ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.98
Committed: Fri Apr 2 03:41:24 2010 UTC (14 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.97: +2 -2 lines
Log Message:
preliminary check-in with dbeugging code

File Contents

# User Rev Content
1 root 1.46 /*
2 root 1.58 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 root 1.46 *
4 root 1.97 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 root 1.46 *
6 root 1.90 * Deliantra is free software: you can redistribute it and/or modify it under
7     * the terms of the Affero GNU General Public License as published by the
8     * Free Software Foundation, either version 3 of the License, or (at your
9     * option) any later version.
10 root 1.46 *
11 root 1.51 * This program is distributed in the hope that it will be useful,
12     * but WITHOUT ANY WARRANTY; without even the implied warranty of
13     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14     * GNU General Public License for more details.
15 root 1.46 *
16 root 1.90 * You should have received a copy of the Affero GNU General Public License
17     * and the GNU General Public License along with this program. If not, see
18     * <http://www.gnu.org/licenses/>.
19 root 1.46 *
20 root 1.58 * The authors can be reached via e-mail to <support@deliantra.net>
21 root 1.46 */
22    
23 root 1.1 #ifndef UTIL_H__
24     #define UTIL_H__
25    
26 root 1.93 #include <compiler.h>
27    
28 root 1.71 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 root 1.70 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30     #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 root 1.36
32 root 1.66 #include <pthread.h>
33    
34 root 1.11 #include <cstddef>
35 root 1.28 #include <cmath>
36 root 1.25 #include <new>
37     #include <vector>
38 root 1.11
39     #include <glib.h>
40    
41 root 1.25 #include <shstr.h>
42     #include <traits.h>
43    
44 root 1.65 #if DEBUG_SALLOC
45 root 1.60 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46     # define g_slice_alloc(s) debug_slice_alloc(s)
47     # define g_slice_free1(s,p) debug_slice_free1(s,p)
48     void *g_slice_alloc (unsigned long size);
49     void *g_slice_alloc0 (unsigned long size);
50     void g_slice_free1 (unsigned long size, void *ptr);
51 root 1.67 #elif PREFER_MALLOC
52     # define g_slice_alloc0(s) calloc (1, (s))
53     # define g_slice_alloc(s) malloc ((s))
54 root 1.68 # define g_slice_free1(s,p) free ((p))
55 root 1.60 #endif
56    
57 root 1.49 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 root 1.47 #define auto(var,expr) decltype(expr) var = (expr)
59 root 1.14
60 root 1.81 // very ugly macro that basically declares and initialises a variable
61 root 1.26 // that is in scope for the next statement only
62     // works only for stuff that can be assigned 0 and converts to false
63     // (note: works great for pointers)
64     // most ugly macro I ever wrote
65 root 1.48 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66 root 1.26
67 root 1.27 // in range including end
68     #define IN_RANGE_INC(val,beg,end) \
69     ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70    
71     // in range excluding end
72     #define IN_RANGE_EXC(val,beg,end) \
73     ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74    
75 root 1.66 void cleanup (const char *cause, bool make_core = false);
76 root 1.31 void fork_abort (const char *msg);
77    
78 root 1.35 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
79     // as a is often a constant while b is the variable. it is still a bug, though.
80     template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
81     template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
82     template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 root 1.32
84 root 1.80 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85     template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86     template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87 root 1.78
88 root 1.32 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89    
90 root 1.63 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91     template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92    
93 root 1.79 // sign returns -1 or +1
94     template<typename T>
95     static inline T sign (T v) { return v < 0 ? -1 : +1; }
96     // relies on 2c representation
97     template<>
98     inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99    
100     // sign0 returns -1, 0 or +1
101     template<typename T>
102     static inline T sign0 (T v) { return v ? sign (v) : 0; }
103    
104 root 1.88 // div* only work correctly for div > 0
105 root 1.78 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106 root 1.88 template<typename T> static inline T div (T val, T div)
107     {
108     return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109     }
110 root 1.78 // div, round-up
111 root 1.88 template<typename T> static inline T div_ru (T val, T div)
112     {
113     return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114     }
115 root 1.78 // div, round-down
116 root 1.88 template<typename T> static inline T div_rd (T val, T div)
117     {
118     return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119     }
120 root 1.78
121 root 1.88 // lerp* only work correctly for min_in < max_in
122     // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123 root 1.44 template<typename T>
124     static inline T
125     lerp (T val, T min_in, T max_in, T min_out, T max_out)
126     {
127 root 1.78 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
128     }
129    
130     // lerp, round-down
131     template<typename T>
132     static inline T
133     lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
134     {
135     return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
136     }
137    
138     // lerp, round-up
139     template<typename T>
140     static inline T
141     lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
142     {
143     return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144 root 1.44 }
145    
146 root 1.37 // lots of stuff taken from FXT
147    
148     /* Rotate right. This is used in various places for checksumming */
149 root 1.38 //TODO: that sucks, use a better checksum algo
150 root 1.37 static inline uint32_t
151 root 1.38 rotate_right (uint32_t c, uint32_t count = 1)
152 root 1.37 {
153 root 1.38 return (c << (32 - count)) | (c >> count);
154     }
155    
156     static inline uint32_t
157     rotate_left (uint32_t c, uint32_t count = 1)
158     {
159     return (c >> (32 - count)) | (c << count);
160 root 1.37 }
161    
162     // Return abs(a-b)
163     // Both a and b must not have the most significant bit set
164     static inline uint32_t
165     upos_abs_diff (uint32_t a, uint32_t b)
166     {
167     long d1 = b - a;
168     long d2 = (d1 & (d1 >> 31)) << 1;
169    
170     return d1 - d2; // == (b - d) - (a + d);
171     }
172    
173     // Both a and b must not have the most significant bit set
174     static inline uint32_t
175     upos_min (uint32_t a, uint32_t b)
176     {
177     int32_t d = b - a;
178     d &= d >> 31;
179     return a + d;
180     }
181    
182     // Both a and b must not have the most significant bit set
183     static inline uint32_t
184     upos_max (uint32_t a, uint32_t b)
185     {
186     int32_t d = b - a;
187     d &= d >> 31;
188     return b - d;
189     }
190    
191 root 1.94 // this is much faster than crossfire's original algorithm
192 root 1.28 // on modern cpus
193     inline int
194     isqrt (int n)
195     {
196     return (int)sqrtf ((float)n);
197     }
198    
199 root 1.92 // this is kind of like the ^^ operator, if it would exist, without sequence point.
200     // more handy than it looks like, due to the implicit !! done on its arguments
201     inline bool
202     logical_xor (bool a, bool b)
203     {
204     return a != b;
205     }
206    
207     inline bool
208     logical_implies (bool a, bool b)
209     {
210     return a <= b;
211     }
212    
213 root 1.28 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
214     #if 0
215     // and has a max. error of 6 in the range -100..+100.
216     #else
217     // and has a max. error of 9 in the range -100..+100.
218     #endif
219     inline int
220     idistance (int dx, int dy)
221     {
222     unsigned int dx_ = abs (dx);
223     unsigned int dy_ = abs (dy);
224    
225     #if 0
226     return dx_ > dy_
227     ? (dx_ * 61685 + dy_ * 26870) >> 16
228     : (dy_ * 61685 + dx_ * 26870) >> 16;
229     #else
230 root 1.30 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
231 root 1.28 #endif
232     }
233    
234 root 1.29 /*
235     * absdir(int): Returns a number between 1 and 8, which represent
236     * the "absolute" direction of a number (it actually takes care of
237     * "overflow" in previous calculations of a direction).
238     */
239     inline int
240     absdir (int d)
241     {
242     return ((d - 1) & 7) + 1;
243     }
244 root 1.28
245 root 1.96 // avoid ctz name because netbsd or freebsd spams it's namespace with it
246     #if GCC_VERSION(3,4)
247     static inline int least_significant_bit (uint32_t x)
248     {
249     return __builtin_ctz (x);
250     }
251     #else
252     int least_significant_bit (uint32_t x);
253     #endif
254    
255     #define for_all_bits_sparse_32(mask, idxvar) \
256     for (uint32_t idxvar, mask_ = mask; \
257     mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
258    
259 root 1.67 extern ssize_t slice_alloc; // statistics
260    
261     void *salloc_ (int n) throw (std::bad_alloc);
262     void *salloc_ (int n, void *src) throw (std::bad_alloc);
263    
264     // strictly the same as g_slice_alloc, but never returns 0
265     template<typename T>
266     inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
267    
268     // also copies src into the new area, like "memdup"
269     // if src is 0, clears the memory
270     template<typename T>
271     inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
272    
273     // clears the memory
274     template<typename T>
275     inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
276    
277     // for symmetry
278     template<typename T>
279     inline void sfree (T *ptr, int n = 1) throw ()
280     {
281     if (expect_true (ptr))
282     {
283     slice_alloc -= n * sizeof (T);
284 root 1.70 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
285 root 1.67 g_slice_free1 (n * sizeof (T), (void *)ptr);
286     assert (slice_alloc >= 0);//D
287     }
288     }
289 root 1.57
290 root 1.72 // nulls the pointer
291     template<typename T>
292     inline void sfree0 (T *&ptr, int n = 1) throw ()
293     {
294     sfree<T> (ptr, n);
295     ptr = 0;
296     }
297    
298 root 1.1 // makes dynamically allocated objects zero-initialised
299     struct zero_initialised
300     {
301 root 1.11 void *operator new (size_t s, void *p)
302     {
303     memset (p, 0, s);
304     return p;
305     }
306    
307     void *operator new (size_t s)
308     {
309 root 1.67 return salloc0<char> (s);
310 root 1.11 }
311    
312     void *operator new[] (size_t s)
313     {
314 root 1.67 return salloc0<char> (s);
315 root 1.11 }
316    
317     void operator delete (void *p, size_t s)
318     {
319 root 1.67 sfree ((char *)p, s);
320 root 1.11 }
321    
322     void operator delete[] (void *p, size_t s)
323     {
324 root 1.67 sfree ((char *)p, s);
325 root 1.11 }
326     };
327    
328 root 1.73 // makes dynamically allocated objects zero-initialised
329     struct slice_allocated
330     {
331     void *operator new (size_t s, void *p)
332     {
333     return p;
334     }
335    
336     void *operator new (size_t s)
337     {
338     return salloc<char> (s);
339     }
340    
341     void *operator new[] (size_t s)
342     {
343     return salloc<char> (s);
344     }
345    
346     void operator delete (void *p, size_t s)
347     {
348     sfree ((char *)p, s);
349     }
350    
351     void operator delete[] (void *p, size_t s)
352     {
353     sfree ((char *)p, s);
354     }
355     };
356    
357 root 1.11 // a STL-compatible allocator that uses g_slice
358     // boy, this is verbose
359     template<typename Tp>
360     struct slice_allocator
361     {
362     typedef size_t size_type;
363     typedef ptrdiff_t difference_type;
364     typedef Tp *pointer;
365     typedef const Tp *const_pointer;
366     typedef Tp &reference;
367     typedef const Tp &const_reference;
368     typedef Tp value_type;
369    
370     template <class U>
371     struct rebind
372     {
373     typedef slice_allocator<U> other;
374     };
375    
376     slice_allocator () throw () { }
377 root 1.64 slice_allocator (const slice_allocator &) throw () { }
378 root 1.11 template<typename Tp2>
379     slice_allocator (const slice_allocator<Tp2> &) throw () { }
380    
381     ~slice_allocator () { }
382    
383     pointer address (reference x) const { return &x; }
384     const_pointer address (const_reference x) const { return &x; }
385    
386     pointer allocate (size_type n, const_pointer = 0)
387     {
388 root 1.18 return salloc<Tp> (n);
389 root 1.11 }
390    
391     void deallocate (pointer p, size_type n)
392     {
393 root 1.19 sfree<Tp> (p, n);
394 root 1.11 }
395    
396 root 1.64 size_type max_size () const throw ()
397 root 1.11 {
398     return size_t (-1) / sizeof (Tp);
399     }
400    
401     void construct (pointer p, const Tp &val)
402     {
403     ::new (p) Tp (val);
404     }
405    
406     void destroy (pointer p)
407     {
408     p->~Tp ();
409     }
410 root 1.1 };
411    
412 root 1.32 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
413     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
414     // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
415     struct tausworthe_random_generator
416     {
417     uint32_t state [4];
418    
419 root 1.34 void operator =(const tausworthe_random_generator &src)
420     {
421     state [0] = src.state [0];
422     state [1] = src.state [1];
423     state [2] = src.state [2];
424     state [3] = src.state [3];
425     }
426    
427     void seed (uint32_t seed);
428 root 1.32 uint32_t next ();
429 root 1.83 };
430    
431     // Xorshift RNGs, George Marsaglia
432     // http://www.jstatsoft.org/v08/i14/paper
433     // this one is about 40% faster than the tausworthe one above (i.e. not much),
434     // despite the inlining, and has the issue of only creating 2**32-1 numbers.
435 root 1.86 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
436 root 1.83 struct xorshift_random_generator
437     {
438     uint32_t x, y;
439    
440     void operator =(const xorshift_random_generator &src)
441     {
442     x = src.x;
443     y = src.y;
444     }
445    
446     void seed (uint32_t seed)
447     {
448     x = seed;
449     y = seed * 69069U;
450     }
451 root 1.32
452 root 1.83 uint32_t next ()
453     {
454     uint32_t t = x ^ (x << 10);
455     x = y;
456     y = y ^ (y >> 13) ^ t ^ (t >> 10);
457     return y;
458     }
459     };
460    
461     template<class generator>
462     struct random_number_generator : generator
463     {
464 root 1.77 // uniform distribution, 0 .. max (0, num - 1)
465 root 1.42 uint32_t operator ()(uint32_t num)
466 root 1.32 {
467 root 1.83 return !is_constant (num) ? get_range (num) // non-constant
468     : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
469     : this->next () & (num - 1); // constant, power-of-two
470 root 1.32 }
471    
472     // return a number within (min .. max)
473     int operator () (int r_min, int r_max)
474     {
475 root 1.42 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
476     ? r_min + operator ()(r_max - r_min + 1)
477 root 1.34 : get_range (r_min, r_max);
478 root 1.32 }
479    
480     double operator ()()
481     {
482 root 1.34 return this->next () / (double)0xFFFFFFFFU;
483 root 1.32 }
484 root 1.34
485     protected:
486     uint32_t get_range (uint32_t r_max);
487     int get_range (int r_min, int r_max);
488 root 1.32 };
489    
490 root 1.83 typedef random_number_generator<tausworthe_random_generator> rand_gen;
491 root 1.32
492 root 1.74 extern rand_gen rndm, rmg_rndm;
493 root 1.32
494 root 1.54 INTERFACE_CLASS (attachable)
495     struct refcnt_base
496     {
497     typedef int refcnt_t;
498     mutable refcnt_t ACC (RW, refcnt);
499    
500     MTH void refcnt_inc () const { ++refcnt; }
501     MTH void refcnt_dec () const { --refcnt; }
502    
503     refcnt_base () : refcnt (0) { }
504     };
505    
506 root 1.56 // to avoid branches with more advanced compilers
507 root 1.54 extern refcnt_base::refcnt_t refcnt_dummy;
508    
509 root 1.7 template<class T>
510     struct refptr
511     {
512 root 1.54 // p if not null
513     refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
514    
515     void refcnt_dec ()
516     {
517     if (!is_constant (p))
518     --*refcnt_ref ();
519     else if (p)
520     --p->refcnt;
521     }
522    
523     void refcnt_inc ()
524     {
525     if (!is_constant (p))
526     ++*refcnt_ref ();
527     else if (p)
528     ++p->refcnt;
529     }
530    
531 root 1.7 T *p;
532    
533     refptr () : p(0) { }
534 root 1.54 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
535     refptr (T *p) : p(p) { refcnt_inc (); }
536     ~refptr () { refcnt_dec (); }
537 root 1.7
538     const refptr<T> &operator =(T *o)
539     {
540 root 1.54 // if decrementing ever destroys we need to reverse the order here
541     refcnt_dec ();
542 root 1.7 p = o;
543 root 1.54 refcnt_inc ();
544 root 1.7 return *this;
545     }
546    
547 root 1.54 const refptr<T> &operator =(const refptr<T> &o)
548 root 1.7 {
549     *this = o.p;
550     return *this;
551     }
552    
553     T &operator * () const { return *p; }
554 root 1.54 T *operator ->() const { return p; }
555 root 1.7
556     operator T *() const { return p; }
557     };
558    
559 root 1.24 typedef refptr<maptile> maptile_ptr;
560 root 1.22 typedef refptr<object> object_ptr;
561     typedef refptr<archetype> arch_ptr;
562 root 1.24 typedef refptr<client> client_ptr;
563     typedef refptr<player> player_ptr;
564 root 1.22
565 root 1.95 #define STRHSH_NULL 2166136261
566    
567     static inline uint32_t
568     strhsh (const char *s)
569     {
570     // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
571     // it is about twice as fast as the one-at-a-time one,
572     // with good distribution.
573     // FNV-1a is faster on many cpus because the multiplication
574     // runs concurrently with the looping logic.
575     uint32_t hash = STRHSH_NULL;
576    
577     while (*s)
578 root 1.98 hash = (hash ^ *s++) * 16777619U;
579 root 1.95
580     return hash;
581     }
582    
583     static inline uint32_t
584     memhsh (const char *s, size_t len)
585     {
586     uint32_t hash = STRHSH_NULL;
587    
588     while (len--)
589 root 1.98 hash = (hash ^ *s++) * 16777619U;
590 root 1.95
591     return hash;
592     }
593    
594 root 1.4 struct str_hash
595     {
596     std::size_t operator ()(const char *s) const
597     {
598 root 1.95 return strhsh (s);
599     }
600 root 1.4
601 root 1.95 std::size_t operator ()(const shstr &s) const
602     {
603     return strhsh (s);
604 root 1.4 }
605     };
606    
607     struct str_equal
608     {
609     bool operator ()(const char *a, const char *b) const
610     {
611     return !strcmp (a, b);
612     }
613     };
614    
615 root 1.49 // Mostly the same as std::vector, but insert/erase can reorder
616 root 1.52 // the elements, making append(=insert)/remove O(1) instead of O(n).
617 root 1.49 //
618 root 1.52 // NOTE: only some forms of erase are available
619 root 1.26 template<class T>
620     struct unordered_vector : std::vector<T, slice_allocator<T> >
621 root 1.6 {
622 root 1.11 typedef typename unordered_vector::iterator iterator;
623 root 1.6
624     void erase (unsigned int pos)
625     {
626     if (pos < this->size () - 1)
627     (*this)[pos] = (*this)[this->size () - 1];
628    
629     this->pop_back ();
630     }
631    
632     void erase (iterator i)
633     {
634     erase ((unsigned int )(i - this->begin ()));
635     }
636     };
637    
638 root 1.49 // This container blends advantages of linked lists
639     // (efficiency) with vectors (random access) by
640     // by using an unordered vector and storing the vector
641     // index inside the object.
642     //
643     // + memory-efficient on most 64 bit archs
644     // + O(1) insert/remove
645     // + free unique (but varying) id for inserted objects
646     // + cache-friendly iteration
647     // - only works for pointers to structs
648     //
649     // NOTE: only some forms of erase/insert are available
650 root 1.50 typedef int object_vector_index;
651    
652     template<class T, object_vector_index T::*indexmember>
653 root 1.26 struct object_vector : std::vector<T *, slice_allocator<T *> >
654     {
655 root 1.48 typedef typename object_vector::iterator iterator;
656    
657     bool contains (const T *obj) const
658     {
659 root 1.50 return obj->*indexmember;
660 root 1.48 }
661    
662     iterator find (const T *obj)
663     {
664 root 1.50 return obj->*indexmember
665     ? this->begin () + obj->*indexmember - 1
666 root 1.48 : this->end ();
667     }
668    
669 root 1.53 void push_back (T *obj)
670     {
671     std::vector<T *, slice_allocator<T *> >::push_back (obj);
672     obj->*indexmember = this->size ();
673     }
674    
675 root 1.26 void insert (T *obj)
676     {
677     push_back (obj);
678     }
679    
680     void insert (T &obj)
681     {
682     insert (&obj);
683     }
684    
685     void erase (T *obj)
686     {
687 root 1.50 unsigned int pos = obj->*indexmember;
688     obj->*indexmember = 0;
689 root 1.26
690     if (pos < this->size ())
691     {
692     (*this)[pos - 1] = (*this)[this->size () - 1];
693 root 1.50 (*this)[pos - 1]->*indexmember = pos;
694 root 1.26 }
695    
696     this->pop_back ();
697     }
698    
699     void erase (T &obj)
700     {
701 root 1.50 erase (&obj);
702 root 1.26 }
703     };
704    
705 root 1.10 // basically does what strncpy should do, but appends "..." to strings exceeding length
706 root 1.87 // returns the number of bytes actually used (including \0)
707     int assign (char *dst, const char *src, int maxsize);
708 root 1.10
709     // type-safe version of assign
710 root 1.9 template<int N>
711 root 1.87 inline int assign (char (&dst)[N], const char *src)
712 root 1.9 {
713 root 1.87 return assign ((char *)&dst, src, N);
714 root 1.9 }
715    
716 root 1.17 typedef double tstamp;
717    
718 root 1.59 // return current time as timestamp
719 root 1.17 tstamp now ();
720    
721 root 1.25 int similar_direction (int a, int b);
722    
723 root 1.91 // like v?sprintf, but returns a "static" buffer
724     char *vformat (const char *format, va_list ap);
725 root 1.93 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
726 root 1.43
727 sf-marcmagus 1.89 // safety-check player input which will become object->msg
728     bool msg_is_safe (const char *msg);
729    
730 root 1.66 /////////////////////////////////////////////////////////////////////////////
731     // threads, very very thin wrappers around pthreads
732    
733     struct thread
734     {
735     pthread_t id;
736    
737     void start (void *(*start_routine)(void *), void *arg = 0);
738    
739     void cancel ()
740     {
741     pthread_cancel (id);
742     }
743    
744     void *join ()
745     {
746     void *ret;
747    
748     if (pthread_join (id, &ret))
749     cleanup ("pthread_join failed", 1);
750    
751     return ret;
752     }
753     };
754    
755     // note that mutexes are not classes
756     typedef pthread_mutex_t smutex;
757    
758     #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
759     #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
760     #else
761     #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
762     #endif
763    
764     #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
765 root 1.68 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
766 root 1.66 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
767    
768 root 1.68 typedef pthread_cond_t scond;
769    
770     #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
771     #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
772     #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
773     #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
774    
775 root 1.1 #endif
776