alloc(s) debug_slice_alloc(s)
64     # define g_slice_free1(s,p) debug_slice_free1(s,p)
65     void *g_slice_alloc (unsigned long size);
66     void *g_slice_alloc0 (unsigned long size);
67     void g_slice_free1 (unsigned long size, void *ptr);
68 root 1.67 #elif PREFER_MALLOC
69     # define g_slice_alloc0(s) calloc (1, (s))
70     # define g_slice_alloc(s) malloc ((s))
71 root 1.68 # define g_slice_free1(s,p) free ((p))
72 root 1.60 #endif
73    
74 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
76 root 1.14
77 root 1.26 // very ugly macro that basicaly declares and initialises a variable
78     // that is in scope for the next statement only
79     // works only for stuff that can be assigned 0 and converts to false
80     // (note: works great for pointers)
81     // most ugly macro I ever wrote
82 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83 root 1.26
84 root 1.27 // in range including end
85     #define IN_RANGE_INC(val,beg,end) \
86     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87    
88     // in range excluding end
89     #define IN_RANGE_EXC(val,beg,end) \
90     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91    
92 root 1.66 void cleanup (const char *cause, bool make_core = false);
93 root 1.31 void fork_abort (const char *msg);
94    
95 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96     // as a is often a constant while b is the variable. it is still a bug, though.
97     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100 root 1.32
101     template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
102    
103 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
104     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
105    
106 root 1.44 template<typename T>
107     static inline T
108     lerp (T val, T min_in, T max_in, T min_out, T max_out)
109     {
110     return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
111     }
112    
113 root 1.37 // lots of stuff taken from FXT
114    
115     /* Rotate right. This is used in various places for checksumming */
116 root 1.38 //TODO: that sucks, use a better checksum algo
117 root 1.37 static inline uint32_t
118 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
119 root 1.37 {
120 root 1.38 return (c << (32 - count)) | (c >> count);
121     }
122    
123     static inline uint32_t
124     rotate_left (uint32_t c, uint32_t count = 1)
125     {
126     return (c >> (32 - count)) | (c << count);
127 root 1.37 }
128    
129     // Return abs(a-b)
130     // Both a and b must not have the most significant bit set
131     static inline uint32_t
132     upos_abs_diff (uint32_t a, uint32_t b)
133     {
134     long d1 = b - a;
135     long d2 = (d1 & (d1 >> 31)) << 1;
136    
137     return d1 - d2; // == (b - d) - (a + d);
138     }
139    
140     // Both a and b must not have the most significant bit set
141     static inline uint32_t
142     upos_min (uint32_t a, uint32_t b)
143     {
144     int32_t d = b - a;
145     d &= d >> 31;
146     return a + d;
147     }
148    
149     // Both a and b must not have the most significant bit set
150     static inline uint32_t
151     upos_max (uint32_t a, uint32_t b)
152     {
153     int32_t d = b - a;
154     d &= d >> 31;
155     return b - d;
156     }
157    
158 root 1.28 // this is much faster than crossfires original algorithm
159     // on modern cpus
160     inline int
161     isqrt (int n)
162     {
163     return (int)sqrtf ((float)n);
164     }
165    
166     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
167     #if 0
168     // and has a max. error of 6 in the range -100..+100.
169     #else
170     // and has a max. error of 9 in the range -100..+100.
171     #endif
172     inline int
173     idistance (int dx, int dy)
174     {
175     unsigned int dx_ = abs (dx);
176     unsigned int dy_ = abs (dy);
177    
178     #if 0
179     return dx_ > dy_
180     ? (dx_ * 61685 + dy_ * 26870) >> 16
181     : (dy_ * 61685 + dx_ * 26870) >> 16;
182     #else
183 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
184 root 1.28 #endif
185     }
186    
187 root 1.29 /*
188     * absdir(int): Returns a number between 1 and 8, which represent
189     * the "absolute" direction of a number (it actually takes care of
190     * "overflow" in previous calculations of a direction).
191     */
192     inline int
193     absdir (int d)
194     {
195     return ((d - 1) & 7) + 1;
196     }
197 root 1.28
198 root 1.67 extern ssize_t slice_alloc; // statistics
199    
200     void *salloc_ (int n) throw (std::bad_alloc);
201     void *salloc_ (int n, void *src) throw (std::bad_alloc);
202    
203     // strictly the same as g_slice_alloc, but never returns 0
204     template<typename T>
205     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
206    
207     // also copies src into the new area, like "memdup"
208     // if src is 0, clears the memory
209     template<typename T>
210     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
211    
212     // clears the memory
213     template<typename T>
214     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
215    
216     // for symmetry
217     template<typename T>
218     inline void sfree (T *ptr, int n = 1) throw ()
219     {
220     if (expect_true (ptr))
221     {
222     slice_alloc -= n * sizeof (T);
223 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
224 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
225     assert (slice_alloc >= 0);//D
226     }
227     }
228 root 1.57
229 root 1.1 // makes dynamically allocated objects zero-initialised
230     struct zero_initialised
231     {
232 root 1.11 void *operator new (size_t s, void *p)
233     {
234     memset (p, 0, s);
235     return p;
236     }
237    
238     void *operator new (size_t s)
239     {
240 root 1.67 return salloc0<char> (s);
241 root 1.11 }
242    
243     void *operator new[] (size_t s)
244     {
245 root 1.67 return salloc0<char> (s);
246 root 1.11 }
247    
248     void operator delete (void *p, size_t s)
249     {
250 root 1.67 sfree ((char *)p, s);
251 root 1.11 }
252    
253     void operator delete[] (void *p, size_t s)
254     {
255 root 1.67 sfree ((char *)p, s);
256 root 1.11 }
257     };
258    
259     // a STL-compatible allocator that uses g_slice
260     // boy, this is verbose
261     template<typename Tp>
262     struct slice_allocator
263     {
264     typedef size_t size_type;
265     typedef ptrdiff_t difference_type;
266     typedef Tp *pointer;
267     typedef const Tp *const_pointer;
268     typedef Tp &reference;
269     typedef const Tp &const_reference;
270     typedef Tp value_type;
271    
272     template <class U>
273     struct rebind
274     {
275     typedef slice_allocator<U> other;
276     };
277    
278     slice_allocator () throw () { }
279 root 1.64 slice_allocator (const slice_allocator &) throw () { }
280 root 1.11 template<typename Tp2>
281     slice_allocator (const slice_allocator<Tp2> &) throw () { }
282    
283     ~slice_allocator () { }
284    
285     pointer address (reference x) const { return &x; }
286     const_pointer address (const_reference x) const { return &x; }
287    
288     pointer allocate (size_type n, const_pointer = 0)
289     {
290 root 1.18 return salloc<Tp> (n);
291 root 1.11 }
292    
293     void deallocate (pointer p, size_type n)
294     {
295 root 1.19 sfree<Tp> (p, n);
296 root 1.11 }
297    
298 root 1.64 size_type max_size () const throw ()
299 root 1.11 {
300     return size_t (-1) / sizeof (Tp);
301     }
302    
303     void construct (pointer p, const Tp &val)
304     {
305     ::new (p) Tp (val);
306     }
307    
308     void destroy (pointer p)
309     {
310     p->~Tp ();
311     }
312 root 1.1 };
313    
314 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
315     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
316     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
317     struct tausworthe_random_generator
318     {
319 root 1.34 // generator
320 root 1.32 uint32_t state [4];
321    
322 root 1.34 void operator =(const tausworthe_random_generator &src)
323     {
324     state [0] = src.state [0];
325     state [1] = src.state [1];
326     state [2] = src.state [2];
327     state [3] = src.state [3];
328     }
329    
330     void seed (uint32_t seed);
331 root 1.32 uint32_t next ();
332    
333 root 1.34 // uniform distribution
334 root 1.42 uint32_t operator ()(uint32_t num)
335 root 1.32 {
336 root 1.42 return is_constant (num)
337     ? (next () * (uint64_t)num) >> 32U
338     : get_range (num);
339 root 1.32 }
340    
341     // return a number within (min .. max)
342     int operator () (int r_min, int r_max)
343     {
344 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
345     ? r_min + operator ()(r_max - r_min + 1)
346 root 1.34 : get_range (r_min, r_max);
347 root 1.32 }
348    
349     double operator ()()
350     {
351 root 1.34 return this->next () / (double)0xFFFFFFFFU;
352 root 1.32 }
353 root 1.34
354     protected:
355     uint32_t get_range (uint32_t r_max);
356     int get_range (int r_min, int r_max);
357 root 1.32 };
358    
359     typedef tausworthe_random_generator rand_gen;
360    
361     extern rand_gen rndm;
362    
363 root 1.54 INTERFACE_CLASS (attachable)
364     struct refcnt_base
365     {
366     typedef int refcnt_t;
367     mutable refcnt_t ACC (RW, refcnt);
368    
369     MTH void refcnt_inc () const { ++refcnt; }
370     MTH void refcnt_dec () const { --refcnt; }
371    
372     refcnt_base () : refcnt (0) { }
373     };
374    
375 root 1.56 // to avoid branches with more advanced compilers
376 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
377    
378 root 1.7 template<class T>
379     struct refptr
380     {
381 root 1.54 // p if not null
382     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
383    
384     void refcnt_dec ()
385     {
386     if (!is_constant (p))
387     --*refcnt_ref ();
388     else if (p)
389     --p->refcnt;
390     }
391    
392     void refcnt_inc ()
393     {
394     if (!is_constant (p))
395     ++*refcnt_ref ();
396     else if (p)
397     ++p->refcnt;
398     }
399    
400 root 1.7 T *p;
401    
402     refptr () : p(0) { }
403 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
404     refptr (T *p) : p(p) { refcnt_inc (); }
405     ~refptr () { refcnt_dec (); }
406 root 1.7
407     const refptr<T> &operator =(T *o)
408     {
409 root 1.54 // if decrementing ever destroys we need to reverse the order here
410     refcnt_dec ();
411 root 1.7 p = o;
412 root 1.54 refcnt_inc ();
413 root 1.7 return *this;
414     }
415    
416 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
417 root 1.7 {
418     *this = o.p;
419     return *this;
420     }
421    
422     T &operator * () const { return *p; }
423 root 1.54 T *operator ->() const { return p; }
424 root 1.7
425     operator T *() const { return p; }
426     };
427    
428 root 1.24 typedef refptr<maptile> maptile_ptr;
429 root 1.22 typedef refptr<object> object_ptr;
430     typedef refptr<archetype> arch_ptr;
431 root 1.24 typedef refptr<client> client_ptr;
432     typedef refptr<player> player_ptr;
433 root 1.22
434 root 1.4 struct str_hash
435     {
436     std::size_t operator ()(const char *s) const
437     {
438     unsigned long hash = 0;
439    
440     /* use the one-at-a-time hash function, which supposedly is
441     * better than the djb2-like one used by perl5.005, but
442     * certainly is better then the bug used here before.
443     * see http://burtleburtle.net/bob/hash/doobs.html
444     */
445     while (*s)
446     {
447     hash += *s++;
448     hash += hash << 10;
449     hash ^= hash >> 6;
450     }
451    
452     hash += hash << 3;
453     hash ^= hash >> 11;
454     hash += hash << 15;
455    
456     return hash;
457     }
458     };
459    
460     struct str_equal
461     {
462     bool operator ()(const char *a, const char *b) const
463     {
464     return !strcmp (a, b);
465     }
466     };
467    
468 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
469 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
470 root 1.49 //
471 root 1.52 // NOTE: only some forms of erase are available
472 root 1.26 template<class T>
473     struct unordered_vector : std::vector<T, slice_allocator<T> >
474 root 1.6 {
475 root 1.11 typedef typename unordered_vector::iterator iterator;
476 root 1.6
477     void erase (unsigned int pos)
478     {
479     if (pos < this->size () - 1)
480     (*this)[pos] = (*this)[this->size () - 1];
481    
482     this->pop_back ();
483     }
484    
485     void erase (iterator i)
486     {
487     erase ((unsigned int )(i - this->begin ()));
488     }
489     };
490    
491 root 1.49 // This container blends advantages of linked lists
492     // (efficiency) with vectors (random access) by
493     // by using an unordered vector and storing the vector
494     // index inside the object.
495     //
496     // + memory-efficient on most 64 bit archs
497     // + O(1) insert/remove
498     // + free unique (but varying) id for inserted objects
499     // + cache-friendly iteration
500     // - only works for pointers to structs
501     //
502     // NOTE: only some forms of erase/insert are available
503 root 1.50 typedef int object_vector_index;
504    
505     template<class T, object_vector_index T::*indexmember>
506 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
507     {
508 root 1.48 typedef typename object_vector::iterator iterator;
509    
510     bool contains (const T *obj) const
511     {
512 root 1.50 return obj->*indexmember;
513 root 1.48 }
514    
515     iterator find (const T *obj)
516     {
517 root 1.50 return obj->*indexmember
518     ? this->begin () + obj->*indexmember - 1
519 root 1.48 : this->end ();
520     }
521    
522 root 1.53 void push_back (T *obj)
523     {
524     std::vector<T *, slice_allocator<T *> >::push_back (obj);
525     obj->*indexmember = this->size ();
526     }
527    
528 root 1.26 void insert (T *obj)
529     {
530     push_back (obj);
531     }
532    
533     void insert (T &obj)
534     {
535     insert (&obj);
536     }
537    
538     void erase (T *obj)
539     {
540 root 1.50 unsigned int pos = obj->*indexmember;
541     obj->*indexmember = 0;
542 root 1.26
543     if (pos < this->size ())
544     {
545     (*this)[pos - 1] = (*this)[this->size () - 1];
546 root 1.50 (*this)[pos - 1]->*indexmember = pos;
547 root 1.26 }
548    
549     this->pop_back ();
550     }
551    
552     void erase (T &obj)
553     {
554 root 1.50 erase (&obj);
555 root 1.26 }
556     };
557    
558 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
559     void assign (char *dst, const char *src, int maxlen);
560    
561     // type-safe version of assign
562 root 1.9 template<int N>
563     inline void assign (char (&dst)[N], const char *src)
564     {
565 root 1.10 assign ((char *)&dst, src, N);
566 root 1.9 }
567    
568 root 1.17 typedef double tstamp;
569    
570 root 1.59 // return current time as timestamp
571 root 1.17 tstamp now ();
572    
573 root 1.25 int similar_direction (int a, int b);
574    
575 root 1.55 // like sprintf, but returns a "static" buffer
576     const char *format (const char *format, ...);
577 root 1.43
578 root 1.66 /////////////////////////////////////////////////////////////////////////////
579     // threads, very very thin wrappers around pthreads
580    
581     struct thread
582     {
583     pthread_t id;
584    
585     void start (void *(*start_routine)(void *), void *arg = 0);
586    
587     void cancel ()
588     {
589     pthread_cancel (id);
590     }
591    
592     void *join ()
593     {
594     void *ret;
595    
596     if (pthread_join (id, &ret))
597     cleanup ("pthread_join failed", 1);
598    
599     return ret;
600     }
601     };
602    
603     // note that mutexes are not classes
604     typedef pthread_mutex_t smutex;
605    
606     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
607     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
608     #else
609     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
610     #endif
611    
612     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
613 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
614 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
615    
616 root 1.68 typedef pthread_cond_t scond;
617    
618     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
619     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
620     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
621     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
622    
623 root 1.1 #endif
624