ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.88
Committed: Tue May 5 04:51:56 2009 UTC (15 years ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_80, rel-2_79
Changes since 1.87: +15 -3 lines
Log Message:
adjust los lightness a bit

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.75 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.58 * Deliantra is free software: you can redistribute it and/or modify
7 root 1.51 * it under the terms of the GNU General Public License as published by
8     * the Free Software Foundation, either version 3 of the License, or
9     * (at your option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.51 * You should have received a copy of the GNU General Public License
17     * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 root 1.46 *
19 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
20 root 1.46 */
21    
22 root 1.1 #ifndef UTIL_H__
23     #define UTIL_H__
24    
25 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28 root 1.36
29 root 1.2 #if __GNUC__ >= 3
30 root 1.45 # define is_constant(c) __builtin_constant_p (c)
31     # define expect(expr,value) __builtin_expect ((expr),(value))
32     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 root 1.85 # define noinline __attribute__((__noinline__))
34 root 1.2 #else
35 root 1.45 # define is_constant(c) 0
36     # define expect(expr,value) (expr)
37     # define prefetch(addr,rw,locality)
38 root 1.85 # define noinline
39 root 1.2 #endif
40    
41 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42     # define decltype(x) typeof(x)
43     #endif
44    
45 root 1.45 // put into ifs if you are very sure that the expression
46     // is mostly true or mosty false. note that these return
47     // booleans, not the expression.
48 root 1.84 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49     #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50 root 1.45
51 root 1.66 #include <pthread.h>
52    
53 root 1.11 #include <cstddef>
54 root 1.28 #include <cmath>
55 root 1.25 #include <new>
56     #include <vector>
57 root 1.11
58     #include <glib.h>
59    
60 root 1.25 #include <shstr.h>
61     #include <traits.h>
62    
63 root 1.65 #if DEBUG_SALLOC
64 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
65     # define g_slice_alloc(s) debug_slice_alloc(s)
66     # define g_slice_free1(s,p) debug_slice_free1(s,p)
67     void *g_slice_alloc (unsigned long size);
68     void *g_slice_alloc0 (unsigned long size);
69     void g_slice_free1 (unsigned long size, void *ptr);
70 root 1.67 #elif PREFER_MALLOC
71     # define g_slice_alloc0(s) calloc (1, (s))
72     # define g_slice_alloc(s) malloc ((s))
73 root 1.68 # define g_slice_free1(s,p) free ((p))
74 root 1.60 #endif
75    
76 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
77 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
78 root 1.14
79 root 1.81 // very ugly macro that basically declares and initialises a variable
80 root 1.26 // that is in scope for the next statement only
81     // works only for stuff that can be assigned 0 and converts to false
82     // (note: works great for pointers)
83     // most ugly macro I ever wrote
84 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
85 root 1.26
86 root 1.27 // in range including end
87     #define IN_RANGE_INC(val,beg,end) \
88     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
89    
90     // in range excluding end
91     #define IN_RANGE_EXC(val,beg,end) \
92     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
93    
94 root 1.66 void cleanup (const char *cause, bool make_core = false);
95 root 1.31 void fork_abort (const char *msg);
96    
97 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
98     // as a is often a constant while b is the variable. it is still a bug, though.
99     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
100     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
101     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
102 root 1.32
103 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106 root 1.78
107 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108    
109 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111    
112 root 1.79 // sign returns -1 or +1
113     template<typename T>
114     static inline T sign (T v) { return v < 0 ? -1 : +1; }
115     // relies on 2c representation
116     template<>
117     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118    
119     // sign0 returns -1, 0 or +1
120     template<typename T>
121     static inline T sign0 (T v) { return v ? sign (v) : 0; }
122    
123 root 1.88 // div* only work correctly for div > 0
124 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125 root 1.88 template<typename T> static inline T div (T val, T div)
126     {
127     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128     }
129 root 1.78 // div, round-up
130 root 1.88 template<typename T> static inline T div_ru (T val, T div)
131     {
132     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
133     }
134 root 1.78 // div, round-down
135 root 1.88 template<typename T> static inline T div_rd (T val, T div)
136     {
137     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
138     }
139 root 1.78
140 root 1.88 // lerp* only work correctly for min_in < max_in
141     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
142 root 1.44 template<typename T>
143     static inline T
144     lerp (T val, T min_in, T max_in, T min_out, T max_out)
145     {
146 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147     }
148    
149     // lerp, round-down
150     template<typename T>
151     static inline T
152     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
153     {
154     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
155     }
156    
157     // lerp, round-up
158     template<typename T>
159     static inline T
160     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
161     {
162     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
163 root 1.44 }
164    
165 root 1.37 // lots of stuff taken from FXT
166    
167     /* Rotate right. This is used in various places for checksumming */
168 root 1.38 //TODO: that sucks, use a better checksum algo
169 root 1.37 static inline uint32_t
170 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
171 root 1.37 {
172 root 1.38 return (c << (32 - count)) | (c >> count);
173     }
174    
175     static inline uint32_t
176     rotate_left (uint32_t c, uint32_t count = 1)
177     {
178     return (c >> (32 - count)) | (c << count);
179 root 1.37 }
180    
181     // Return abs(a-b)
182     // Both a and b must not have the most significant bit set
183     static inline uint32_t
184     upos_abs_diff (uint32_t a, uint32_t b)
185     {
186     long d1 = b - a;
187     long d2 = (d1 & (d1 >> 31)) << 1;
188    
189     return d1 - d2; // == (b - d) - (a + d);
190     }
191    
192     // Both a and b must not have the most significant bit set
193     static inline uint32_t
194     upos_min (uint32_t a, uint32_t b)
195     {
196     int32_t d = b - a;
197     d &= d >> 31;
198     return a + d;
199     }
200    
201     // Both a and b must not have the most significant bit set
202     static inline uint32_t
203     upos_max (uint32_t a, uint32_t b)
204     {
205     int32_t d = b - a;
206     d &= d >> 31;
207     return b - d;
208     }
209    
210 root 1.28 // this is much faster than crossfires original algorithm
211     // on modern cpus
212     inline int
213     isqrt (int n)
214     {
215     return (int)sqrtf ((float)n);
216     }
217    
218     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
219     #if 0
220     // and has a max. error of 6 in the range -100..+100.
221     #else
222     // and has a max. error of 9 in the range -100..+100.
223     #endif
224     inline int
225     idistance (int dx, int dy)
226     {
227     unsigned int dx_ = abs (dx);
228     unsigned int dy_ = abs (dy);
229    
230     #if 0
231     return dx_ > dy_
232     ? (dx_ * 61685 + dy_ * 26870) >> 16
233     : (dy_ * 61685 + dx_ * 26870) >> 16;
234     #else
235 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
236 root 1.28 #endif
237     }
238    
239 root 1.29 /*
240     * absdir(int): Returns a number between 1 and 8, which represent
241     * the "absolute" direction of a number (it actually takes care of
242     * "overflow" in previous calculations of a direction).
243     */
244     inline int
245     absdir (int d)
246     {
247     return ((d - 1) & 7) + 1;
248     }
249 root 1.28
250 root 1.67 extern ssize_t slice_alloc; // statistics
251    
252     void *salloc_ (int n) throw (std::bad_alloc);
253     void *salloc_ (int n, void *src) throw (std::bad_alloc);
254    
255     // strictly the same as g_slice_alloc, but never returns 0
256     template<typename T>
257     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
258    
259     // also copies src into the new area, like "memdup"
260     // if src is 0, clears the memory
261     template<typename T>
262     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
263    
264     // clears the memory
265     template<typename T>
266     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
267    
268     // for symmetry
269     template<typename T>
270     inline void sfree (T *ptr, int n = 1) throw ()
271     {
272     if (expect_true (ptr))
273     {
274     slice_alloc -= n * sizeof (T);
275 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
276 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
277     assert (slice_alloc >= 0);//D
278     }
279     }
280 root 1.57
281 root 1.72 // nulls the pointer
282     template<typename T>
283     inline void sfree0 (T *&ptr, int n = 1) throw ()
284     {
285     sfree<T> (ptr, n);
286     ptr = 0;
287     }
288    
289 root 1.1 // makes dynamically allocated objects zero-initialised
290     struct zero_initialised
291     {
292 root 1.11 void *operator new (size_t s, void *p)
293     {
294     memset (p, 0, s);
295     return p;
296     }
297    
298     void *operator new (size_t s)
299     {
300 root 1.67 return salloc0<char> (s);
301 root 1.11 }
302    
303     void *operator new[] (size_t s)
304     {
305 root 1.67 return salloc0<char> (s);
306 root 1.11 }
307    
308     void operator delete (void *p, size_t s)
309     {
310 root 1.67 sfree ((char *)p, s);
311 root 1.11 }
312    
313     void operator delete[] (void *p, size_t s)
314     {
315 root 1.67 sfree ((char *)p, s);
316 root 1.11 }
317     };
318    
319 root 1.73 // makes dynamically allocated objects zero-initialised
320     struct slice_allocated
321     {
322     void *operator new (size_t s, void *p)
323     {
324     return p;
325     }
326    
327     void *operator new (size_t s)
328     {
329     return salloc<char> (s);
330     }
331    
332     void *operator new[] (size_t s)
333     {
334     return salloc<char> (s);
335     }
336    
337     void operator delete (void *p, size_t s)
338     {
339     sfree ((char *)p, s);
340     }
341    
342     void operator delete[] (void *p, size_t s)
343     {
344     sfree ((char *)p, s);
345     }
346     };
347    
348 root 1.11 // a STL-compatible allocator that uses g_slice
349     // boy, this is verbose
350     template<typename Tp>
351     struct slice_allocator
352     {
353     typedef size_t size_type;
354     typedef ptrdiff_t difference_type;
355     typedef Tp *pointer;
356     typedef const Tp *const_pointer;
357     typedef Tp &reference;
358     typedef const Tp &const_reference;
359     typedef Tp value_type;
360    
361     template <class U>
362     struct rebind
363     {
364     typedef slice_allocator<U> other;
365     };
366    
367     slice_allocator () throw () { }
368 root 1.64 slice_allocator (const slice_allocator &) throw () { }
369 root 1.11 template<typename Tp2>
370     slice_allocator (const slice_allocator<Tp2> &) throw () { }
371    
372     ~slice_allocator () { }
373    
374     pointer address (reference x) const { return &x; }
375     const_pointer address (const_reference x) const { return &x; }
376    
377     pointer allocate (size_type n, const_pointer = 0)
378     {
379 root 1.18 return salloc<Tp> (n);
380 root 1.11 }
381    
382     void deallocate (pointer p, size_type n)
383     {
384 root 1.19 sfree<Tp> (p, n);
385 root 1.11 }
386    
387 root 1.64 size_type max_size () const throw ()
388 root 1.11 {
389     return size_t (-1) / sizeof (Tp);
390     }
391    
392     void construct (pointer p, const Tp &val)
393     {
394     ::new (p) Tp (val);
395     }
396    
397     void destroy (pointer p)
398     {
399     p->~Tp ();
400     }
401 root 1.1 };
402    
403 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
404     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
405     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
406     struct tausworthe_random_generator
407     {
408     uint32_t state [4];
409    
410 root 1.34 void operator =(const tausworthe_random_generator &src)
411     {
412     state [0] = src.state [0];
413     state [1] = src.state [1];
414     state [2] = src.state [2];
415     state [3] = src.state [3];
416     }
417    
418     void seed (uint32_t seed);
419 root 1.32 uint32_t next ();
420 root 1.83 };
421    
422     // Xorshift RNGs, George Marsaglia
423     // http://www.jstatsoft.org/v08/i14/paper
424     // this one is about 40% faster than the tausworthe one above (i.e. not much),
425     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
426 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
427 root 1.83 struct xorshift_random_generator
428     {
429     uint32_t x, y;
430    
431     void operator =(const xorshift_random_generator &src)
432     {
433     x = src.x;
434     y = src.y;
435     }
436    
437     void seed (uint32_t seed)
438     {
439     x = seed;
440     y = seed * 69069U;
441     }
442 root 1.32
443 root 1.83 uint32_t next ()
444     {
445     uint32_t t = x ^ (x << 10);
446     x = y;
447     y = y ^ (y >> 13) ^ t ^ (t >> 10);
448     return y;
449     }
450     };
451    
452     template<class generator>
453     struct random_number_generator : generator
454     {
455 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
456 root 1.42 uint32_t operator ()(uint32_t num)
457 root 1.32 {
458 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
459     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
460     : this->next () & (num - 1); // constant, power-of-two
461 root 1.32 }
462    
463     // return a number within (min .. max)
464     int operator () (int r_min, int r_max)
465     {
466 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
467     ? r_min + operator ()(r_max - r_min + 1)
468 root 1.34 : get_range (r_min, r_max);
469 root 1.32 }
470    
471     double operator ()()
472     {
473 root 1.34 return this->next () / (double)0xFFFFFFFFU;
474 root 1.32 }
475 root 1.34
476     protected:
477     uint32_t get_range (uint32_t r_max);
478     int get_range (int r_min, int r_max);
479 root 1.32 };
480    
481 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
482 root 1.32
483 root 1.74 extern rand_gen rndm, rmg_rndm;
484 root 1.32
485 root 1.54 INTERFACE_CLASS (attachable)
486     struct refcnt_base
487     {
488     typedef int refcnt_t;
489     mutable refcnt_t ACC (RW, refcnt);
490    
491     MTH void refcnt_inc () const { ++refcnt; }
492     MTH void refcnt_dec () const { --refcnt; }
493    
494     refcnt_base () : refcnt (0) { }
495     };
496    
497 root 1.56 // to avoid branches with more advanced compilers
498 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
499    
500 root 1.7 template<class T>
501     struct refptr
502     {
503 root 1.54 // p if not null
504     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
505    
506     void refcnt_dec ()
507     {
508     if (!is_constant (p))
509     --*refcnt_ref ();
510     else if (p)
511     --p->refcnt;
512     }
513    
514     void refcnt_inc ()
515     {
516     if (!is_constant (p))
517     ++*refcnt_ref ();
518     else if (p)
519     ++p->refcnt;
520     }
521    
522 root 1.7 T *p;
523    
524     refptr () : p(0) { }
525 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
526     refptr (T *p) : p(p) { refcnt_inc (); }
527     ~refptr () { refcnt_dec (); }
528 root 1.7
529     const refptr<T> &operator =(T *o)
530     {
531 root 1.54 // if decrementing ever destroys we need to reverse the order here
532     refcnt_dec ();
533 root 1.7 p = o;
534 root 1.54 refcnt_inc ();
535 root 1.7 return *this;
536     }
537    
538 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
539 root 1.7 {
540     *this = o.p;
541     return *this;
542     }
543    
544     T &operator * () const { return *p; }
545 root 1.54 T *operator ->() const { return p; }
546 root 1.7
547     operator T *() const { return p; }
548     };
549    
550 root 1.24 typedef refptr<maptile> maptile_ptr;
551 root 1.22 typedef refptr<object> object_ptr;
552     typedef refptr<archetype> arch_ptr;
553 root 1.24 typedef refptr<client> client_ptr;
554     typedef refptr<player> player_ptr;
555 root 1.22
556 root 1.4 struct str_hash
557     {
558     std::size_t operator ()(const char *s) const
559     {
560 root 1.84 #if 0
561     uint32_t hash = 0;
562 root 1.4
563     /* use the one-at-a-time hash function, which supposedly is
564     * better than the djb2-like one used by perl5.005, but
565     * certainly is better then the bug used here before.
566     * see http://burtleburtle.net/bob/hash/doobs.html
567     */
568     while (*s)
569     {
570     hash += *s++;
571     hash += hash << 10;
572     hash ^= hash >> 6;
573     }
574    
575     hash += hash << 3;
576     hash ^= hash >> 11;
577     hash += hash << 15;
578 root 1.84 #else
579     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
580     // it is about twice as fast as the one-at-a-time one,
581     // with good distribution.
582     // FNV-1a is faster on many cpus because the multiplication
583     // runs concurrent with the looping logic.
584     uint32_t hash = 2166136261;
585    
586     while (*s)
587     hash = (hash ^ *s++) * 16777619;
588     #endif
589 root 1.4
590     return hash;
591     }
592     };
593    
594     struct str_equal
595     {
596     bool operator ()(const char *a, const char *b) const
597     {
598     return !strcmp (a, b);
599     }
600     };
601    
602 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
603 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
604 root 1.49 //
605 root 1.52 // NOTE: only some forms of erase are available
606 root 1.26 template<class T>
607     struct unordered_vector : std::vector<T, slice_allocator<T> >
608 root 1.6 {
609 root 1.11 typedef typename unordered_vector::iterator iterator;
610 root 1.6
611     void erase (unsigned int pos)
612     {
613     if (pos < this->size () - 1)
614     (*this)[pos] = (*this)[this->size () - 1];
615    
616     this->pop_back ();
617     }
618    
619     void erase (iterator i)
620     {
621     erase ((unsigned int )(i - this->begin ()));
622     }
623     };
624    
625 root 1.49 // This container blends advantages of linked lists
626     // (efficiency) with vectors (random access) by
627     // by using an unordered vector and storing the vector
628     // index inside the object.
629     //
630     // + memory-efficient on most 64 bit archs
631     // + O(1) insert/remove
632     // + free unique (but varying) id for inserted objects
633     // + cache-friendly iteration
634     // - only works for pointers to structs
635     //
636     // NOTE: only some forms of erase/insert are available
637 root 1.50 typedef int object_vector_index;
638    
639     template<class T, object_vector_index T::*indexmember>
640 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
641     {
642 root 1.48 typedef typename object_vector::iterator iterator;
643    
644     bool contains (const T *obj) const
645     {
646 root 1.50 return obj->*indexmember;
647 root 1.48 }
648    
649     iterator find (const T *obj)
650     {
651 root 1.50 return obj->*indexmember
652     ? this->begin () + obj->*indexmember - 1
653 root 1.48 : this->end ();
654     }
655    
656 root 1.53 void push_back (T *obj)
657     {
658     std::vector<T *, slice_allocator<T *> >::push_back (obj);
659     obj->*indexmember = this->size ();
660     }
661    
662 root 1.26 void insert (T *obj)
663     {
664     push_back (obj);
665     }
666    
667     void insert (T &obj)
668     {
669     insert (&obj);
670     }
671    
672     void erase (T *obj)
673     {
674 root 1.50 unsigned int pos = obj->*indexmember;
675     obj->*indexmember = 0;
676 root 1.26
677     if (pos < this->size ())
678     {
679     (*this)[pos - 1] = (*this)[this->size () - 1];
680 root 1.50 (*this)[pos - 1]->*indexmember = pos;
681 root 1.26 }
682    
683     this->pop_back ();
684     }
685    
686     void erase (T &obj)
687     {
688 root 1.50 erase (&obj);
689 root 1.26 }
690     };
691    
692 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
693 root 1.87 // returns the number of bytes actually used (including \0)
694     int assign (char *dst, const char *src, int maxsize);
695 root 1.10
696     // type-safe version of assign
697 root 1.9 template<int N>
698 root 1.87 inline int assign (char (&dst)[N], const char *src)
699 root 1.9 {
700 root 1.87 return assign ((char *)&dst, src, N);
701 root 1.9 }
702    
703 root 1.17 typedef double tstamp;
704    
705 root 1.59 // return current time as timestamp
706 root 1.17 tstamp now ();
707    
708 root 1.25 int similar_direction (int a, int b);
709    
710 root 1.55 // like sprintf, but returns a "static" buffer
711     const char *format (const char *format, ...);
712 root 1.43
713 root 1.66 /////////////////////////////////////////////////////////////////////////////
714     // threads, very very thin wrappers around pthreads
715    
716     struct thread
717     {
718     pthread_t id;
719    
720     void start (void *(*start_routine)(void *), void *arg = 0);
721    
722     void cancel ()
723     {
724     pthread_cancel (id);
725     }
726    
727     void *join ()
728     {
729     void *ret;
730    
731     if (pthread_join (id, &ret))
732     cleanup ("pthread_join failed", 1);
733    
734     return ret;
735     }
736     };
737    
738     // note that mutexes are not classes
739     typedef pthread_mutex_t smutex;
740    
741     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
742     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
743     #else
744     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
745     #endif
746    
747     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
748 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
749 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
750    
751 root 1.68 typedef pthread_cond_t scond;
752    
753     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
754     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
755     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
756     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
757    
758 root 1.1 #endif
759