ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.87
Committed: Mon Jan 12 03:40:21 2009 UTC (15 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_76, rel-2_77, rel-2_78
Changes since 1.86: +4 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.75 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.58 * Deliantra is free software: you can redistribute it and/or modify
7 root 1.51 * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation, either version 3 of the License, or
9     * (at your option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.51 * You should have received a copy of the GNU General Public License
17     * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 root 1.46 *
19 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
20 root 1.46 */
21    
22 root 1.1 #ifndef UTIL_H__
23     #define UTIL_H__
24    
25 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28 root 1.36
29 root 1.2 #if __GNUC__ >= 3
30 root 1.45 # define is_constant(c) __builtin_constant_p (c)
31     # define expect(expr,value) __builtin_expect ((expr),(value))
32     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 root 1.85 # define noinline __attribute__((__noinline__))
34 root 1.2 #else
35 root 1.45 # define is_constant(c) 0
36     # define expect(expr,value) (expr)
37     # define prefetch(addr,rw,locality)
38 root 1.85 # define noinline
39 root 1.2 #endif
40    
41 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42     # define decltype(x) typeof(x)
43     #endif
44    
45 root 1.45 // put into ifs if you are very sure that the expression
46     // is mostly true or mosty false. note that these return
47     // booleans, not the expression.
48 root 1.84 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49     #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50 root 1.45
51 root 1.66 #include <pthread.h>
52    
53 root 1.11 #include <cstddef>
54 root 1.28 #include <cmath>
55 root 1.25 #include <new>
56     #include <vector>
57 root 1.11
58     #include <glib.h>
59    
60 root 1.25 #include <shstr.h>
61     #include <traits.h>
62    
63 root 1.65 #if DEBUG_SALLOC
64 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
65     # define g_slice_alloc(s) debug_slice_alloc(s)
66     # define g_slice_free1(s,p) debug_slice_free1(s,p)
67     void *g_slice_alloc (unsigned long size);
68     void *g_slice_alloc0 (unsigned long size);
69     void g_slice_free1 (unsigned long size, void *ptr);
70 root 1.67 #elif PREFER_MALLOC
71     # define g_slice_alloc0(s) calloc (1, (s))
72     # define g_slice_alloc(s) malloc ((s))
73 root 1.68 # define g_slice_free1(s,p) free ((p))
74 root 1.60 #endif
75    
76 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
77 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
78 root 1.14
79 root 1.81 // very ugly macro that basically declares and initialises a variable
80 root 1.26 // that is in scope for the next statement only
81     // works only for stuff that can be assigned 0 and converts to false
82     // (note: works great for pointers)
83     // most ugly macro I ever wrote
84 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
85 root 1.26
86 root 1.27 // in range including end
87     #define IN_RANGE_INC(val,beg,end) \
88     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
89    
90     // in range excluding end
91     #define IN_RANGE_EXC(val,beg,end) \
92     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
93    
94 root 1.66 void cleanup (const char *cause, bool make_core = false);
95 root 1.31 void fork_abort (const char *msg);
96    
97 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
98     // as a is often a constant while b is the variable. it is still a bug, though.
99     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
100     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
101     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
102 root 1.32
103 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106 root 1.78
107 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108    
109 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111    
112 root 1.79 // sign returns -1 or +1
113     template<typename T>
114     static inline T sign (T v) { return v < 0 ? -1 : +1; }
115     // relies on 2c representation
116     template<>
117     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118    
119     // sign0 returns -1, 0 or +1
120     template<typename T>
121     static inline T sign0 (T v) { return v ? sign (v) : 0; }
122    
123 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124     template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
125     // div, round-up
126     template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
127     // div, round-down
128     template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
129    
130 root 1.44 template<typename T>
131     static inline T
132     lerp (T val, T min_in, T max_in, T min_out, T max_out)
133     {
134 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
135     }
136    
137     // lerp, round-down
138     template<typename T>
139     static inline T
140     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
141     {
142     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
143     }
144    
145     // lerp, round-up
146     template<typename T>
147     static inline T
148     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
149     {
150     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151 root 1.44 }
152    
153 root 1.37 // lots of stuff taken from FXT
154    
155     /* Rotate right. This is used in various places for checksumming */
156 root 1.38 //TODO: that sucks, use a better checksum algo
157 root 1.37 static inline uint32_t
158 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
159 root 1.37 {
160 root 1.38 return (c << (32 - count)) | (c >> count);
161     }
162    
163     static inline uint32_t
164     rotate_left (uint32_t c, uint32_t count = 1)
165     {
166     return (c >> (32 - count)) | (c << count);
167 root 1.37 }
168    
169     // Return abs(a-b)
170     // Both a and b must not have the most significant bit set
171     static inline uint32_t
172     upos_abs_diff (uint32_t a, uint32_t b)
173     {
174     long d1 = b - a;
175     long d2 = (d1 & (d1 >> 31)) << 1;
176    
177     return d1 - d2; // == (b - d) - (a + d);
178     }
179    
180     // Both a and b must not have the most significant bit set
181     static inline uint32_t
182     upos_min (uint32_t a, uint32_t b)
183     {
184     int32_t d = b - a;
185     d &= d >> 31;
186     return a + d;
187     }
188    
189     // Both a and b must not have the most significant bit set
190     static inline uint32_t
191     upos_max (uint32_t a, uint32_t b)
192     {
193     int32_t d = b - a;
194     d &= d >> 31;
195     return b - d;
196     }
197    
198 root 1.28 // this is much faster than crossfires original algorithm
199     // on modern cpus
200     inline int
201     isqrt (int n)
202     {
203     return (int)sqrtf ((float)n);
204     }
205    
206     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
207     #if 0
208     // and has a max. error of 6 in the range -100..+100.
209     #else
210     // and has a max. error of 9 in the range -100..+100.
211     #endif
212     inline int
213     idistance (int dx, int dy)
214     {
215     unsigned int dx_ = abs (dx);
216     unsigned int dy_ = abs (dy);
217    
218     #if 0
219     return dx_ > dy_
220     ? (dx_ * 61685 + dy_ * 26870) >> 16
221     : (dy_ * 61685 + dx_ * 26870) >> 16;
222     #else
223 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
224 root 1.28 #endif
225     }
226    
227 root 1.29 /*
228     * absdir(int): Returns a number between 1 and 8, which represent
229     * the "absolute" direction of a number (it actually takes care of
230     * "overflow" in previous calculations of a direction).
231     */
232     inline int
233     absdir (int d)
234     {
235     return ((d - 1) & 7) + 1;
236     }
237 root 1.28
238 root 1.67 extern ssize_t slice_alloc; // statistics
239    
240     void *salloc_ (int n) throw (std::bad_alloc);
241     void *salloc_ (int n, void *src) throw (std::bad_alloc);
242    
243     // strictly the same as g_slice_alloc, but never returns 0
244     template<typename T>
245     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
246    
247     // also copies src into the new area, like "memdup"
248     // if src is 0, clears the memory
249     template<typename T>
250     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
251    
252     // clears the memory
253     template<typename T>
254     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
255    
256     // for symmetry
257     template<typename T>
258     inline void sfree (T *ptr, int n = 1) throw ()
259     {
260     if (expect_true (ptr))
261     {
262     slice_alloc -= n * sizeof (T);
263 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
264 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
265     assert (slice_alloc >= 0);//D
266     }
267     }
268 root 1.57
269 root 1.72 // nulls the pointer
270     template<typename T>
271     inline void sfree0 (T *&ptr, int n = 1) throw ()
272     {
273     sfree<T> (ptr, n);
274     ptr = 0;
275     }
276    
277 root 1.1 // makes dynamically allocated objects zero-initialised
278     struct zero_initialised
279     {
280 root 1.11 void *operator new (size_t s, void *p)
281     {
282     memset (p, 0, s);
283     return p;
284     }
285    
286     void *operator new (size_t s)
287     {
288 root 1.67 return salloc0<char> (s);
289 root 1.11 }
290    
291     void *operator new[] (size_t s)
292     {
293 root 1.67 return salloc0<char> (s);
294 root 1.11 }
295    
296     void operator delete (void *p, size_t s)
297     {
298 root 1.67 sfree ((char *)p, s);
299 root 1.11 }
300    
301     void operator delete[] (void *p, size_t s)
302     {
303 root 1.67 sfree ((char *)p, s);
304 root 1.11 }
305     };
306    
307 root 1.73 // makes dynamically allocated objects zero-initialised
308     struct slice_allocated
309     {
310     void *operator new (size_t s, void *p)
311     {
312     return p;
313     }
314    
315     void *operator new (size_t s)
316     {
317     return salloc<char> (s);
318     }
319    
320     void *operator new[] (size_t s)
321     {
322     return salloc<char> (s);
323     }
324    
325     void operator delete (void *p, size_t s)
326     {
327     sfree ((char *)p, s);
328     }
329    
330     void operator delete[] (void *p, size_t s)
331     {
332     sfree ((char *)p, s);
333     }
334     };
335    
336 root 1.11 // a STL-compatible allocator that uses g_slice
337     // boy, this is verbose
338     template<typename Tp>
339     struct slice_allocator
340     {
341     typedef size_t size_type;
342     typedef ptrdiff_t difference_type;
343     typedef Tp *pointer;
344     typedef const Tp *const_pointer;
345     typedef Tp &reference;
346     typedef const Tp &const_reference;
347     typedef Tp value_type;
348    
349     template <class U>
350     struct rebind
351     {
352     typedef slice_allocator<U> other;
353     };
354    
355     slice_allocator () throw () { }
356 root 1.64 slice_allocator (const slice_allocator &) throw () { }
357 root 1.11 template<typename Tp2>
358     slice_allocator (const slice_allocator<Tp2> &) throw () { }
359    
360     ~slice_allocator () { }
361    
362     pointer address (reference x) const { return &x; }
363     const_pointer address (const_reference x) const { return &x; }
364    
365     pointer allocate (size_type n, const_pointer = 0)
366     {
367 root 1.18 return salloc<Tp> (n);
368 root 1.11 }
369    
370     void deallocate (pointer p, size_type n)
371     {
372 root 1.19 sfree<Tp> (p, n);
373 root 1.11 }
374    
375 root 1.64 size_type max_size () const throw ()
376 root 1.11 {
377     return size_t (-1) / sizeof (Tp);
378     }
379    
380     void construct (pointer p, const Tp &val)
381     {
382     ::new (p) Tp (val);
383     }
384    
385     void destroy (pointer p)
386     {
387     p->~Tp ();
388     }
389 root 1.1 };
390    
391 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
392     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
393     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
394     struct tausworthe_random_generator
395     {
396     uint32_t state [4];
397    
398 root 1.34 void operator =(const tausworthe_random_generator &src)
399     {
400     state [0] = src.state [0];
401     state [1] = src.state [1];
402     state [2] = src.state [2];
403     state [3] = src.state [3];
404     }
405    
406     void seed (uint32_t seed);
407 root 1.32 uint32_t next ();
408 root 1.83 };
409    
410     // Xorshift RNGs, George Marsaglia
411     // http://www.jstatsoft.org/v08/i14/paper
412     // this one is about 40% faster than the tausworthe one above (i.e. not much),
413     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
414 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
415 root 1.83 struct xorshift_random_generator
416     {
417     uint32_t x, y;
418    
419     void operator =(const xorshift_random_generator &src)
420     {
421     x = src.x;
422     y = src.y;
423     }
424    
425     void seed (uint32_t seed)
426     {
427     x = seed;
428     y = seed * 69069U;
429     }
430 root 1.32
431 root 1.83 uint32_t next ()
432     {
433     uint32_t t = x ^ (x << 10);
434     x = y;
435     y = y ^ (y >> 13) ^ t ^ (t >> 10);
436     return y;
437     }
438     };
439    
440     template<class generator>
441     struct random_number_generator : generator
442     {
443 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
444 root 1.42 uint32_t operator ()(uint32_t num)
445 root 1.32 {
446 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
447     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
448     : this->next () & (num - 1); // constant, power-of-two
449 root 1.32 }
450    
451     // return a number within (min .. max)
452     int operator () (int r_min, int r_max)
453     {
454 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
455     ? r_min + operator ()(r_max - r_min + 1)
456 root 1.34 : get_range (r_min, r_max);
457 root 1.32 }
458    
459     double operator ()()
460     {
461 root 1.34 return this->next () / (double)0xFFFFFFFFU;
462 root 1.32 }
463 root 1.34
464     protected:
465     uint32_t get_range (uint32_t r_max);
466     int get_range (int r_min, int r_max);
467 root 1.32 };
468    
469 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
470 root 1.32
471 root 1.74 extern rand_gen rndm, rmg_rndm;
472 root 1.32
473 root 1.54 INTERFACE_CLASS (attachable)
474     struct refcnt_base
475     {
476     typedef int refcnt_t;
477     mutable refcnt_t ACC (RW, refcnt);
478    
479     MTH void refcnt_inc () const { ++refcnt; }
480     MTH void refcnt_dec () const { --refcnt; }
481    
482     refcnt_base () : refcnt (0) { }
483     };
484    
485 root 1.56 // to avoid branches with more advanced compilers
486 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
487    
488 root 1.7 template<class T>
489     struct refptr
490     {
491 root 1.54 // p if not null
492     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
493    
494     void refcnt_dec ()
495     {
496     if (!is_constant (p))
497     --*refcnt_ref ();
498     else if (p)
499     --p->refcnt;
500     }
501    
502     void refcnt_inc ()
503     {
504     if (!is_constant (p))
505     ++*refcnt_ref ();
506     else if (p)
507     ++p->refcnt;
508     }
509    
510 root 1.7 T *p;
511    
512     refptr () : p(0) { }
513 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
514     refptr (T *p) : p(p) { refcnt_inc (); }
515     ~refptr () { refcnt_dec (); }
516 root 1.7
517     const refptr<T> &operator =(T *o)
518     {
519 root 1.54 // if decrementing ever destroys we need to reverse the order here
520     refcnt_dec ();
521 root 1.7 p = o;
522 root 1.54 refcnt_inc ();
523 root 1.7 return *this;
524     }
525    
526 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
527 root 1.7 {
528     *this = o.p;
529     return *this;
530     }
531    
532     T &operator * () const { return *p; }
533 root 1.54 T *operator ->() const { return p; }
534 root 1.7
535     operator T *() const { return p; }
536     };
537    
538 root 1.24 typedef refptr<maptile> maptile_ptr;
539 root 1.22 typedef refptr<object> object_ptr;
540     typedef refptr<archetype> arch_ptr;
541 root 1.24 typedef refptr<client> client_ptr;
542     typedef refptr<player> player_ptr;
543 root 1.22
544 root 1.4 struct str_hash
545     {
546     std::size_t operator ()(const char *s) const
547     {
548 root 1.84 #if 0
549     uint32_t hash = 0;
550 root 1.4
551     /* use the one-at-a-time hash function, which supposedly is
552     * better than the djb2-like one used by perl5.005, but
553     * certainly is better then the bug used here before.
554     * see http://burtleburtle.net/bob/hash/doobs.html
555     */
556     while (*s)
557     {
558     hash += *s++;
559     hash += hash << 10;
560     hash ^= hash >> 6;
561     }
562    
563     hash += hash << 3;
564     hash ^= hash >> 11;
565     hash += hash << 15;
566 root 1.84 #else
567     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
568     // it is about twice as fast as the one-at-a-time one,
569     // with good distribution.
570     // FNV-1a is faster on many cpus because the multiplication
571     // runs concurrent with the looping logic.
572     uint32_t hash = 2166136261;
573    
574     while (*s)
575     hash = (hash ^ *s++) * 16777619;
576     #endif
577 root 1.4
578     return hash;
579     }
580     };
581    
582     struct str_equal
583     {
584     bool operator ()(const char *a, const char *b) const
585     {
586     return !strcmp (a, b);
587     }
588     };
589    
590 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
591 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
592 root 1.49 //
593 root 1.52 // NOTE: only some forms of erase are available
594 root 1.26 template<class T>
595     struct unordered_vector : std::vector<T, slice_allocator<T> >
596 root 1.6 {
597 root 1.11 typedef typename unordered_vector::iterator iterator;
598 root 1.6
599     void erase (unsigned int pos)
600     {
601     if (pos < this->size () - 1)
602     (*this)[pos] = (*this)[this->size () - 1];
603    
604     this->pop_back ();
605     }
606    
607     void erase (iterator i)
608     {
609     erase ((unsigned int )(i - this->begin ()));
610     }
611     };
612    
613 root 1.49 // This container blends advantages of linked lists
614     // (efficiency) with vectors (random access) by
615     // by using an unordered vector and storing the vector
616     // index inside the object.
617     //
618     // + memory-efficient on most 64 bit archs
619     // + O(1) insert/remove
620     // + free unique (but varying) id for inserted objects
621     // + cache-friendly iteration
622     // - only works for pointers to structs
623     //
624     // NOTE: only some forms of erase/insert are available
625 root 1.50 typedef int object_vector_index;
626    
627     template<class T, object_vector_index T::*indexmember>
628 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
629     {
630 root 1.48 typedef typename object_vector::iterator iterator;
631    
632     bool contains (const T *obj) const
633     {
634 root 1.50 return obj->*indexmember;
635 root 1.48 }
636    
637     iterator find (const T *obj)
638     {
639 root 1.50 return obj->*indexmember
640     ? this->begin () + obj->*indexmember - 1
641 root 1.48 : this->end ();
642     }
643    
644 root 1.53 void push_back (T *obj)
645     {
646     std::vector<T *, slice_allocator<T *> >::push_back (obj);
647     obj->*indexmember = this->size ();
648     }
649    
650 root 1.26 void insert (T *obj)
651     {
652     push_back (obj);
653     }
654    
655     void insert (T &obj)
656     {
657     insert (&obj);
658     }
659    
660     void erase (T *obj)
661     {
662 root 1.50 unsigned int pos = obj->*indexmember;
663     obj->*indexmember = 0;
664 root 1.26
665     if (pos < this->size ())
666     {
667     (*this)[pos - 1] = (*this)[this->size () - 1];
668 root 1.50 (*this)[pos - 1]->*indexmember = pos;
669 root 1.26 }
670    
671     this->pop_back ();
672     }
673    
674     void erase (T &obj)
675     {
676 root 1.50 erase (&obj);
677 root 1.26 }
678     };
679    
680 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
681 root 1.87 // returns the number of bytes actually used (including \0)
682     int assign (char *dst, const char *src, int maxsize);
683 root 1.10
684     // type-safe version of assign
685 root 1.9 template<int N>
686 root 1.87 inline int assign (char (&dst)[N], const char *src)
687 root 1.9 {
688 root 1.87 return assign ((char *)&dst, src, N);
689 root 1.9 }
690    
691 root 1.17 typedef double tstamp;
692    
693 root 1.59 // return current time as timestamp
694 root 1.17 tstamp now ();
695    
696 root 1.25 int similar_direction (int a, int b);
697    
698 root 1.55 // like sprintf, but returns a "static" buffer
699     const char *format (const char *format, ...);
700 root 1.43
701 root 1.66 /////////////////////////////////////////////////////////////////////////////
702     // threads, very very thin wrappers around pthreads
703    
704     struct thread
705     {
706     pthread_t id;
707    
708     void start (void *(*start_routine)(void *), void *arg = 0);
709    
710     void cancel ()
711     {
712     pthread_cancel (id);
713     }
714    
715     void *join ()
716     {
717     void *ret;
718    
719     if (pthread_join (id, &ret))
720     cleanup ("pthread_join failed", 1);
721    
722     return ret;
723     }
724     };
725    
726     // note that mutexes are not classes
727     typedef pthread_mutex_t smutex;
728    
729     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
730     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
731     #else
732     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
733     #endif
734    
735     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
736 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
737 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
738    
739 root 1.68 typedef pthread_cond_t scond;
740    
741     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
742     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
743     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
744     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
745    
746 root 1.1 #endif
747