ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.95
Committed: Tue Nov 10 00:01:31 2009 UTC (14 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.94: +34 -30 lines
Log Message:
store hash in shstr

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.75 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.81 // very ugly macro that basically declares and initialises a variable
61 root 1.26 // that is in scope for the next statement only
62     // works only for stuff that can be assigned 0 and converts to false
63     // (note: works great for pointers)
64     // most ugly macro I ever wrote
65 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66 root 1.26
67 root 1.27 // in range including end
68     #define IN_RANGE_INC(val,beg,end) \
69     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70    
71     // in range excluding end
72     #define IN_RANGE_EXC(val,beg,end) \
73     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74    
75 root 1.66 void cleanup (const char *cause, bool make_core = false);
76 root 1.31 void fork_abort (const char *msg);
77    
78 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
79     // as a is often a constant while b is the variable. it is still a bug, though.
80     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
81     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
82     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 root 1.32
84 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87 root 1.78
88 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89    
90 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92    
93 root 1.79 // sign returns -1 or +1
94     template<typename T>
95     static inline T sign (T v) { return v < 0 ? -1 : +1; }
96     // relies on 2c representation
97     template<>
98     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99    
100     // sign0 returns -1, 0 or +1
101     template<typename T>
102     static inline T sign0 (T v) { return v ? sign (v) : 0; }
103    
104 root 1.88 // div* only work correctly for div > 0
105 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106 root 1.88 template<typename T> static inline T div (T val, T div)
107     {
108     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109     }
110 root 1.78 // div, round-up
111 root 1.88 template<typename T> static inline T div_ru (T val, T div)
112     {
113     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114     }
115 root 1.78 // div, round-down
116 root 1.88 template<typename T> static inline T div_rd (T val, T div)
117     {
118     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119     }
120 root 1.78
121 root 1.88 // lerp* only work correctly for min_in < max_in
122     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123 root 1.44 template<typename T>
124     static inline T
125     lerp (T val, T min_in, T max_in, T min_out, T max_out)
126     {
127 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
128     }
129    
130     // lerp, round-down
131     template<typename T>
132     static inline T
133     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
134     {
135     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
136     }
137    
138     // lerp, round-up
139     template<typename T>
140     static inline T
141     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
142     {
143     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144 root 1.44 }
145    
146 root 1.37 // lots of stuff taken from FXT
147    
148     /* Rotate right. This is used in various places for checksumming */
149 root 1.38 //TODO: that sucks, use a better checksum algo
150 root 1.37 static inline uint32_t
151 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
152 root 1.37 {
153 root 1.38 return (c << (32 - count)) | (c >> count);
154     }
155    
156     static inline uint32_t
157     rotate_left (uint32_t c, uint32_t count = 1)
158     {
159     return (c >> (32 - count)) | (c << count);
160 root 1.37 }
161    
162     // Return abs(a-b)
163     // Both a and b must not have the most significant bit set
164     static inline uint32_t
165     upos_abs_diff (uint32_t a, uint32_t b)
166     {
167     long d1 = b - a;
168     long d2 = (d1 & (d1 >> 31)) << 1;
169    
170     return d1 - d2; // == (b - d) - (a + d);
171     }
172    
173     // Both a and b must not have the most significant bit set
174     static inline uint32_t
175     upos_min (uint32_t a, uint32_t b)
176     {
177     int32_t d = b - a;
178     d &= d >> 31;
179     return a + d;
180     }
181    
182     // Both a and b must not have the most significant bit set
183     static inline uint32_t
184     upos_max (uint32_t a, uint32_t b)
185     {
186     int32_t d = b - a;
187     d &= d >> 31;
188     return b - d;
189     }
190    
191 root 1.94 // this is much faster than crossfire's original algorithm
192 root 1.28 // on modern cpus
193     inline int
194     isqrt (int n)
195     {
196     return (int)sqrtf ((float)n);
197     }
198    
199 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
200     // more handy than it looks like, due to the implicit !! done on its arguments
201     inline bool
202     logical_xor (bool a, bool b)
203     {
204     return a != b;
205     }
206    
207     inline bool
208     logical_implies (bool a, bool b)
209     {
210     return a <= b;
211     }
212    
213 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
214     #if 0
215     // and has a max. error of 6 in the range -100..+100.
216     #else
217     // and has a max. error of 9 in the range -100..+100.
218     #endif
219     inline int
220     idistance (int dx, int dy)
221     {
222     unsigned int dx_ = abs (dx);
223     unsigned int dy_ = abs (dy);
224    
225     #if 0
226     return dx_ > dy_
227     ? (dx_ * 61685 + dy_ * 26870) >> 16
228     : (dy_ * 61685 + dx_ * 26870) >> 16;
229     #else
230 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
231 root 1.28 #endif
232     }
233    
234 root 1.29 /*
235     * absdir(int): Returns a number between 1 and 8, which represent
236     * the "absolute" direction of a number (it actually takes care of
237     * "overflow" in previous calculations of a direction).
238     */
239     inline int
240     absdir (int d)
241     {
242     return ((d - 1) & 7) + 1;
243     }
244 root 1.28
245 root 1.67 extern ssize_t slice_alloc; // statistics
246    
247     void *salloc_ (int n) throw (std::bad_alloc);
248     void *salloc_ (int n, void *src) throw (std::bad_alloc);
249    
250     // strictly the same as g_slice_alloc, but never returns 0
251     template<typename T>
252     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
253    
254     // also copies src into the new area, like "memdup"
255     // if src is 0, clears the memory
256     template<typename T>
257     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
258    
259     // clears the memory
260     template<typename T>
261     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
262    
263     // for symmetry
264     template<typename T>
265     inline void sfree (T *ptr, int n = 1) throw ()
266     {
267     if (expect_true (ptr))
268     {
269     slice_alloc -= n * sizeof (T);
270 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
271 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
272     assert (slice_alloc >= 0);//D
273     }
274     }
275 root 1.57
276 root 1.72 // nulls the pointer
277     template<typename T>
278     inline void sfree0 (T *&ptr, int n = 1) throw ()
279     {
280     sfree<T> (ptr, n);
281     ptr = 0;
282     }
283    
284 root 1.1 // makes dynamically allocated objects zero-initialised
285     struct zero_initialised
286     {
287 root 1.11 void *operator new (size_t s, void *p)
288     {
289     memset (p, 0, s);
290     return p;
291     }
292    
293     void *operator new (size_t s)
294     {
295 root 1.67 return salloc0<char> (s);
296 root 1.11 }
297    
298     void *operator new[] (size_t s)
299     {
300 root 1.67 return salloc0<char> (s);
301 root 1.11 }
302    
303     void operator delete (void *p, size_t s)
304     {
305 root 1.67 sfree ((char *)p, s);
306 root 1.11 }
307    
308     void operator delete[] (void *p, size_t s)
309     {
310 root 1.67 sfree ((char *)p, s);
311 root 1.11 }
312     };
313    
314 root 1.73 // makes dynamically allocated objects zero-initialised
315     struct slice_allocated
316     {
317     void *operator new (size_t s, void *p)
318     {
319     return p;
320     }
321    
322     void *operator new (size_t s)
323     {
324     return salloc<char> (s);
325     }
326    
327     void *operator new[] (size_t s)
328     {
329     return salloc<char> (s);
330     }
331    
332     void operator delete (void *p, size_t s)
333     {
334     sfree ((char *)p, s);
335     }
336    
337     void operator delete[] (void *p, size_t s)
338     {
339     sfree ((char *)p, s);
340     }
341     };
342    
343 root 1.11 // a STL-compatible allocator that uses g_slice
344     // boy, this is verbose
345     template<typename Tp>
346     struct slice_allocator
347     {
348     typedef size_t size_type;
349     typedef ptrdiff_t difference_type;
350     typedef Tp *pointer;
351     typedef const Tp *const_pointer;
352     typedef Tp &reference;
353     typedef const Tp &const_reference;
354     typedef Tp value_type;
355    
356     template <class U>
357     struct rebind
358     {
359     typedef slice_allocator<U> other;
360     };
361    
362     slice_allocator () throw () { }
363 root 1.64 slice_allocator (const slice_allocator &) throw () { }
364 root 1.11 template<typename Tp2>
365     slice_allocator (const slice_allocator<Tp2> &) throw () { }
366    
367     ~slice_allocator () { }
368    
369     pointer address (reference x) const { return &x; }
370     const_pointer address (const_reference x) const { return &x; }
371    
372     pointer allocate (size_type n, const_pointer = 0)
373     {
374 root 1.18 return salloc<Tp> (n);
375 root 1.11 }
376    
377     void deallocate (pointer p, size_type n)
378     {
379 root 1.19 sfree<Tp> (p, n);
380 root 1.11 }
381    
382 root 1.64 size_type max_size () const throw ()
383 root 1.11 {
384     return size_t (-1) / sizeof (Tp);
385     }
386    
387     void construct (pointer p, const Tp &val)
388     {
389     ::new (p) Tp (val);
390     }
391    
392     void destroy (pointer p)
393     {
394     p->~Tp ();
395     }
396 root 1.1 };
397    
398 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
399     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
400     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
401     struct tausworthe_random_generator
402     {
403     uint32_t state [4];
404    
405 root 1.34 void operator =(const tausworthe_random_generator &src)
406     {
407     state [0] = src.state [0];
408     state [1] = src.state [1];
409     state [2] = src.state [2];
410     state [3] = src.state [3];
411     }
412    
413     void seed (uint32_t seed);
414 root 1.32 uint32_t next ();
415 root 1.83 };
416    
417     // Xorshift RNGs, George Marsaglia
418     // http://www.jstatsoft.org/v08/i14/paper
419     // this one is about 40% faster than the tausworthe one above (i.e. not much),
420     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
421 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
422 root 1.83 struct xorshift_random_generator
423     {
424     uint32_t x, y;
425    
426     void operator =(const xorshift_random_generator &src)
427     {
428     x = src.x;
429     y = src.y;
430     }
431    
432     void seed (uint32_t seed)
433     {
434     x = seed;
435     y = seed * 69069U;
436     }
437 root 1.32
438 root 1.83 uint32_t next ()
439     {
440     uint32_t t = x ^ (x << 10);
441     x = y;
442     y = y ^ (y >> 13) ^ t ^ (t >> 10);
443     return y;
444     }
445     };
446    
447     template<class generator>
448     struct random_number_generator : generator
449     {
450 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
451 root 1.42 uint32_t operator ()(uint32_t num)
452 root 1.32 {
453 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
454     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
455     : this->next () & (num - 1); // constant, power-of-two
456 root 1.32 }
457    
458     // return a number within (min .. max)
459     int operator () (int r_min, int r_max)
460     {
461 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
462     ? r_min + operator ()(r_max - r_min + 1)
463 root 1.34 : get_range (r_min, r_max);
464 root 1.32 }
465    
466     double operator ()()
467     {
468 root 1.34 return this->next () / (double)0xFFFFFFFFU;
469 root 1.32 }
470 root 1.34
471     protected:
472     uint32_t get_range (uint32_t r_max);
473     int get_range (int r_min, int r_max);
474 root 1.32 };
475    
476 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
477 root 1.32
478 root 1.74 extern rand_gen rndm, rmg_rndm;
479 root 1.32
480 root 1.54 INTERFACE_CLASS (attachable)
481     struct refcnt_base
482     {
483     typedef int refcnt_t;
484     mutable refcnt_t ACC (RW, refcnt);
485    
486     MTH void refcnt_inc () const { ++refcnt; }
487     MTH void refcnt_dec () const { --refcnt; }
488    
489     refcnt_base () : refcnt (0) { }
490     };
491    
492 root 1.56 // to avoid branches with more advanced compilers
493 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
494    
495 root 1.7 template<class T>
496     struct refptr
497     {
498 root 1.54 // p if not null
499     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
500    
501     void refcnt_dec ()
502     {
503     if (!is_constant (p))
504     --*refcnt_ref ();
505     else if (p)
506     --p->refcnt;
507     }
508    
509     void refcnt_inc ()
510     {
511     if (!is_constant (p))
512     ++*refcnt_ref ();
513     else if (p)
514     ++p->refcnt;
515     }
516    
517 root 1.7 T *p;
518    
519     refptr () : p(0) { }
520 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
521     refptr (T *p) : p(p) { refcnt_inc (); }
522     ~refptr () { refcnt_dec (); }
523 root 1.7
524     const refptr<T> &operator =(T *o)
525     {
526 root 1.54 // if decrementing ever destroys we need to reverse the order here
527     refcnt_dec ();
528 root 1.7 p = o;
529 root 1.54 refcnt_inc ();
530 root 1.7 return *this;
531     }
532    
533 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
534 root 1.7 {
535     *this = o.p;
536     return *this;
537     }
538    
539     T &operator * () const { return *p; }
540 root 1.54 T *operator ->() const { return p; }
541 root 1.7
542     operator T *() const { return p; }
543     };
544    
545 root 1.24 typedef refptr<maptile> maptile_ptr;
546 root 1.22 typedef refptr<object> object_ptr;
547     typedef refptr<archetype> arch_ptr;
548 root 1.24 typedef refptr<client> client_ptr;
549     typedef refptr<player> player_ptr;
550 root 1.22
551 root 1.95 #define STRHSH_NULL 2166136261
552    
553     static inline uint32_t
554     strhsh (const char *s)
555     {
556     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
557     // it is about twice as fast as the one-at-a-time one,
558     // with good distribution.
559     // FNV-1a is faster on many cpus because the multiplication
560     // runs concurrently with the looping logic.
561     uint32_t hash = STRHSH_NULL;
562    
563     while (*s)
564     hash = (hash ^ *s++) * 16777619;
565    
566     return hash;
567     }
568    
569     static inline uint32_t
570     memhsh (const char *s, size_t len)
571     {
572     uint32_t hash = STRHSH_NULL;
573    
574     while (len--)
575     hash = (hash ^ *s++) * 16777619;
576    
577     return hash;
578     }
579    
580 root 1.4 struct str_hash
581     {
582     std::size_t operator ()(const char *s) const
583     {
584 root 1.95 return strhsh (s);
585     }
586 root 1.4
587 root 1.95 std::size_t operator ()(const shstr &s) const
588     {
589     return strhsh (s);
590 root 1.4 }
591     };
592    
593     struct str_equal
594     {
595     bool operator ()(const char *a, const char *b) const
596     {
597     return !strcmp (a, b);
598     }
599     };
600    
601 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
602 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
603 root 1.49 //
604 root 1.52 // NOTE: only some forms of erase are available
605 root 1.26 template<class T>
606     struct unordered_vector : std::vector<T, slice_allocator<T> >
607 root 1.6 {
608 root 1.11 typedef typename unordered_vector::iterator iterator;
609 root 1.6
610     void erase (unsigned int pos)
611     {
612     if (pos < this->size () - 1)
613     (*this)[pos] = (*this)[this->size () - 1];
614    
615     this->pop_back ();
616     }
617    
618     void erase (iterator i)
619     {
620     erase ((unsigned int )(i - this->begin ()));
621     }
622     };
623    
624 root 1.49 // This container blends advantages of linked lists
625     // (efficiency) with vectors (random access) by
626     // by using an unordered vector and storing the vector
627     // index inside the object.
628     //
629     // + memory-efficient on most 64 bit archs
630     // + O(1) insert/remove
631     // + free unique (but varying) id for inserted objects
632     // + cache-friendly iteration
633     // - only works for pointers to structs
634     //
635     // NOTE: only some forms of erase/insert are available
636 root 1.50 typedef int object_vector_index;
637    
638     template<class T, object_vector_index T::*indexmember>
639 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
640     {
641 root 1.48 typedef typename object_vector::iterator iterator;
642    
643     bool contains (const T *obj) const
644     {
645 root 1.50 return obj->*indexmember;
646 root 1.48 }
647    
648     iterator find (const T *obj)
649     {
650 root 1.50 return obj->*indexmember
651     ? this->begin () + obj->*indexmember - 1
652 root 1.48 : this->end ();
653     }
654    
655 root 1.53 void push_back (T *obj)
656     {
657     std::vector<T *, slice_allocator<T *> >::push_back (obj);
658     obj->*indexmember = this->size ();
659     }
660    
661 root 1.26 void insert (T *obj)
662     {
663     push_back (obj);
664     }
665    
666     void insert (T &obj)
667     {
668     insert (&obj);
669     }
670    
671     void erase (T *obj)
672     {
673 root 1.50 unsigned int pos = obj->*indexmember;
674     obj->*indexmember = 0;
675 root 1.26
676     if (pos < this->size ())
677     {
678     (*this)[pos - 1] = (*this)[this->size () - 1];
679 root 1.50 (*this)[pos - 1]->*indexmember = pos;
680 root 1.26 }
681    
682     this->pop_back ();
683     }
684    
685     void erase (T &obj)
686     {
687 root 1.50 erase (&obj);
688 root 1.26 }
689     };
690    
691 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
692 root 1.87 // returns the number of bytes actually used (including \0)
693     int assign (char *dst, const char *src, int maxsize);
694 root 1.10
695     // type-safe version of assign
696 root 1.9 template<int N>
697 root 1.87 inline int assign (char (&dst)[N], const char *src)
698 root 1.9 {
699 root 1.87 return assign ((char *)&dst, src, N);
700 root 1.9 }
701    
702 root 1.17 typedef double tstamp;
703    
704 root 1.59 // return current time as timestamp
705 root 1.17 tstamp now ();
706    
707 root 1.25 int similar_direction (int a, int b);
708    
709 root 1.91 // like v?sprintf, but returns a "static" buffer
710     char *vformat (const char *format, va_list ap);
711 root 1.93 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
712 root 1.43
713 sf-marcmagus 1.89 // safety-check player input which will become object->msg
714     bool msg_is_safe (const char *msg);
715    
716 root 1.66 /////////////////////////////////////////////////////////////////////////////
717     // threads, very very thin wrappers around pthreads
718    
719     struct thread
720     {
721     pthread_t id;
722    
723     void start (void *(*start_routine)(void *), void *arg = 0);
724    
725     void cancel ()
726     {
727     pthread_cancel (id);
728     }
729    
730     void *join ()
731     {
732     void *ret;
733    
734     if (pthread_join (id, &ret))
735     cleanup ("pthread_join failed", 1);
736    
737     return ret;
738     }
739     };
740    
741     // note that mutexes are not classes
742     typedef pthread_mutex_t smutex;
743    
744     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
745     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
746     #else
747     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
748     #endif
749    
750     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
751 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
752 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
753    
754 root 1.68 typedef pthread_cond_t scond;
755    
756     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
757     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
758     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
759     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
760    
761 root 1.1 #endif
762