ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.84
Committed: Wed Dec 31 17:35:37 2008 UTC (15 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.83: +15 -3 lines
Log Message:
refactoring of shstr classe,s new shstr_tmp, lots of minor rewriting

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.75 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.58 * Deliantra is free software: you can redistribute it and/or modify
7 root 1.51 * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation, either version 3 of the License, or
9     * (at your option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.51 * You should have received a copy of the GNU General Public License
17     * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 root 1.46 *
19 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
20 root 1.46 */
21    
22 root 1.1 #ifndef UTIL_H__
23     #define UTIL_H__
24    
25 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28 root 1.36
29 root 1.2 #if __GNUC__ >= 3
30 root 1.45 # define is_constant(c) __builtin_constant_p (c)
31     # define expect(expr,value) __builtin_expect ((expr),(value))
32     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 root 1.2 #else
34 root 1.45 # define is_constant(c) 0
35     # define expect(expr,value) (expr)
36     # define prefetch(addr,rw,locality)
37 root 1.2 #endif
38    
39 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40     # define decltype(x) typeof(x)
41     #endif
42    
43 root 1.45 // put into ifs if you are very sure that the expression
44     // is mostly true or mosty false. note that these return
45     // booleans, not the expression.
46 root 1.84 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
47     #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
48 root 1.45
49 root 1.66 #include <pthread.h>
50    
51 root 1.11 #include <cstddef>
52 root 1.28 #include <cmath>
53 root 1.25 #include <new>
54     #include <vector>
55 root 1.11
56     #include <glib.h>
57    
58 root 1.25 #include <shstr.h>
59     #include <traits.h>
60    
61 root 1.65 #if DEBUG_SALLOC
62 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63     # define g_slice_alloc(s) debug_slice_alloc(s)
64     # define g_slice_free1(s,p) debug_slice_free1(s,p)
65     void *g_slice_alloc (unsigned long size);
66     void *g_slice_alloc0 (unsigned long size);
67     void g_slice_free1 (unsigned long size, void *ptr);
68 root 1.67 #elif PREFER_MALLOC
69     # define g_slice_alloc0(s) calloc (1, (s))
70     # define g_slice_alloc(s) malloc ((s))
71 root 1.68 # define g_slice_free1(s,p) free ((p))
72 root 1.60 #endif
73    
74 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
76 root 1.14
77 root 1.81 // very ugly macro that basically declares and initialises a variable
78 root 1.26 // that is in scope for the next statement only
79     // works only for stuff that can be assigned 0 and converts to false
80     // (note: works great for pointers)
81     // most ugly macro I ever wrote
82 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83 root 1.26
84 root 1.27 // in range including end
85     #define IN_RANGE_INC(val,beg,end) \
86     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87    
88     // in range excluding end
89     #define IN_RANGE_EXC(val,beg,end) \
90     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91    
92 root 1.66 void cleanup (const char *cause, bool make_core = false);
93 root 1.31 void fork_abort (const char *msg);
94    
95 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96     // as a is often a constant while b is the variable. it is still a bug, though.
97     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100 root 1.32
101 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104 root 1.78
105 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106    
107 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109    
110 root 1.79 // sign returns -1 or +1
111     template<typename T>
112     static inline T sign (T v) { return v < 0 ? -1 : +1; }
113     // relies on 2c representation
114     template<>
115     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
116    
117     // sign0 returns -1, 0 or +1
118     template<typename T>
119     static inline T sign0 (T v) { return v ? sign (v) : 0; }
120    
121 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122     template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
123     // div, round-up
124     template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
125     // div, round-down
126     template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
127    
128 root 1.44 template<typename T>
129     static inline T
130     lerp (T val, T min_in, T max_in, T min_out, T max_out)
131     {
132 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
133     }
134    
135     // lerp, round-down
136     template<typename T>
137     static inline T
138     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
139     {
140     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
141     }
142    
143     // lerp, round-up
144     template<typename T>
145     static inline T
146     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
147     {
148     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
149 root 1.44 }
150    
151 root 1.37 // lots of stuff taken from FXT
152    
153     /* Rotate right. This is used in various places for checksumming */
154 root 1.38 //TODO: that sucks, use a better checksum algo
155 root 1.37 static inline uint32_t
156 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
157 root 1.37 {
158 root 1.38 return (c << (32 - count)) | (c >> count);
159     }
160    
161     static inline uint32_t
162     rotate_left (uint32_t c, uint32_t count = 1)
163     {
164     return (c >> (32 - count)) | (c << count);
165 root 1.37 }
166    
167     // Return abs(a-b)
168     // Both a and b must not have the most significant bit set
169     static inline uint32_t
170     upos_abs_diff (uint32_t a, uint32_t b)
171     {
172     long d1 = b - a;
173     long d2 = (d1 & (d1 >> 31)) << 1;
174    
175     return d1 - d2; // == (b - d) - (a + d);
176     }
177    
178     // Both a and b must not have the most significant bit set
179     static inline uint32_t
180     upos_min (uint32_t a, uint32_t b)
181     {
182     int32_t d = b - a;
183     d &= d >> 31;
184     return a + d;
185     }
186    
187     // Both a and b must not have the most significant bit set
188     static inline uint32_t
189     upos_max (uint32_t a, uint32_t b)
190     {
191     int32_t d = b - a;
192     d &= d >> 31;
193     return b - d;
194     }
195    
196 root 1.28 // this is much faster than crossfires original algorithm
197     // on modern cpus
198     inline int
199     isqrt (int n)
200     {
201     return (int)sqrtf ((float)n);
202     }
203    
204     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
205     #if 0
206     // and has a max. error of 6 in the range -100..+100.
207     #else
208     // and has a max. error of 9 in the range -100..+100.
209     #endif
210     inline int
211     idistance (int dx, int dy)
212     {
213     unsigned int dx_ = abs (dx);
214     unsigned int dy_ = abs (dy);
215    
216     #if 0
217     return dx_ > dy_
218     ? (dx_ * 61685 + dy_ * 26870) >> 16
219     : (dy_ * 61685 + dx_ * 26870) >> 16;
220     #else
221 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
222 root 1.28 #endif
223     }
224    
225 root 1.29 /*
226     * absdir(int): Returns a number between 1 and 8, which represent
227     * the "absolute" direction of a number (it actually takes care of
228     * "overflow" in previous calculations of a direction).
229     */
230     inline int
231     absdir (int d)
232     {
233     return ((d - 1) & 7) + 1;
234     }
235 root 1.28
236 root 1.67 extern ssize_t slice_alloc; // statistics
237    
238     void *salloc_ (int n) throw (std::bad_alloc);
239     void *salloc_ (int n, void *src) throw (std::bad_alloc);
240    
241     // strictly the same as g_slice_alloc, but never returns 0
242     template<typename T>
243     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
244    
245     // also copies src into the new area, like "memdup"
246     // if src is 0, clears the memory
247     template<typename T>
248     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249    
250     // clears the memory
251     template<typename T>
252     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
253    
254     // for symmetry
255     template<typename T>
256     inline void sfree (T *ptr, int n = 1) throw ()
257     {
258     if (expect_true (ptr))
259     {
260     slice_alloc -= n * sizeof (T);
261 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
263     assert (slice_alloc >= 0);//D
264     }
265     }
266 root 1.57
267 root 1.72 // nulls the pointer
268     template<typename T>
269     inline void sfree0 (T *&ptr, int n = 1) throw ()
270     {
271     sfree<T> (ptr, n);
272     ptr = 0;
273     }
274    
275 root 1.1 // makes dynamically allocated objects zero-initialised
276     struct zero_initialised
277     {
278 root 1.11 void *operator new (size_t s, void *p)
279     {
280     memset (p, 0, s);
281     return p;
282     }
283    
284     void *operator new (size_t s)
285     {
286 root 1.67 return salloc0<char> (s);
287 root 1.11 }
288    
289     void *operator new[] (size_t s)
290     {
291 root 1.67 return salloc0<char> (s);
292 root 1.11 }
293    
294     void operator delete (void *p, size_t s)
295     {
296 root 1.67 sfree ((char *)p, s);
297 root 1.11 }
298    
299     void operator delete[] (void *p, size_t s)
300     {
301 root 1.67 sfree ((char *)p, s);
302 root 1.11 }
303     };
304    
305 root 1.73 // makes dynamically allocated objects zero-initialised
306     struct slice_allocated
307     {
308     void *operator new (size_t s, void *p)
309     {
310     return p;
311     }
312    
313     void *operator new (size_t s)
314     {
315     return salloc<char> (s);
316     }
317    
318     void *operator new[] (size_t s)
319     {
320     return salloc<char> (s);
321     }
322    
323     void operator delete (void *p, size_t s)
324     {
325     sfree ((char *)p, s);
326     }
327    
328     void operator delete[] (void *p, size_t s)
329     {
330     sfree ((char *)p, s);
331     }
332     };
333    
334 root 1.11 // a STL-compatible allocator that uses g_slice
335     // boy, this is verbose
336     template<typename Tp>
337     struct slice_allocator
338     {
339     typedef size_t size_type;
340     typedef ptrdiff_t difference_type;
341     typedef Tp *pointer;
342     typedef const Tp *const_pointer;
343     typedef Tp &reference;
344     typedef const Tp &const_reference;
345     typedef Tp value_type;
346    
347     template <class U>
348     struct rebind
349     {
350     typedef slice_allocator<U> other;
351     };
352    
353     slice_allocator () throw () { }
354 root 1.64 slice_allocator (const slice_allocator &) throw () { }
355 root 1.11 template<typename Tp2>
356     slice_allocator (const slice_allocator<Tp2> &) throw () { }
357    
358     ~slice_allocator () { }
359    
360     pointer address (reference x) const { return &x; }
361     const_pointer address (const_reference x) const { return &x; }
362    
363     pointer allocate (size_type n, const_pointer = 0)
364     {
365 root 1.18 return salloc<Tp> (n);
366 root 1.11 }
367    
368     void deallocate (pointer p, size_type n)
369     {
370 root 1.19 sfree<Tp> (p, n);
371 root 1.11 }
372    
373 root 1.64 size_type max_size () const throw ()
374 root 1.11 {
375     return size_t (-1) / sizeof (Tp);
376     }
377    
378     void construct (pointer p, const Tp &val)
379     {
380     ::new (p) Tp (val);
381     }
382    
383     void destroy (pointer p)
384     {
385     p->~Tp ();
386     }
387 root 1.1 };
388    
389 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
390     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
391     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
392     struct tausworthe_random_generator
393     {
394     uint32_t state [4];
395    
396 root 1.34 void operator =(const tausworthe_random_generator &src)
397     {
398     state [0] = src.state [0];
399     state [1] = src.state [1];
400     state [2] = src.state [2];
401     state [3] = src.state [3];
402     }
403    
404     void seed (uint32_t seed);
405 root 1.32 uint32_t next ();
406 root 1.83 };
407    
408     // Xorshift RNGs, George Marsaglia
409     // http://www.jstatsoft.org/v08/i14/paper
410     // this one is about 40% faster than the tausworthe one above (i.e. not much),
411     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
412     struct xorshift_random_generator
413     {
414     uint32_t x, y;
415    
416     void operator =(const xorshift_random_generator &src)
417     {
418     x = src.x;
419     y = src.y;
420     }
421    
422     void seed (uint32_t seed)
423     {
424     x = seed;
425     y = seed * 69069U;
426     }
427 root 1.32
428 root 1.83 uint32_t next ()
429     {
430     uint32_t t = x ^ (x << 10);
431     x = y;
432     y = y ^ (y >> 13) ^ t ^ (t >> 10);
433     return y;
434     }
435     };
436    
437     template<class generator>
438     struct random_number_generator : generator
439     {
440 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
441 root 1.42 uint32_t operator ()(uint32_t num)
442 root 1.32 {
443 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
444     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
445     : this->next () & (num - 1); // constant, power-of-two
446 root 1.32 }
447    
448     // return a number within (min .. max)
449     int operator () (int r_min, int r_max)
450     {
451 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
452     ? r_min + operator ()(r_max - r_min + 1)
453 root 1.34 : get_range (r_min, r_max);
454 root 1.32 }
455    
456     double operator ()()
457     {
458 root 1.34 return this->next () / (double)0xFFFFFFFFU;
459 root 1.32 }
460 root 1.34
461     protected:
462     uint32_t get_range (uint32_t r_max);
463     int get_range (int r_min, int r_max);
464 root 1.32 };
465    
466 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
467 root 1.32
468 root 1.74 extern rand_gen rndm, rmg_rndm;
469 root 1.32
470 root 1.54 INTERFACE_CLASS (attachable)
471     struct refcnt_base
472     {
473     typedef int refcnt_t;
474     mutable refcnt_t ACC (RW, refcnt);
475    
476     MTH void refcnt_inc () const { ++refcnt; }
477     MTH void refcnt_dec () const { --refcnt; }
478    
479     refcnt_base () : refcnt (0) { }
480     };
481    
482 root 1.56 // to avoid branches with more advanced compilers
483 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
484    
485 root 1.7 template<class T>
486     struct refptr
487     {
488 root 1.54 // p if not null
489     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
490    
491     void refcnt_dec ()
492     {
493     if (!is_constant (p))
494     --*refcnt_ref ();
495     else if (p)
496     --p->refcnt;
497     }
498    
499     void refcnt_inc ()
500     {
501     if (!is_constant (p))
502     ++*refcnt_ref ();
503     else if (p)
504     ++p->refcnt;
505     }
506    
507 root 1.7 T *p;
508    
509     refptr () : p(0) { }
510 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
511     refptr (T *p) : p(p) { refcnt_inc (); }
512     ~refptr () { refcnt_dec (); }
513 root 1.7
514     const refptr<T> &operator =(T *o)
515     {
516 root 1.54 // if decrementing ever destroys we need to reverse the order here
517     refcnt_dec ();
518 root 1.7 p = o;
519 root 1.54 refcnt_inc ();
520 root 1.7 return *this;
521     }
522    
523 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
524 root 1.7 {
525     *this = o.p;
526     return *this;
527     }
528    
529     T &operator * () const { return *p; }
530 root 1.54 T *operator ->() const { return p; }
531 root 1.7
532     operator T *() const { return p; }
533     };
534    
535 root 1.24 typedef refptr<maptile> maptile_ptr;
536 root 1.22 typedef refptr<object> object_ptr;
537     typedef refptr<archetype> arch_ptr;
538 root 1.24 typedef refptr<client> client_ptr;
539     typedef refptr<player> player_ptr;
540 root 1.22
541 root 1.4 struct str_hash
542     {
543     std::size_t operator ()(const char *s) const
544     {
545 root 1.84 #if 0
546     uint32_t hash = 0;
547 root 1.4
548     /* use the one-at-a-time hash function, which supposedly is
549     * better than the djb2-like one used by perl5.005, but
550     * certainly is better then the bug used here before.
551     * see http://burtleburtle.net/bob/hash/doobs.html
552     */
553     while (*s)
554     {
555     hash += *s++;
556     hash += hash << 10;
557     hash ^= hash >> 6;
558     }
559    
560     hash += hash << 3;
561     hash ^= hash >> 11;
562     hash += hash << 15;
563 root 1.84 #else
564     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
565     // it is about twice as fast as the one-at-a-time one,
566     // with good distribution.
567     // FNV-1a is faster on many cpus because the multiplication
568     // runs concurrent with the looping logic.
569     uint32_t hash = 2166136261;
570    
571     while (*s)
572     hash = (hash ^ *s++) * 16777619;
573     #endif
574 root 1.4
575     return hash;
576     }
577     };
578    
579     struct str_equal
580     {
581     bool operator ()(const char *a, const char *b) const
582     {
583     return !strcmp (a, b);
584     }
585     };
586    
587 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
588 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
589 root 1.49 //
590 root 1.52 // NOTE: only some forms of erase are available
591 root 1.26 template<class T>
592     struct unordered_vector : std::vector<T, slice_allocator<T> >
593 root 1.6 {
594 root 1.11 typedef typename unordered_vector::iterator iterator;
595 root 1.6
596     void erase (unsigned int pos)
597     {
598     if (pos < this->size () - 1)
599     (*this)[pos] = (*this)[this->size () - 1];
600    
601     this->pop_back ();
602     }
603    
604     void erase (iterator i)
605     {
606     erase ((unsigned int )(i - this->begin ()));
607     }
608     };
609    
610 root 1.49 // This container blends advantages of linked lists
611     // (efficiency) with vectors (random access) by
612     // by using an unordered vector and storing the vector
613     // index inside the object.
614     //
615     // + memory-efficient on most 64 bit archs
616     // + O(1) insert/remove
617     // + free unique (but varying) id for inserted objects
618     // + cache-friendly iteration
619     // - only works for pointers to structs
620     //
621     // NOTE: only some forms of erase/insert are available
622 root 1.50 typedef int object_vector_index;
623    
624     template<class T, object_vector_index T::*indexmember>
625 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
626     {
627 root 1.48 typedef typename object_vector::iterator iterator;
628    
629     bool contains (const T *obj) const
630     {
631 root 1.50 return obj->*indexmember;
632 root 1.48 }
633    
634     iterator find (const T *obj)
635     {
636 root 1.50 return obj->*indexmember
637     ? this->begin () + obj->*indexmember - 1
638 root 1.48 : this->end ();
639     }
640    
641 root 1.53 void push_back (T *obj)
642     {
643     std::vector<T *, slice_allocator<T *> >::push_back (obj);
644     obj->*indexmember = this->size ();
645     }
646    
647 root 1.26 void insert (T *obj)
648     {
649     push_back (obj);
650     }
651    
652     void insert (T &obj)
653     {
654     insert (&obj);
655     }
656    
657     void erase (T *obj)
658     {
659 root 1.50 unsigned int pos = obj->*indexmember;
660     obj->*indexmember = 0;
661 root 1.26
662     if (pos < this->size ())
663     {
664     (*this)[pos - 1] = (*this)[this->size () - 1];
665 root 1.50 (*this)[pos - 1]->*indexmember = pos;
666 root 1.26 }
667    
668     this->pop_back ();
669     }
670    
671     void erase (T &obj)
672     {
673 root 1.50 erase (&obj);
674 root 1.26 }
675     };
676    
677 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
678     void assign (char *dst, const char *src, int maxlen);
679    
680     // type-safe version of assign
681 root 1.9 template<int N>
682     inline void assign (char (&dst)[N], const char *src)
683     {
684 root 1.10 assign ((char *)&dst, src, N);
685 root 1.9 }
686    
687 root 1.17 typedef double tstamp;
688    
689 root 1.59 // return current time as timestamp
690 root 1.17 tstamp now ();
691    
692 root 1.25 int similar_direction (int a, int b);
693    
694 root 1.55 // like sprintf, but returns a "static" buffer
695     const char *format (const char *format, ...);
696 root 1.43
697 root 1.66 /////////////////////////////////////////////////////////////////////////////
698     // threads, very very thin wrappers around pthreads
699    
700     struct thread
701     {
702     pthread_t id;
703    
704     void start (void *(*start_routine)(void *), void *arg = 0);
705    
706     void cancel ()
707     {
708     pthread_cancel (id);
709     }
710    
711     void *join ()
712     {
713     void *ret;
714    
715     if (pthread_join (id, &ret))
716     cleanup ("pthread_join failed", 1);
717    
718     return ret;
719     }
720     };
721    
722     // note that mutexes are not classes
723     typedef pthread_mutex_t smutex;
724    
725     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
726     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
727     #else
728     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
729     #endif
730    
731     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
732 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
733 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
734    
735 root 1.68 typedef pthread_cond_t scond;
736    
737     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
738     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
739     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
740     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
741    
742 root 1.1 #endif
743