ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.75
Committed: Tue May 6 16:55:26 2008 UTC (16 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.74: +1 -1 lines
Log Message:
update copyright

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.75 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.58 * Deliantra is free software: you can redistribute it and/or modify
7 root 1.51 * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation, either version 3 of the License, or
9     * (at your option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.51 * You should have received a copy of the GNU General Public License
17     * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 root 1.46 *
19 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
20 root 1.46 */
21    
22 root 1.1 #ifndef UTIL_H__
23     #define UTIL_H__
24    
25 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28 root 1.36
29 root 1.2 #if __GNUC__ >= 3
30 root 1.45 # define is_constant(c) __builtin_constant_p (c)
31     # define expect(expr,value) __builtin_expect ((expr),(value))
32     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 root 1.2 #else
34 root 1.45 # define is_constant(c) 0
35     # define expect(expr,value) (expr)
36     # define prefetch(addr,rw,locality)
37 root 1.2 #endif
38    
39 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40     # define decltype(x) typeof(x)
41     #endif
42    
43 root 1.45 // put into ifs if you are very sure that the expression
44     // is mostly true or mosty false. note that these return
45     // booleans, not the expression.
46     #define expect_false(expr) expect ((expr) != 0, 0)
47     #define expect_true(expr) expect ((expr) != 0, 1)
48    
49 root 1.66 #include <pthread.h>
50    
51 root 1.11 #include <cstddef>
52 root 1.28 #include <cmath>
53 root 1.25 #include <new>
54     #include <vector>
55 root 1.11
56     #include <glib.h>
57    
58 root 1.25 #include <shstr.h>
59     #include <traits.h>
60    
61 root 1.65 #if DEBUG_SALLOC
62 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63     # define g_slice_alloc(s) debug_slice_alloc(s)
64     # define g_slice_free1(s,p) debug_slice_free1(s,p)
65     void *g_slice_alloc (unsigned long size);
66     void *g_slice_alloc0 (unsigned long size);
67     void g_slice_free1 (unsigned long size, void *ptr);
68 root 1.67 #elif PREFER_MALLOC
69     # define g_slice_alloc0(s) calloc (1, (s))
70     # define g_slice_alloc(s) malloc ((s))
71 root 1.68 # define g_slice_free1(s,p) free ((p))
72 root 1.60 #endif
73    
74 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
76 root 1.14
77 root 1.26 // very ugly macro that basicaly declares and initialises a variable
78     // that is in scope for the next statement only
79     // works only for stuff that can be assigned 0 and converts to false
80     // (note: works great for pointers)
81     // most ugly macro I ever wrote
82 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83 root 1.26
84 root 1.27 // in range including end
85     #define IN_RANGE_INC(val,beg,end) \
86     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87    
88     // in range excluding end
89     #define IN_RANGE_EXC(val,beg,end) \
90     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91    
92 root 1.66 void cleanup (const char *cause, bool make_core = false);
93 root 1.31 void fork_abort (const char *msg);
94    
95 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96     // as a is often a constant while b is the variable. it is still a bug, though.
97     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100 root 1.32
101     template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
102    
103 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
104     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
105    
106 root 1.44 template<typename T>
107     static inline T
108     lerp (T val, T min_in, T max_in, T min_out, T max_out)
109     {
110     return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
111     }
112    
113 root 1.37 // lots of stuff taken from FXT
114    
115     /* Rotate right. This is used in various places for checksumming */
116 root 1.38 //TODO: that sucks, use a better checksum algo
117 root 1.37 static inline uint32_t
118 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
119 root 1.37 {
120 root 1.38 return (c << (32 - count)) | (c >> count);
121     }
122    
123     static inline uint32_t
124     rotate_left (uint32_t c, uint32_t count = 1)
125     {
126     return (c >> (32 - count)) | (c << count);
127 root 1.37 }
128    
129     // Return abs(a-b)
130     // Both a and b must not have the most significant bit set
131     static inline uint32_t
132     upos_abs_diff (uint32_t a, uint32_t b)
133     {
134     long d1 = b - a;
135     long d2 = (d1 & (d1 >> 31)) << 1;
136    
137     return d1 - d2; // == (b - d) - (a + d);
138     }
139    
140     // Both a and b must not have the most significant bit set
141     static inline uint32_t
142     upos_min (uint32_t a, uint32_t b)
143     {
144     int32_t d = b - a;
145     d &= d >> 31;
146     return a + d;
147     }
148    
149     // Both a and b must not have the most significant bit set
150     static inline uint32_t
151     upos_max (uint32_t a, uint32_t b)
152     {
153     int32_t d = b - a;
154     d &= d >> 31;
155     return b - d;
156     }
157    
158 root 1.28 // this is much faster than crossfires original algorithm
159     // on modern cpus
160     inline int
161     isqrt (int n)
162     {
163     return (int)sqrtf ((float)n);
164     }
165    
166     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
167     #if 0
168     // and has a max. error of 6 in the range -100..+100.
169     #else
170     // and has a max. error of 9 in the range -100..+100.
171     #endif
172     inline int
173     idistance (int dx, int dy)
174     {
175     unsigned int dx_ = abs (dx);
176     unsigned int dy_ = abs (dy);
177    
178     #if 0
179     return dx_ > dy_
180     ? (dx_ * 61685 + dy_ * 26870) >> 16
181     : (dy_ * 61685 + dx_ * 26870) >> 16;
182     #else
183 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
184 root 1.28 #endif
185     }
186    
187 root 1.29 /*
188     * absdir(int): Returns a number between 1 and 8, which represent
189     * the "absolute" direction of a number (it actually takes care of
190     * "overflow" in previous calculations of a direction).
191     */
192     inline int
193     absdir (int d)
194     {
195     return ((d - 1) & 7) + 1;
196     }
197 root 1.28
198 root 1.67 extern ssize_t slice_alloc; // statistics
199    
200     void *salloc_ (int n) throw (std::bad_alloc);
201     void *salloc_ (int n, void *src) throw (std::bad_alloc);
202    
203     // strictly the same as g_slice_alloc, but never returns 0
204     template<typename T>
205     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
206    
207     // also copies src into the new area, like "memdup"
208     // if src is 0, clears the memory
209     template<typename T>
210     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
211    
212     // clears the memory
213     template<typename T>
214     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
215    
216     // for symmetry
217     template<typename T>
218     inline void sfree (T *ptr, int n = 1) throw ()
219     {
220     if (expect_true (ptr))
221     {
222     slice_alloc -= n * sizeof (T);
223 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
224 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
225     assert (slice_alloc >= 0);//D
226     }
227     }
228 root 1.57
229 root 1.72 // nulls the pointer
230     template<typename T>
231     inline void sfree0 (T *&ptr, int n = 1) throw ()
232     {
233     sfree<T> (ptr, n);
234     ptr = 0;
235     }
236    
237 root 1.1 // makes dynamically allocated objects zero-initialised
238     struct zero_initialised
239     {
240 root 1.11 void *operator new (size_t s, void *p)
241     {
242     memset (p, 0, s);
243     return p;
244     }
245    
246     void *operator new (size_t s)
247     {
248 root 1.67 return salloc0<char> (s);
249 root 1.11 }
250    
251     void *operator new[] (size_t s)
252     {
253 root 1.67 return salloc0<char> (s);
254 root 1.11 }
255    
256     void operator delete (void *p, size_t s)
257     {
258 root 1.67 sfree ((char *)p, s);
259 root 1.11 }
260    
261     void operator delete[] (void *p, size_t s)
262     {
263 root 1.67 sfree ((char *)p, s);
264 root 1.11 }
265     };
266    
267 root 1.73 // makes dynamically allocated objects zero-initialised
268     struct slice_allocated
269     {
270     void *operator new (size_t s, void *p)
271     {
272     return p;
273     }
274    
275     void *operator new (size_t s)
276     {
277     return salloc<char> (s);
278     }
279    
280     void *operator new[] (size_t s)
281     {
282     return salloc<char> (s);
283     }
284    
285     void operator delete (void *p, size_t s)
286     {
287     sfree ((char *)p, s);
288     }
289    
290     void operator delete[] (void *p, size_t s)
291     {
292     sfree ((char *)p, s);
293     }
294     };
295    
296 root 1.11 // a STL-compatible allocator that uses g_slice
297     // boy, this is verbose
298     template<typename Tp>
299     struct slice_allocator
300     {
301     typedef size_t size_type;
302     typedef ptrdiff_t difference_type;
303     typedef Tp *pointer;
304     typedef const Tp *const_pointer;
305     typedef Tp &reference;
306     typedef const Tp &const_reference;
307     typedef Tp value_type;
308    
309     template <class U>
310     struct rebind
311     {
312     typedef slice_allocator<U> other;
313     };
314    
315     slice_allocator () throw () { }
316 root 1.64 slice_allocator (const slice_allocator &) throw () { }
317 root 1.11 template<typename Tp2>
318     slice_allocator (const slice_allocator<Tp2> &) throw () { }
319    
320     ~slice_allocator () { }
321    
322     pointer address (reference x) const { return &x; }
323     const_pointer address (const_reference x) const { return &x; }
324    
325     pointer allocate (size_type n, const_pointer = 0)
326     {
327 root 1.18 return salloc<Tp> (n);
328 root 1.11 }
329    
330     void deallocate (pointer p, size_type n)
331     {
332 root 1.19 sfree<Tp> (p, n);
333 root 1.11 }
334    
335 root 1.64 size_type max_size () const throw ()
336 root 1.11 {
337     return size_t (-1) / sizeof (Tp);
338     }
339    
340     void construct (pointer p, const Tp &val)
341     {
342     ::new (p) Tp (val);
343     }
344    
345     void destroy (pointer p)
346     {
347     p->~Tp ();
348     }
349 root 1.1 };
350    
351 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
352     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
353     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
354     struct tausworthe_random_generator
355     {
356 root 1.34 // generator
357 root 1.32 uint32_t state [4];
358    
359 root 1.34 void operator =(const tausworthe_random_generator &src)
360     {
361     state [0] = src.state [0];
362     state [1] = src.state [1];
363     state [2] = src.state [2];
364     state [3] = src.state [3];
365     }
366    
367     void seed (uint32_t seed);
368 root 1.32 uint32_t next ();
369    
370 root 1.34 // uniform distribution
371 root 1.42 uint32_t operator ()(uint32_t num)
372 root 1.32 {
373 root 1.42 return is_constant (num)
374     ? (next () * (uint64_t)num) >> 32U
375     : get_range (num);
376 root 1.32 }
377    
378     // return a number within (min .. max)
379     int operator () (int r_min, int r_max)
380     {
381 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
382     ? r_min + operator ()(r_max - r_min + 1)
383 root 1.34 : get_range (r_min, r_max);
384 root 1.32 }
385    
386     double operator ()()
387     {
388 root 1.34 return this->next () / (double)0xFFFFFFFFU;
389 root 1.32 }
390 root 1.34
391     protected:
392     uint32_t get_range (uint32_t r_max);
393     int get_range (int r_min, int r_max);
394 root 1.32 };
395    
396     typedef tausworthe_random_generator rand_gen;
397    
398 root 1.74 extern rand_gen rndm, rmg_rndm;
399 root 1.32
400 root 1.54 INTERFACE_CLASS (attachable)
401     struct refcnt_base
402     {
403     typedef int refcnt_t;
404     mutable refcnt_t ACC (RW, refcnt);
405    
406     MTH void refcnt_inc () const { ++refcnt; }
407     MTH void refcnt_dec () const { --refcnt; }
408    
409     refcnt_base () : refcnt (0) { }
410     };
411    
412 root 1.56 // to avoid branches with more advanced compilers
413 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
414    
415 root 1.7 template<class T>
416     struct refptr
417     {
418 root 1.54 // p if not null
419     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
420    
421     void refcnt_dec ()
422     {
423     if (!is_constant (p))
424     --*refcnt_ref ();
425     else if (p)
426     --p->refcnt;
427     }
428    
429     void refcnt_inc ()
430     {
431     if (!is_constant (p))
432     ++*refcnt_ref ();
433     else if (p)
434     ++p->refcnt;
435     }
436    
437 root 1.7 T *p;
438    
439     refptr () : p(0) { }
440 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
441     refptr (T *p) : p(p) { refcnt_inc (); }
442     ~refptr () { refcnt_dec (); }
443 root 1.7
444     const refptr<T> &operator =(T *o)
445     {
446 root 1.54 // if decrementing ever destroys we need to reverse the order here
447     refcnt_dec ();
448 root 1.7 p = o;
449 root 1.54 refcnt_inc ();
450 root 1.7 return *this;
451     }
452    
453 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
454 root 1.7 {
455     *this = o.p;
456     return *this;
457     }
458    
459     T &operator * () const { return *p; }
460 root 1.54 T *operator ->() const { return p; }
461 root 1.7
462     operator T *() const { return p; }
463     };
464    
465 root 1.24 typedef refptr<maptile> maptile_ptr;
466 root 1.22 typedef refptr<object> object_ptr;
467     typedef refptr<archetype> arch_ptr;
468 root 1.24 typedef refptr<client> client_ptr;
469     typedef refptr<player> player_ptr;
470 root 1.22
471 root 1.4 struct str_hash
472     {
473     std::size_t operator ()(const char *s) const
474     {
475     unsigned long hash = 0;
476    
477     /* use the one-at-a-time hash function, which supposedly is
478     * better than the djb2-like one used by perl5.005, but
479     * certainly is better then the bug used here before.
480     * see http://burtleburtle.net/bob/hash/doobs.html
481     */
482     while (*s)
483     {
484     hash += *s++;
485     hash += hash << 10;
486     hash ^= hash >> 6;
487     }
488    
489     hash += hash << 3;
490     hash ^= hash >> 11;
491     hash += hash << 15;
492    
493     return hash;
494     }
495     };
496    
497     struct str_equal
498     {
499     bool operator ()(const char *a, const char *b) const
500     {
501     return !strcmp (a, b);
502     }
503     };
504    
505 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
506 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
507 root 1.49 //
508 root 1.52 // NOTE: only some forms of erase are available
509 root 1.26 template<class T>
510     struct unordered_vector : std::vector<T, slice_allocator<T> >
511 root 1.6 {
512 root 1.11 typedef typename unordered_vector::iterator iterator;
513 root 1.6
514     void erase (unsigned int pos)
515     {
516     if (pos < this->size () - 1)
517     (*this)[pos] = (*this)[this->size () - 1];
518    
519     this->pop_back ();
520     }
521    
522     void erase (iterator i)
523     {
524     erase ((unsigned int )(i - this->begin ()));
525     }
526     };
527    
528 root 1.49 // This container blends advantages of linked lists
529     // (efficiency) with vectors (random access) by
530     // by using an unordered vector and storing the vector
531     // index inside the object.
532     //
533     // + memory-efficient on most 64 bit archs
534     // + O(1) insert/remove
535     // + free unique (but varying) id for inserted objects
536     // + cache-friendly iteration
537     // - only works for pointers to structs
538     //
539     // NOTE: only some forms of erase/insert are available
540 root 1.50 typedef int object_vector_index;
541    
542     template<class T, object_vector_index T::*indexmember>
543 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
544     {
545 root 1.48 typedef typename object_vector::iterator iterator;
546    
547     bool contains (const T *obj) const
548     {
549 root 1.50 return obj->*indexmember;
550 root 1.48 }
551    
552     iterator find (const T *obj)
553     {
554 root 1.50 return obj->*indexmember
555     ? this->begin () + obj->*indexmember - 1
556 root 1.48 : this->end ();
557     }
558    
559 root 1.53 void push_back (T *obj)
560     {
561     std::vector<T *, slice_allocator<T *> >::push_back (obj);
562     obj->*indexmember = this->size ();
563     }
564    
565 root 1.26 void insert (T *obj)
566     {
567     push_back (obj);
568     }
569    
570     void insert (T &obj)
571     {
572     insert (&obj);
573     }
574    
575     void erase (T *obj)
576     {
577 root 1.50 unsigned int pos = obj->*indexmember;
578     obj->*indexmember = 0;
579 root 1.26
580     if (pos < this->size ())
581     {
582     (*this)[pos - 1] = (*this)[this->size () - 1];
583 root 1.50 (*this)[pos - 1]->*indexmember = pos;
584 root 1.26 }
585    
586     this->pop_back ();
587     }
588    
589     void erase (T &obj)
590     {
591 root 1.50 erase (&obj);
592 root 1.26 }
593     };
594    
595 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
596     void assign (char *dst, const char *src, int maxlen);
597    
598     // type-safe version of assign
599 root 1.9 template<int N>
600     inline void assign (char (&dst)[N], const char *src)
601     {
602 root 1.10 assign ((char *)&dst, src, N);
603 root 1.9 }
604    
605 root 1.17 typedef double tstamp;
606    
607 root 1.59 // return current time as timestamp
608 root 1.17 tstamp now ();
609    
610 root 1.25 int similar_direction (int a, int b);
611    
612 root 1.55 // like sprintf, but returns a "static" buffer
613     const char *format (const char *format, ...);
614 root 1.43
615 root 1.66 /////////////////////////////////////////////////////////////////////////////
616     // threads, very very thin wrappers around pthreads
617    
618     struct thread
619     {
620     pthread_t id;
621    
622     void start (void *(*start_routine)(void *), void *arg = 0);
623    
624     void cancel ()
625     {
626     pthread_cancel (id);
627     }
628    
629     void *join ()
630     {
631     void *ret;
632    
633     if (pthread_join (id, &ret))
634     cleanup ("pthread_join failed", 1);
635    
636     return ret;
637     }
638     };
639    
640     // note that mutexes are not classes
641     typedef pthread_mutex_t smutex;
642    
643     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
644     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
645     #else
646     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
647     #endif
648    
649     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
650 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
651 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
652    
653 root 1.68 typedef pthread_cond_t scond;
654    
655     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
656     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
657     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
658     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
659    
660 root 1.1 #endif
661