ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.91
Committed: Thu Oct 15 21:09:32 2009 UTC (14 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.90: +3 -2 lines
Log Message:
get rid of HUGE_BUF

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.75 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
29 root 1.36
30 root 1.2 #if __GNUC__ >= 3
31 root 1.45 # define is_constant(c) __builtin_constant_p (c)
32     # define expect(expr,value) __builtin_expect ((expr),(value))
33     # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34 root 1.85 # define noinline __attribute__((__noinline__))
35 root 1.2 #else
36 root 1.45 # define is_constant(c) 0
37     # define expect(expr,value) (expr)
38     # define prefetch(addr,rw,locality)
39 root 1.85 # define noinline
40 root 1.2 #endif
41    
42 root 1.47 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43     # define decltype(x) typeof(x)
44     #endif
45    
46 root 1.45 // put into ifs if you are very sure that the expression
47     // is mostly true or mosty false. note that these return
48     // booleans, not the expression.
49 root 1.84 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
50     #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51 root 1.45
52 root 1.66 #include <pthread.h>
53    
54 root 1.11 #include <cstddef>
55 root 1.28 #include <cmath>
56 root 1.25 #include <new>
57     #include <vector>
58 root 1.11
59     #include <glib.h>
60    
61 root 1.25 #include <shstr.h>
62     #include <traits.h>
63    
64 root 1.65 #if DEBUG_SALLOC
65 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
66     # define g_slice_alloc(s) debug_slice_alloc(s)
67     # define g_slice_free1(s,p) debug_slice_free1(s,p)
68     void *g_slice_alloc (unsigned long size);
69     void *g_slice_alloc0 (unsigned long size);
70     void g_slice_free1 (unsigned long size, void *ptr);
71 root 1.67 #elif PREFER_MALLOC
72     # define g_slice_alloc0(s) calloc (1, (s))
73     # define g_slice_alloc(s) malloc ((s))
74 root 1.68 # define g_slice_free1(s,p) free ((p))
75 root 1.60 #endif
76    
77 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
78 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
79 root 1.14
80 root 1.81 // very ugly macro that basically declares and initialises a variable
81 root 1.26 // that is in scope for the next statement only
82     // works only for stuff that can be assigned 0 and converts to false
83     // (note: works great for pointers)
84     // most ugly macro I ever wrote
85 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
86 root 1.26
87 root 1.27 // in range including end
88     #define IN_RANGE_INC(val,beg,end) \
89     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
90    
91     // in range excluding end
92     #define IN_RANGE_EXC(val,beg,end) \
93     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
94    
95 root 1.66 void cleanup (const char *cause, bool make_core = false);
96 root 1.31 void fork_abort (const char *msg);
97    
98 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
99     // as a is often a constant while b is the variable. it is still a bug, though.
100     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
101     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
102     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
103 root 1.32
104 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107 root 1.78
108 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
109    
110 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112    
113 root 1.79 // sign returns -1 or +1
114     template<typename T>
115     static inline T sign (T v) { return v < 0 ? -1 : +1; }
116     // relies on 2c representation
117     template<>
118     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119    
120     // sign0 returns -1, 0 or +1
121     template<typename T>
122     static inline T sign0 (T v) { return v ? sign (v) : 0; }
123    
124 root 1.88 // div* only work correctly for div > 0
125 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126 root 1.88 template<typename T> static inline T div (T val, T div)
127     {
128     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129     }
130 root 1.78 // div, round-up
131 root 1.88 template<typename T> static inline T div_ru (T val, T div)
132     {
133     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134     }
135 root 1.78 // div, round-down
136 root 1.88 template<typename T> static inline T div_rd (T val, T div)
137     {
138     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139     }
140 root 1.78
141 root 1.88 // lerp* only work correctly for min_in < max_in
142     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
143 root 1.44 template<typename T>
144     static inline T
145     lerp (T val, T min_in, T max_in, T min_out, T max_out)
146     {
147 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148     }
149    
150     // lerp, round-down
151     template<typename T>
152     static inline T
153     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154     {
155     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156     }
157    
158     // lerp, round-up
159     template<typename T>
160     static inline T
161     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162     {
163     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
164 root 1.44 }
165    
166 root 1.37 // lots of stuff taken from FXT
167    
168     /* Rotate right. This is used in various places for checksumming */
169 root 1.38 //TODO: that sucks, use a better checksum algo
170 root 1.37 static inline uint32_t
171 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
172 root 1.37 {
173 root 1.38 return (c << (32 - count)) | (c >> count);
174     }
175    
176     static inline uint32_t
177     rotate_left (uint32_t c, uint32_t count = 1)
178     {
179     return (c >> (32 - count)) | (c << count);
180 root 1.37 }
181    
182     // Return abs(a-b)
183     // Both a and b must not have the most significant bit set
184     static inline uint32_t
185     upos_abs_diff (uint32_t a, uint32_t b)
186     {
187     long d1 = b - a;
188     long d2 = (d1 & (d1 >> 31)) << 1;
189    
190     return d1 - d2; // == (b - d) - (a + d);
191     }
192    
193     // Both a and b must not have the most significant bit set
194     static inline uint32_t
195     upos_min (uint32_t a, uint32_t b)
196     {
197     int32_t d = b - a;
198     d &= d >> 31;
199     return a + d;
200     }
201    
202     // Both a and b must not have the most significant bit set
203     static inline uint32_t
204     upos_max (uint32_t a, uint32_t b)
205     {
206     int32_t d = b - a;
207     d &= d >> 31;
208     return b - d;
209     }
210    
211 root 1.28 // this is much faster than crossfires original algorithm
212     // on modern cpus
213     inline int
214     isqrt (int n)
215     {
216     return (int)sqrtf ((float)n);
217     }
218    
219     // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
220     #if 0
221     // and has a max. error of 6 in the range -100..+100.
222     #else
223     // and has a max. error of 9 in the range -100..+100.
224     #endif
225     inline int
226     idistance (int dx, int dy)
227     {
228     unsigned int dx_ = abs (dx);
229     unsigned int dy_ = abs (dy);
230    
231     #if 0
232     return dx_ > dy_
233     ? (dx_ * 61685 + dy_ * 26870) >> 16
234     : (dy_ * 61685 + dx_ * 26870) >> 16;
235     #else
236 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
237 root 1.28 #endif
238     }
239    
240 root 1.29 /*
241     * absdir(int): Returns a number between 1 and 8, which represent
242     * the "absolute" direction of a number (it actually takes care of
243     * "overflow" in previous calculations of a direction).
244     */
245     inline int
246     absdir (int d)
247     {
248     return ((d - 1) & 7) + 1;
249     }
250 root 1.28
251 root 1.67 extern ssize_t slice_alloc; // statistics
252    
253     void *salloc_ (int n) throw (std::bad_alloc);
254     void *salloc_ (int n, void *src) throw (std::bad_alloc);
255    
256     // strictly the same as g_slice_alloc, but never returns 0
257     template<typename T>
258     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
259    
260     // also copies src into the new area, like "memdup"
261     // if src is 0, clears the memory
262     template<typename T>
263     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
264    
265     // clears the memory
266     template<typename T>
267     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
268    
269     // for symmetry
270     template<typename T>
271     inline void sfree (T *ptr, int n = 1) throw ()
272     {
273     if (expect_true (ptr))
274     {
275     slice_alloc -= n * sizeof (T);
276 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
277 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
278     assert (slice_alloc >= 0);//D
279     }
280     }
281 root 1.57
282 root 1.72 // nulls the pointer
283     template<typename T>
284     inline void sfree0 (T *&ptr, int n = 1) throw ()
285     {
286     sfree<T> (ptr, n);
287     ptr = 0;
288     }
289    
290 root 1.1 // makes dynamically allocated objects zero-initialised
291     struct zero_initialised
292     {
293 root 1.11 void *operator new (size_t s, void *p)
294     {
295     memset (p, 0, s);
296     return p;
297     }
298    
299     void *operator new (size_t s)
300     {
301 root 1.67 return salloc0<char> (s);
302 root 1.11 }
303    
304     void *operator new[] (size_t s)
305     {
306 root 1.67 return salloc0<char> (s);
307 root 1.11 }
308    
309     void operator delete (void *p, size_t s)
310     {
311 root 1.67 sfree ((char *)p, s);
312 root 1.11 }
313    
314     void operator delete[] (void *p, size_t s)
315     {
316 root 1.67 sfree ((char *)p, s);
317 root 1.11 }
318     };
319    
320 root 1.73 // makes dynamically allocated objects zero-initialised
321     struct slice_allocated
322     {
323     void *operator new (size_t s, void *p)
324     {
325     return p;
326     }
327    
328     void *operator new (size_t s)
329     {
330     return salloc<char> (s);
331     }
332    
333     void *operator new[] (size_t s)
334     {
335     return salloc<char> (s);
336     }
337    
338     void operator delete (void *p, size_t s)
339     {
340     sfree ((char *)p, s);
341     }
342    
343     void operator delete[] (void *p, size_t s)
344     {
345     sfree ((char *)p, s);
346     }
347     };
348    
349 root 1.11 // a STL-compatible allocator that uses g_slice
350     // boy, this is verbose
351     template<typename Tp>
352     struct slice_allocator
353     {
354     typedef size_t size_type;
355     typedef ptrdiff_t difference_type;
356     typedef Tp *pointer;
357     typedef const Tp *const_pointer;
358     typedef Tp &reference;
359     typedef const Tp &const_reference;
360     typedef Tp value_type;
361    
362     template <class U>
363     struct rebind
364     {
365     typedef slice_allocator<U> other;
366     };
367    
368     slice_allocator () throw () { }
369 root 1.64 slice_allocator (const slice_allocator &) throw () { }
370 root 1.11 template<typename Tp2>
371     slice_allocator (const slice_allocator<Tp2> &) throw () { }
372    
373     ~slice_allocator () { }
374    
375     pointer address (reference x) const { return &x; }
376     const_pointer address (const_reference x) const { return &x; }
377    
378     pointer allocate (size_type n, const_pointer = 0)
379     {
380 root 1.18 return salloc<Tp> (n);
381 root 1.11 }
382    
383     void deallocate (pointer p, size_type n)
384     {
385 root 1.19 sfree<Tp> (p, n);
386 root 1.11 }
387    
388 root 1.64 size_type max_size () const throw ()
389 root 1.11 {
390     return size_t (-1) / sizeof (Tp);
391     }
392    
393     void construct (pointer p, const Tp &val)
394     {
395     ::new (p) Tp (val);
396     }
397    
398     void destroy (pointer p)
399     {
400     p->~Tp ();
401     }
402 root 1.1 };
403    
404 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
405     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
406     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
407     struct tausworthe_random_generator
408     {
409     uint32_t state [4];
410    
411 root 1.34 void operator =(const tausworthe_random_generator &src)
412     {
413     state [0] = src.state [0];
414     state [1] = src.state [1];
415     state [2] = src.state [2];
416     state [3] = src.state [3];
417     }
418    
419     void seed (uint32_t seed);
420 root 1.32 uint32_t next ();
421 root 1.83 };
422    
423     // Xorshift RNGs, George Marsaglia
424     // http://www.jstatsoft.org/v08/i14/paper
425     // this one is about 40% faster than the tausworthe one above (i.e. not much),
426     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
427 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
428 root 1.83 struct xorshift_random_generator
429     {
430     uint32_t x, y;
431    
432     void operator =(const xorshift_random_generator &src)
433     {
434     x = src.x;
435     y = src.y;
436     }
437    
438     void seed (uint32_t seed)
439     {
440     x = seed;
441     y = seed * 69069U;
442     }
443 root 1.32
444 root 1.83 uint32_t next ()
445     {
446     uint32_t t = x ^ (x << 10);
447     x = y;
448     y = y ^ (y >> 13) ^ t ^ (t >> 10);
449     return y;
450     }
451     };
452    
453     template<class generator>
454     struct random_number_generator : generator
455     {
456 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
457 root 1.42 uint32_t operator ()(uint32_t num)
458 root 1.32 {
459 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
460     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
461     : this->next () & (num - 1); // constant, power-of-two
462 root 1.32 }
463    
464     // return a number within (min .. max)
465     int operator () (int r_min, int r_max)
466     {
467 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
468     ? r_min + operator ()(r_max - r_min + 1)
469 root 1.34 : get_range (r_min, r_max);
470 root 1.32 }
471    
472     double operator ()()
473     {
474 root 1.34 return this->next () / (double)0xFFFFFFFFU;
475 root 1.32 }
476 root 1.34
477     protected:
478     uint32_t get_range (uint32_t r_max);
479     int get_range (int r_min, int r_max);
480 root 1.32 };
481    
482 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
483 root 1.32
484 root 1.74 extern rand_gen rndm, rmg_rndm;
485 root 1.32
486 root 1.54 INTERFACE_CLASS (attachable)
487     struct refcnt_base
488     {
489     typedef int refcnt_t;
490     mutable refcnt_t ACC (RW, refcnt);
491    
492     MTH void refcnt_inc () const { ++refcnt; }
493     MTH void refcnt_dec () const { --refcnt; }
494    
495     refcnt_base () : refcnt (0) { }
496     };
497    
498 root 1.56 // to avoid branches with more advanced compilers
499 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
500    
501 root 1.7 template<class T>
502     struct refptr
503     {
504 root 1.54 // p if not null
505     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
506    
507     void refcnt_dec ()
508     {
509     if (!is_constant (p))
510     --*refcnt_ref ();
511     else if (p)
512     --p->refcnt;
513     }
514    
515     void refcnt_inc ()
516     {
517     if (!is_constant (p))
518     ++*refcnt_ref ();
519     else if (p)
520     ++p->refcnt;
521     }
522    
523 root 1.7 T *p;
524    
525     refptr () : p(0) { }
526 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
527     refptr (T *p) : p(p) { refcnt_inc (); }
528     ~refptr () { refcnt_dec (); }
529 root 1.7
530     const refptr<T> &operator =(T *o)
531     {
532 root 1.54 // if decrementing ever destroys we need to reverse the order here
533     refcnt_dec ();
534 root 1.7 p = o;
535 root 1.54 refcnt_inc ();
536 root 1.7 return *this;
537     }
538    
539 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
540 root 1.7 {
541     *this = o.p;
542     return *this;
543     }
544    
545     T &operator * () const { return *p; }
546 root 1.54 T *operator ->() const { return p; }
547 root 1.7
548     operator T *() const { return p; }
549     };
550    
551 root 1.24 typedef refptr<maptile> maptile_ptr;
552 root 1.22 typedef refptr<object> object_ptr;
553     typedef refptr<archetype> arch_ptr;
554 root 1.24 typedef refptr<client> client_ptr;
555     typedef refptr<player> player_ptr;
556 root 1.22
557 root 1.4 struct str_hash
558     {
559     std::size_t operator ()(const char *s) const
560     {
561 root 1.84 #if 0
562     uint32_t hash = 0;
563 root 1.4
564     /* use the one-at-a-time hash function, which supposedly is
565     * better than the djb2-like one used by perl5.005, but
566     * certainly is better then the bug used here before.
567     * see http://burtleburtle.net/bob/hash/doobs.html
568     */
569     while (*s)
570     {
571     hash += *s++;
572     hash += hash << 10;
573     hash ^= hash >> 6;
574     }
575    
576     hash += hash << 3;
577     hash ^= hash >> 11;
578     hash += hash << 15;
579 root 1.84 #else
580     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
581     // it is about twice as fast as the one-at-a-time one,
582     // with good distribution.
583     // FNV-1a is faster on many cpus because the multiplication
584     // runs concurrent with the looping logic.
585     uint32_t hash = 2166136261;
586    
587     while (*s)
588     hash = (hash ^ *s++) * 16777619;
589     #endif
590 root 1.4
591     return hash;
592     }
593     };
594    
595     struct str_equal
596     {
597     bool operator ()(const char *a, const char *b) const
598     {
599     return !strcmp (a, b);
600     }
601     };
602    
603 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
604 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
605 root 1.49 //
606 root 1.52 // NOTE: only some forms of erase are available
607 root 1.26 template<class T>
608     struct unordered_vector : std::vector<T, slice_allocator<T> >
609 root 1.6 {
610 root 1.11 typedef typename unordered_vector::iterator iterator;
611 root 1.6
612     void erase (unsigned int pos)
613     {
614     if (pos < this->size () - 1)
615     (*this)[pos] = (*this)[this->size () - 1];
616    
617     this->pop_back ();
618     }
619    
620     void erase (iterator i)
621     {
622     erase ((unsigned int )(i - this->begin ()));
623     }
624     };
625    
626 root 1.49 // This container blends advantages of linked lists
627     // (efficiency) with vectors (random access) by
628     // by using an unordered vector and storing the vector
629     // index inside the object.
630     //
631     // + memory-efficient on most 64 bit archs
632     // + O(1) insert/remove
633     // + free unique (but varying) id for inserted objects
634     // + cache-friendly iteration
635     // - only works for pointers to structs
636     //
637     // NOTE: only some forms of erase/insert are available
638 root 1.50 typedef int object_vector_index;
639    
640     template<class T, object_vector_index T::*indexmember>
641 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
642     {
643 root 1.48 typedef typename object_vector::iterator iterator;
644    
645     bool contains (const T *obj) const
646     {
647 root 1.50 return obj->*indexmember;
648 root 1.48 }
649    
650     iterator find (const T *obj)
651     {
652 root 1.50 return obj->*indexmember
653     ? this->begin () + obj->*indexmember - 1
654 root 1.48 : this->end ();
655     }
656    
657 root 1.53 void push_back (T *obj)
658     {
659     std::vector<T *, slice_allocator<T *> >::push_back (obj);
660     obj->*indexmember = this->size ();
661     }
662    
663 root 1.26 void insert (T *obj)
664     {
665     push_back (obj);
666     }
667    
668     void insert (T &obj)
669     {
670     insert (&obj);
671     }
672    
673     void erase (T *obj)
674     {
675 root 1.50 unsigned int pos = obj->*indexmember;
676     obj->*indexmember = 0;
677 root 1.26
678     if (pos < this->size ())
679     {
680     (*this)[pos - 1] = (*this)[this->size () - 1];
681 root 1.50 (*this)[pos - 1]->*indexmember = pos;
682 root 1.26 }
683    
684     this->pop_back ();
685     }
686    
687     void erase (T &obj)
688     {
689 root 1.50 erase (&obj);
690 root 1.26 }
691     };
692    
693 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
694 root 1.87 // returns the number of bytes actually used (including \0)
695     int assign (char *dst, const char *src, int maxsize);
696 root 1.10
697     // type-safe version of assign
698 root 1.9 template<int N>
699 root 1.87 inline int assign (char (&dst)[N], const char *src)
700 root 1.9 {
701 root 1.87 return assign ((char *)&dst, src, N);
702 root 1.9 }
703    
704 root 1.17 typedef double tstamp;
705    
706 root 1.59 // return current time as timestamp
707 root 1.17 tstamp now ();
708    
709 root 1.25 int similar_direction (int a, int b);
710    
711 root 1.91 // like v?sprintf, but returns a "static" buffer
712     char *vformat (const char *format, va_list ap);
713     char *format (const char *format, ...);
714 root 1.43
715 sf-marcmagus 1.89 // safety-check player input which will become object->msg
716     bool msg_is_safe (const char *msg);
717    
718 root 1.66 /////////////////////////////////////////////////////////////////////////////
719     // threads, very very thin wrappers around pthreads
720    
721     struct thread
722     {
723     pthread_t id;
724    
725     void start (void *(*start_routine)(void *), void *arg = 0);
726    
727     void cancel ()
728     {
729     pthread_cancel (id);
730     }
731    
732     void *join ()
733     {
734     void *ret;
735    
736     if (pthread_join (id, &ret))
737     cleanup ("pthread_join failed", 1);
738    
739     return ret;
740     }
741     };
742    
743     // note that mutexes are not classes
744     typedef pthread_mutex_t smutex;
745    
746     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
747     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
748     #else
749     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
750     #endif
751    
752     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
753 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
754 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
755    
756 root 1.68 typedef pthread_cond_t scond;
757    
758     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
759     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
760     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
761     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
762    
763 root 1.1 #endif
764