ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.78
Committed: Thu Dec 4 03:48:19 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_72, rel-2_73
Changes since 1.77: +28 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.75 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.58 * Deliantra is free software: you can redistribute it and/or modify
7 root 1.51 * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation, either version 3 of the License, or
9     * (at your option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.51 * You should have received a copy of the GNU General Public License
17     * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 root 1.46 *
19 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
20 root 1.46 */
21    
22 root 1.1 #ifndef UTIL_H__
23     #define UTIL_H__
24    
25 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28 root 1.36
29 root 1.2 #if __GNUC__ >= 3
30 root 1.45 # define is_constant(c) __builtin_constant_p (c)
31     # define expect(expr,value) __builtin_expect ((expr),(value))
32     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 root 1.2 #else
34 root 1.45 # define is_constant(c) 0
35     # define expect(expr,value) (expr)
36     # define prefetch(addr,rw,locality)
37 root 1.2 #endif
38    
39 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40     # define decltype(x) typeof(x)
41     #endif
42    
43 root 1.45 // put into ifs if you are very sure that the expression
44     // is mostly true or mosty false. note that these return
45     // booleans, not the expression.
46     #define expect_false(expr) expect ((expr) != 0, 0)
47     #define expect_true(expr) expect ((expr) != 0, 1)
48    
49 root 1.66 #include <pthread.h>
50    
51 root 1.11 #include <cstddef>
52 root 1.28 #include <cmath>
53 root 1.25 #include <new>
54     #include <vector>
55 root 1.11
56     #include <glib.h>
57    
58 root 1.25 #include <shstr.h>
59     #include <traits.h>
60    
61 root 1.65 #if DEBUG_SALLOC
62 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63     # define g_slice_alloc(s) debug_slice_alloc(s)
64     # define g_slice_free1(s,p) debug_slice_free1(s,p)
65     void *g_slice_alloc (unsigned long size);
66     void *g_slice_alloc0 (unsigned long size);
67     void g_slice_free1 (unsigned long size, void *ptr);
68 root 1.67 #elif PREFER_MALLOC
69     # define g_slice_alloc0(s) calloc (1, (s))
70     # define g_slice_alloc(s) malloc ((s))
71 root 1.68 # define g_slice_free1(s,p) free ((p))
72 root 1.60 #endif
73    
74 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
76 root 1.14
77 root 1.26 // very ugly macro that basicaly declares and initialises a variable
78     // that is in scope for the next statement only
79     // works only for stuff that can be assigned 0 and converts to false
80     // (note: works great for pointers)
81     // most ugly macro I ever wrote
82 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83 root 1.26
84 root 1.27 // in range including end
85     #define IN_RANGE_INC(val,beg,end) \
86     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87    
88     // in range excluding end
89     #define IN_RANGE_EXC(val,beg,end) \
90     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91    
92 root 1.66 void cleanup (const char *cause, bool make_core = false);
93 root 1.31 void fork_abort (const char *msg);
94    
95 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96     // as a is often a constant while b is the variable. it is still a bug, though.
97     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100 root 1.32
101 root 1.78 template<typename T> static inline void min_it (T &v, T m) { v = min (v, m); }
102     template<typename T> static inline void max_it (T &v, T m) { v = max (v, m); }
103     template<typename T> static inline void clamp_it (T &v, T a, T b) { v = clamp (v, a, b); }
104    
105 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106    
107 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109    
110 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
111     template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
112     // div, round-up
113     template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
114     // div, round-down
115     template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
116    
117 root 1.44 template<typename T>
118     static inline T
119     lerp (T val, T min_in, T max_in, T min_out, T max_out)
120     {
121 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
122     }
123    
124     // lerp, round-down
125     template<typename T>
126     static inline T
127     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
128     {
129     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
130     }
131    
132     // lerp, round-up
133     template<typename T>
134     static inline T
135     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
136     {
137     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
138 root 1.44 }
139    
140 root 1.37 // lots of stuff taken from FXT
141    
142     /* Rotate right. This is used in various places for checksumming */
143 root 1.38 //TODO: that sucks, use a better checksum algo
144 root 1.37 static inline uint32_t
145 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
146 root 1.37 {
147 root 1.38 return (c << (32 - count)) | (c >> count);
148     }
149    
150     static inline uint32_t
151     rotate_left (uint32_t c, uint32_t count = 1)
152     {
153     return (c >> (32 - count)) | (c << count);
154 root 1.37 }
155    
156     // Return abs(a-b)
157     // Both a and b must not have the most significant bit set
158     static inline uint32_t
159     upos_abs_diff (uint32_t a, uint32_t b)
160     {
161     long d1 = b - a;
162     long d2 = (d1 & (d1 >> 31)) << 1;
163    
164     return d1 - d2; // == (b - d) - (a + d);
165     }
166    
167     // Both a and b must not have the most significant bit set
168     static inline uint32_t
169     upos_min (uint32_t a, uint32_t b)
170     {
171     int32_t d = b - a;
172     d &= d >> 31;
173     return a + d;
174     }
175    
176     // Both a and b must not have the most significant bit set
177     static inline uint32_t
178     upos_max (uint32_t a, uint32_t b)
179     {
180     int32_t d = b - a;
181     d &= d >> 31;
182     return b - d;
183     }
184    
185 root 1.28 // this is much faster than crossfires original algorithm
186     // on modern cpus
187     inline int
188     isqrt (int n)
189     {
190     return (int)sqrtf ((float)n);
191     }
192    
193     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
194     #if 0
195     // and has a max. error of 6 in the range -100..+100.
196     #else
197     // and has a max. error of 9 in the range -100..+100.
198     #endif
199     inline int
200     idistance (int dx, int dy)
201     {
202     unsigned int dx_ = abs (dx);
203     unsigned int dy_ = abs (dy);
204    
205     #if 0
206     return dx_ > dy_
207     ? (dx_ * 61685 + dy_ * 26870) >> 16
208     : (dy_ * 61685 + dx_ * 26870) >> 16;
209     #else
210 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
211 root 1.28 #endif
212     }
213    
214 root 1.29 /*
215     * absdir(int): Returns a number between 1 and 8, which represent
216     * the "absolute" direction of a number (it actually takes care of
217     * "overflow" in previous calculations of a direction).
218     */
219     inline int
220     absdir (int d)
221     {
222     return ((d - 1) & 7) + 1;
223     }
224 root 1.28
225 root 1.67 extern ssize_t slice_alloc; // statistics
226    
227     void *salloc_ (int n) throw (std::bad_alloc);
228     void *salloc_ (int n, void *src) throw (std::bad_alloc);
229    
230     // strictly the same as g_slice_alloc, but never returns 0
231     template<typename T>
232     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
233    
234     // also copies src into the new area, like "memdup"
235     // if src is 0, clears the memory
236     template<typename T>
237     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
238    
239     // clears the memory
240     template<typename T>
241     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
242    
243     // for symmetry
244     template<typename T>
245     inline void sfree (T *ptr, int n = 1) throw ()
246     {
247     if (expect_true (ptr))
248     {
249     slice_alloc -= n * sizeof (T);
250 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
251 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
252     assert (slice_alloc >= 0);//D
253     }
254     }
255 root 1.57
256 root 1.72 // nulls the pointer
257     template<typename T>
258     inline void sfree0 (T *&ptr, int n = 1) throw ()
259     {
260     sfree<T> (ptr, n);
261     ptr = 0;
262     }
263    
264 root 1.1 // makes dynamically allocated objects zero-initialised
265     struct zero_initialised
266     {
267 root 1.11 void *operator new (size_t s, void *p)
268     {
269     memset (p, 0, s);
270     return p;
271     }
272    
273     void *operator new (size_t s)
274     {
275 root 1.67 return salloc0<char> (s);
276 root 1.11 }
277    
278     void *operator new[] (size_t s)
279     {
280 root 1.67 return salloc0<char> (s);
281 root 1.11 }
282    
283     void operator delete (void *p, size_t s)
284     {
285 root 1.67 sfree ((char *)p, s);
286 root 1.11 }
287    
288     void operator delete[] (void *p, size_t s)
289     {
290 root 1.67 sfree ((char *)p, s);
291 root 1.11 }
292     };
293    
294 root 1.73 // makes dynamically allocated objects zero-initialised
295     struct slice_allocated
296     {
297     void *operator new (size_t s, void *p)
298     {
299     return p;
300     }
301    
302     void *operator new (size_t s)
303     {
304     return salloc<char> (s);
305     }
306    
307     void *operator new[] (size_t s)
308     {
309     return salloc<char> (s);
310     }
311    
312     void operator delete (void *p, size_t s)
313     {
314     sfree ((char *)p, s);
315     }
316    
317     void operator delete[] (void *p, size_t s)
318     {
319     sfree ((char *)p, s);
320     }
321     };
322    
323 root 1.11 // a STL-compatible allocator that uses g_slice
324     // boy, this is verbose
325     template<typename Tp>
326     struct slice_allocator
327     {
328     typedef size_t size_type;
329     typedef ptrdiff_t difference_type;
330     typedef Tp *pointer;
331     typedef const Tp *const_pointer;
332     typedef Tp &reference;
333     typedef const Tp &const_reference;
334     typedef Tp value_type;
335    
336     template <class U>
337     struct rebind
338     {
339     typedef slice_allocator<U> other;
340     };
341    
342     slice_allocator () throw () { }
343 root 1.64 slice_allocator (const slice_allocator &) throw () { }
344 root 1.11 template<typename Tp2>
345     slice_allocator (const slice_allocator<Tp2> &) throw () { }
346    
347     ~slice_allocator () { }
348    
349     pointer address (reference x) const { return &x; }
350     const_pointer address (const_reference x) const { return &x; }
351    
352     pointer allocate (size_type n, const_pointer = 0)
353     {
354 root 1.18 return salloc<Tp> (n);
355 root 1.11 }
356    
357     void deallocate (pointer p, size_type n)
358     {
359 root 1.19 sfree<Tp> (p, n);
360 root 1.11 }
361    
362 root 1.64 size_type max_size () const throw ()
363 root 1.11 {
364     return size_t (-1) / sizeof (Tp);
365     }
366    
367     void construct (pointer p, const Tp &val)
368     {
369     ::new (p) Tp (val);
370     }
371    
372     void destroy (pointer p)
373     {
374     p->~Tp ();
375     }
376 root 1.1 };
377    
378 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
379     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
380     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
381     struct tausworthe_random_generator
382     {
383 root 1.34 // generator
384 root 1.32 uint32_t state [4];
385    
386 root 1.34 void operator =(const tausworthe_random_generator &src)
387     {
388     state [0] = src.state [0];
389     state [1] = src.state [1];
390     state [2] = src.state [2];
391     state [3] = src.state [3];
392     }
393    
394     void seed (uint32_t seed);
395 root 1.32 uint32_t next ();
396    
397 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
398 root 1.42 uint32_t operator ()(uint32_t num)
399 root 1.32 {
400 root 1.42 return is_constant (num)
401     ? (next () * (uint64_t)num) >> 32U
402     : get_range (num);
403 root 1.32 }
404    
405     // return a number within (min .. max)
406     int operator () (int r_min, int r_max)
407     {
408 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
409     ? r_min + operator ()(r_max - r_min + 1)
410 root 1.34 : get_range (r_min, r_max);
411 root 1.32 }
412    
413     double operator ()()
414     {
415 root 1.34 return this->next () / (double)0xFFFFFFFFU;
416 root 1.32 }
417 root 1.34
418     protected:
419     uint32_t get_range (uint32_t r_max);
420     int get_range (int r_min, int r_max);
421 root 1.32 };
422    
423     typedef tausworthe_random_generator rand_gen;
424    
425 root 1.74 extern rand_gen rndm, rmg_rndm;
426 root 1.32
427 root 1.54 INTERFACE_CLASS (attachable)
428     struct refcnt_base
429     {
430     typedef int refcnt_t;
431     mutable refcnt_t ACC (RW, refcnt);
432    
433     MTH void refcnt_inc () const { ++refcnt; }
434     MTH void refcnt_dec () const { --refcnt; }
435    
436     refcnt_base () : refcnt (0) { }
437     };
438    
439 root 1.56 // to avoid branches with more advanced compilers
440 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
441    
442 root 1.7 template<class T>
443     struct refptr
444     {
445 root 1.54 // p if not null
446     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
447    
448     void refcnt_dec ()
449     {
450     if (!is_constant (p))
451     --*refcnt_ref ();
452     else if (p)
453     --p->refcnt;
454     }
455    
456     void refcnt_inc ()
457     {
458     if (!is_constant (p))
459     ++*refcnt_ref ();
460     else if (p)
461     ++p->refcnt;
462     }
463    
464 root 1.7 T *p;
465    
466     refptr () : p(0) { }
467 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
468     refptr (T *p) : p(p) { refcnt_inc (); }
469     ~refptr () { refcnt_dec (); }
470 root 1.7
471     const refptr<T> &operator =(T *o)
472     {
473 root 1.54 // if decrementing ever destroys we need to reverse the order here
474     refcnt_dec ();
475 root 1.7 p = o;
476 root 1.54 refcnt_inc ();
477 root 1.7 return *this;
478     }
479    
480 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
481 root 1.7 {
482     *this = o.p;
483     return *this;
484     }
485    
486     T &operator * () const { return *p; }
487 root 1.54 T *operator ->() const { return p; }
488 root 1.7
489     operator T *() const { return p; }
490     };
491    
492 root 1.24 typedef refptr<maptile> maptile_ptr;
493 root 1.22 typedef refptr<object> object_ptr;
494     typedef refptr<archetype> arch_ptr;
495 root 1.24 typedef refptr<client> client_ptr;
496     typedef refptr<player> player_ptr;
497 root 1.22
498 root 1.4 struct str_hash
499     {
500     std::size_t operator ()(const char *s) const
501     {
502     unsigned long hash = 0;
503    
504     /* use the one-at-a-time hash function, which supposedly is
505     * better than the djb2-like one used by perl5.005, but
506     * certainly is better then the bug used here before.
507     * see http://burtleburtle.net/bob/hash/doobs.html
508     */
509     while (*s)
510     {
511     hash += *s++;
512     hash += hash << 10;
513     hash ^= hash >> 6;
514     }
515    
516     hash += hash << 3;
517     hash ^= hash >> 11;
518     hash += hash << 15;
519    
520     return hash;
521     }
522     };
523    
524     struct str_equal
525     {
526     bool operator ()(const char *a, const char *b) const
527     {
528     return !strcmp (a, b);
529     }
530     };
531    
532 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
533 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
534 root 1.49 //
535 root 1.52 // NOTE: only some forms of erase are available
536 root 1.26 template<class T>
537     struct unordered_vector : std::vector<T, slice_allocator<T> >
538 root 1.6 {
539 root 1.11 typedef typename unordered_vector::iterator iterator;
540 root 1.6
541     void erase (unsigned int pos)
542     {
543     if (pos < this->size () - 1)
544     (*this)[pos] = (*this)[this->size () - 1];
545    
546     this->pop_back ();
547     }
548    
549     void erase (iterator i)
550     {
551     erase ((unsigned int )(i - this->begin ()));
552     }
553     };
554    
555 root 1.49 // This container blends advantages of linked lists
556     // (efficiency) with vectors (random access) by
557     // by using an unordered vector and storing the vector
558     // index inside the object.
559     //
560     // + memory-efficient on most 64 bit archs
561     // + O(1) insert/remove
562     // + free unique (but varying) id for inserted objects
563     // + cache-friendly iteration
564     // - only works for pointers to structs
565     //
566     // NOTE: only some forms of erase/insert are available
567 root 1.50 typedef int object_vector_index;
568    
569     template<class T, object_vector_index T::*indexmember>
570 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
571     {
572 root 1.48 typedef typename object_vector::iterator iterator;
573    
574     bool contains (const T *obj) const
575     {
576 root 1.50 return obj->*indexmember;
577 root 1.48 }
578    
579     iterator find (const T *obj)
580     {
581 root 1.50 return obj->*indexmember
582     ? this->begin () + obj->*indexmember - 1
583 root 1.48 : this->end ();
584     }
585    
586 root 1.53 void push_back (T *obj)
587     {
588     std::vector<T *, slice_allocator<T *> >::push_back (obj);
589     obj->*indexmember = this->size ();
590     }
591    
592 root 1.26 void insert (T *obj)
593     {
594     push_back (obj);
595     }
596    
597     void insert (T &obj)
598     {
599     insert (&obj);
600     }
601    
602     void erase (T *obj)
603     {
604 root 1.50 unsigned int pos = obj->*indexmember;
605     obj->*indexmember = 0;
606 root 1.26
607     if (pos < this->size ())
608     {
609     (*this)[pos - 1] = (*this)[this->size () - 1];
610 root 1.50 (*this)[pos - 1]->*indexmember = pos;
611 root 1.26 }
612    
613     this->pop_back ();
614     }
615    
616     void erase (T &obj)
617     {
618 root 1.50 erase (&obj);
619 root 1.26 }
620     };
621    
622 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
623     void assign (char *dst, const char *src, int maxlen);
624    
625     // type-safe version of assign
626 root 1.9 template<int N>
627     inline void assign (char (&dst)[N], const char *src)
628     {
629 root 1.10 assign ((char *)&dst, src, N);
630 root 1.9 }
631    
632 root 1.17 typedef double tstamp;
633    
634 root 1.59 // return current time as timestamp
635 root 1.17 tstamp now ();
636    
637 root 1.25 int similar_direction (int a, int b);
638    
639 root 1.55 // like sprintf, but returns a "static" buffer
640     const char *format (const char *format, ...);
641 root 1.43
642 root 1.66 /////////////////////////////////////////////////////////////////////////////
643     // threads, very very thin wrappers around pthreads
644    
645     struct thread
646     {
647     pthread_t id;
648    
649     void start (void *(*start_routine)(void *), void *arg = 0);
650    
651     void cancel ()
652     {
653     pthread_cancel (id);
654     }
655    
656     void *join ()
657     {
658     void *ret;
659    
660     if (pthread_join (id, &ret))
661     cleanup ("pthread_join failed", 1);
662    
663     return ret;
664     }
665     };
666    
667     // note that mutexes are not classes
668     typedef pthread_mutex_t smutex;
669    
670     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
671     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
672     #else
673     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
674     #endif
675    
676     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
677 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
678 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
679    
680 root 1.68 typedef pthread_cond_t scond;
681    
682     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
683     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
684     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
685     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
686    
687 root 1.1 #endif
688