ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.126
Committed: Sat Nov 17 23:33:18 2018 UTC (5 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.125: +6 -16 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #include <compiler.h>
27
28 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32 #include <pthread.h>
33
34 #include <cstddef>
35 #include <cmath>
36 #include <new>
37 #include <vector>
38
39 #include <glib.h>
40
41 #include <shstr.h>
42 #include <traits.h>
43
44 #if DEBUG_SALLOC
45 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46 # define g_slice_alloc(s) debug_slice_alloc(s)
47 # define g_slice_free1(s,p) debug_slice_free1(s,p)
48 void *g_slice_alloc (unsigned long size);
49 void *g_slice_alloc0 (unsigned long size);
50 void g_slice_free1 (unsigned long size, void *ptr);
51 #elif PREFER_MALLOC
52 # define g_slice_alloc0(s) calloc (1, (s))
53 # define g_slice_alloc(s) malloc ((s))
54 # define g_slice_free1(s,p) free ((p))
55 #endif
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 #if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
61 // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62 template<typename T, int N>
63 static inline int array_length (const T (&arr)[N])
64 {
65 return N;
66 }
67 #else
68 #define array_length(name) (sizeof (name) / sizeof (name [0]))
69 #endif
70
71 // very ugly macro that basically declares and initialises a variable
72 // that is in scope for the next statement only
73 // works only for stuff that can be assigned 0 and converts to false
74 // (note: works great for pointers)
75 // most ugly macro I ever wrote
76 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77
78 // in range including end
79 #define IN_RANGE_INC(val,beg,end) \
80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81
82 // in range excluding end
83 #define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85
86 ecb_cold void cleanup (const char *cause, bool make_core = false);
87 ecb_cold void fork_abort (const char *msg);
88
89 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
90 // as a is often a constant while b is the variable. it is still a bug, though.
91 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
92 template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
93 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
99 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104 // sign returns -1 or +1
105 template<typename T>
106 static inline T sign (T v) { return v < 0 ? -1 : +1; }
107 // relies on 2c representation
108 template<>
109 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110 template<>
111 inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112 template<>
113 inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115 // sign0 returns -1, 0 or +1
116 template<typename T>
117 static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119 //clashes with C++0x
120 template<typename T, typename U>
121 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123 // div* only work correctly for div > 0
124 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125 template<typename T> static inline T div (T val, T div)
126 {
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128 }
129
130 template<> inline float div (float val, float div) { return val / div; }
131 template<> inline double div (double val, double div) { return val / div; }
132
133 // div, round-up
134 template<typename T> static inline T div_ru (T val, T div)
135 {
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137 }
138 // div, round-down
139 template<typename T> static inline T div_rd (T val, T div)
140 {
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142 }
143
144 // lerp* only work correctly for min_in < max_in
145 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146 template<typename T>
147 static inline T
148 lerp (T val, T min_in, T max_in, T min_out, T max_out)
149 {
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151 }
152
153 // lerp, round-down
154 template<typename T>
155 static inline T
156 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157 {
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159 }
160
161 // lerp, round-up
162 template<typename T>
163 static inline T
164 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165 {
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167 }
168
169 // lots of stuff taken from FXT
170
171 /* Rotate right. This is used in various places for checksumming */
172 //TODO: that sucks, use a better checksum algo
173 static inline uint32_t
174 rotate_right (uint32_t c, uint32_t count = 1)
175 {
176 return (c << (32 - count)) | (c >> count);
177 }
178
179 static inline uint32_t
180 rotate_left (uint32_t c, uint32_t count = 1)
181 {
182 return (c >> (32 - count)) | (c << count);
183 }
184
185 // Return abs(a-b)
186 // Both a and b must not have the most significant bit set
187 static inline uint32_t
188 upos_abs_diff (uint32_t a, uint32_t b)
189 {
190 long d1 = b - a;
191 long d2 = (d1 & (d1 >> 31)) << 1;
192
193 return d1 - d2; // == (b - d) - (a + d);
194 }
195
196 // Both a and b must not have the most significant bit set
197 static inline uint32_t
198 upos_min (uint32_t a, uint32_t b)
199 {
200 int32_t d = b - a;
201 d &= d >> 31;
202 return a + d;
203 }
204
205 // Both a and b must not have the most significant bit set
206 static inline uint32_t
207 upos_max (uint32_t a, uint32_t b)
208 {
209 int32_t d = b - a;
210 d &= d >> 31;
211 return b - d;
212 }
213
214 // this is much faster than crossfire's original algorithm
215 // on modern cpus
216 inline int
217 isqrt (int n)
218 {
219 return (int)sqrtf ((float)n);
220 }
221
222 // this is kind of like the ^^ operator, if it would exist, without sequence point.
223 // more handy than it looks like, due to the implicit !! done on its arguments
224 inline bool
225 logical_xor (bool a, bool b)
226 {
227 return a != b;
228 }
229
230 inline bool
231 logical_implies (bool a, bool b)
232 {
233 return a <= b;
234 }
235
236 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
237 #if 0
238 // and has a max. error of 6 in the range -100..+100.
239 #else
240 // and has a max. error of 9 in the range -100..+100.
241 #endif
242 inline int
243 idistance (int dx, int dy)
244 {
245 unsigned int dx_ = abs (dx);
246 unsigned int dy_ = abs (dy);
247
248 #if 0
249 return dx_ > dy_
250 ? (dx_ * 61685 + dy_ * 26870) >> 16
251 : (dy_ * 61685 + dx_ * 26870) >> 16;
252 #else
253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
254 #endif
255 }
256
257 // can be substantially faster than floor, if your value range allows for it
258 template<typename T>
259 inline T
260 fastfloor (T x)
261 {
262 return std::floor (x);
263 }
264
265 inline float
266 fastfloor (float x)
267 {
268 return sint32(x) - (x < 0);
269 }
270
271 inline double
272 fastfloor (double x)
273 {
274 return sint64(x) - (x < 0);
275 }
276
277 /*
278 * absdir(int): Returns a number between 1 and 8, which represent
279 * the "absolute" direction of a number (it actually takes care of
280 * "overflow" in previous calculations of a direction).
281 */
282 inline int
283 absdir (int d)
284 {
285 return ((d - 1) & 7) + 1;
286 }
287
288 #define for_all_bits_sparse_32(mask, idxvar) \
289 for (uint32_t idxvar, mask_ = mask; \
290 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
291
292 extern ssize_t slice_alloc; // statistics
293
294 void *salloc_ (int n);
295 void *salloc_ (int n, void *src);
296
297 // strictly the same as g_slice_alloc, but never returns 0
298 template<typename T>
299 inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
300
301 // also copies src into the new area, like "memdup"
302 // if src is 0, clears the memory
303 template<typename T>
304 inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
305
306 // clears the memory
307 template<typename T>
308 inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
309
310 // for symmetry
311 template<typename T>
312 inline void sfree (T *ptr, int n = 1) noexcept
313 {
314 if (expect_true (ptr))
315 {
316 slice_alloc -= n * sizeof (T);
317 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
318 g_slice_free1 (n * sizeof (T), (void *)ptr);
319 }
320 }
321
322 // nulls the pointer
323 template<typename T>
324 inline void sfree0 (T *&ptr, int n = 1) noexcept
325 {
326 sfree<T> (ptr, n);
327 ptr = 0;
328 }
329
330 // makes dynamically allocated objects zero-initialised
331 struct zero_initialised
332 {
333 void *operator new (size_t s, void *p)
334 {
335 memset (p, 0, s);
336 return p;
337 }
338
339 void *operator new (size_t s)
340 {
341 return salloc0<char> (s);
342 }
343
344 void *operator new[] (size_t s)
345 {
346 return salloc0<char> (s);
347 }
348
349 void operator delete (void *p, size_t s)
350 {
351 sfree ((char *)p, s);
352 }
353
354 void operator delete[] (void *p, size_t s)
355 {
356 sfree ((char *)p, s);
357 }
358 };
359
360 // makes dynamically allocated objects zero-initialised
361 struct slice_allocated
362 {
363 void *operator new (size_t s, void *p)
364 {
365 return p;
366 }
367
368 void *operator new (size_t s)
369 {
370 return salloc<char> (s);
371 }
372
373 void *operator new[] (size_t s)
374 {
375 return salloc<char> (s);
376 }
377
378 void operator delete (void *p, size_t s)
379 {
380 sfree ((char *)p, s);
381 }
382
383 void operator delete[] (void *p, size_t s)
384 {
385 sfree ((char *)p, s);
386 }
387 };
388
389 // a STL-compatible allocator that uses g_slice
390 // boy, this is verbose
391 template<typename Tp>
392 struct slice_allocator
393 {
394 typedef size_t size_type;
395 typedef ptrdiff_t difference_type;
396 typedef Tp *pointer;
397 typedef const Tp *const_pointer;
398 typedef Tp &reference;
399 typedef const Tp &const_reference;
400 typedef Tp value_type;
401
402 template <class U>
403 struct rebind
404 {
405 typedef slice_allocator<U> other;
406 };
407
408 slice_allocator () noexcept { }
409 slice_allocator (const slice_allocator &) noexcept { }
410 template<typename Tp2>
411 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
412
413 ~slice_allocator () { }
414
415 pointer address (reference x) const { return &x; }
416 const_pointer address (const_reference x) const { return &x; }
417
418 pointer allocate (size_type n, const_pointer = 0)
419 {
420 return salloc<Tp> (n);
421 }
422
423 void deallocate (pointer p, size_type n)
424 {
425 sfree<Tp> (p, n);
426 }
427
428 size_type max_size () const noexcept
429 {
430 return size_t (-1) / sizeof (Tp);
431 }
432
433 void construct (pointer p, const Tp &val)
434 {
435 ::new (p) Tp (val);
436 }
437
438 void destroy (pointer p)
439 {
440 p->~Tp ();
441 }
442 };
443
444 // basically a memory area, but refcounted
445 struct refcnt_buf
446 {
447 char *data;
448
449 refcnt_buf (size_t size = 0);
450 refcnt_buf (void *data, size_t size);
451
452 refcnt_buf (const refcnt_buf &src)
453 {
454 data = src.data;
455 inc ();
456 }
457
458 ~refcnt_buf ();
459
460 refcnt_buf &operator =(const refcnt_buf &src);
461
462 operator char *()
463 {
464 return data;
465 }
466
467 size_t size () const
468 {
469 return _size ();
470 }
471
472 protected:
473 enum {
474 overhead = sizeof (uint32_t) * 2
475 };
476
477 uint32_t &_size () const
478 {
479 return ((unsigned int *)data)[-2];
480 }
481
482 uint32_t &_refcnt () const
483 {
484 return ((unsigned int *)data)[-1];
485 }
486
487 void _alloc (uint32_t size)
488 {
489 data = ((char *)salloc<char> (size + overhead)) + overhead;
490 _size () = size;
491 _refcnt () = 1;
492 }
493
494 void _dealloc ();
495
496 void inc ()
497 {
498 ++_refcnt ();
499 }
500
501 void dec ()
502 {
503 if (!--_refcnt ())
504 _dealloc ();
505 }
506 };
507
508 INTERFACE_CLASS (attachable)
509 struct refcnt_base
510 {
511 typedef int refcnt_t;
512 mutable refcnt_t ACC (RW, refcnt);
513
514 MTH void refcnt_inc () const { ++refcnt; }
515 MTH void refcnt_dec () const { --refcnt; }
516
517 refcnt_base () : refcnt (0) { }
518 };
519
520 // to avoid branches with more advanced compilers
521 extern refcnt_base::refcnt_t refcnt_dummy;
522
523 template<class T>
524 struct refptr
525 {
526 // p if not null
527 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
528
529 void refcnt_dec ()
530 {
531 if (!ecb_is_constant (p))
532 --*refcnt_ref ();
533 else if (p)
534 --p->refcnt;
535 }
536
537 void refcnt_inc ()
538 {
539 if (!ecb_is_constant (p))
540 ++*refcnt_ref ();
541 else if (p)
542 ++p->refcnt;
543 }
544
545 T *p;
546
547 refptr () : p(0) { }
548 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
549 refptr (T *p) : p(p) { refcnt_inc (); }
550 ~refptr () { refcnt_dec (); }
551
552 const refptr<T> &operator =(T *o)
553 {
554 // if decrementing ever destroys we need to reverse the order here
555 refcnt_dec ();
556 p = o;
557 refcnt_inc ();
558 return *this;
559 }
560
561 const refptr<T> &operator =(const refptr<T> &o)
562 {
563 *this = o.p;
564 return *this;
565 }
566
567 T &operator * () const { return *p; }
568 T *operator ->() const { return p; }
569
570 operator T *() const { return p; }
571 };
572
573 typedef refptr<maptile> maptile_ptr;
574 typedef refptr<object> object_ptr;
575 typedef refptr<archetype> arch_ptr;
576 typedef refptr<client> client_ptr;
577 typedef refptr<player> player_ptr;
578 typedef refptr<region> region_ptr;
579
580 #define STRHSH_NULL 2166136261
581
582 static inline uint32_t
583 strhsh (const char *s)
584 {
585 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
586 // it is about twice as fast as the one-at-a-time one,
587 // with good distribution.
588 // FNV-1a is faster on many cpus because the multiplication
589 // runs concurrently with the looping logic.
590 // we modify the hash a bit to improve its distribution
591 uint32_t hash = STRHSH_NULL;
592
593 while (*s)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash ^ (hash >> 16);
597 }
598
599 static inline uint32_t
600 memhsh (const char *s, size_t len)
601 {
602 uint32_t hash = STRHSH_NULL;
603
604 while (len--)
605 hash = (hash ^ *s++) * 16777619U;
606
607 return hash;
608 }
609
610 struct str_hash
611 {
612 std::size_t operator ()(const char *s) const
613 {
614 return strhsh (s);
615 }
616
617 std::size_t operator ()(const shstr &s) const
618 {
619 return strhsh (s);
620 }
621 };
622
623 struct str_equal
624 {
625 bool operator ()(const char *a, const char *b) const
626 {
627 return !strcmp (a, b);
628 }
629 };
630
631 // Mostly the same as std::vector, but insert/erase can reorder
632 // the elements, making append(=insert)/remove O(1) instead of O(n).
633 //
634 // NOTE: only some forms of erase are available
635 template<class T>
636 struct unordered_vector : std::vector<T, slice_allocator<T> >
637 {
638 typedef typename unordered_vector::iterator iterator;
639
640 void erase (unsigned int pos)
641 {
642 if (pos < this->size () - 1)
643 (*this)[pos] = (*this)[this->size () - 1];
644
645 this->pop_back ();
646 }
647
648 void erase (iterator i)
649 {
650 erase ((unsigned int )(i - this->begin ()));
651 }
652 };
653
654 // This container blends advantages of linked lists
655 // (efficiency) with vectors (random access) by
656 // using an unordered vector and storing the vector
657 // index inside the object.
658 //
659 // + memory-efficient on most 64 bit archs
660 // + O(1) insert/remove
661 // + free unique (but varying) id for inserted objects
662 // + cache-friendly iteration
663 // - only works for pointers to structs
664 //
665 // NOTE: only some forms of erase/insert are available
666 typedef int object_vector_index;
667
668 template<class T, object_vector_index T::*indexmember>
669 struct object_vector : std::vector<T *, slice_allocator<T *> >
670 {
671 typedef typename object_vector::iterator iterator;
672
673 bool contains (const T *obj) const
674 {
675 return obj->*indexmember;
676 }
677
678 iterator find (const T *obj)
679 {
680 return obj->*indexmember
681 ? this->begin () + obj->*indexmember - 1
682 : this->end ();
683 }
684
685 void push_back (T *obj)
686 {
687 std::vector<T *, slice_allocator<T *> >::push_back (obj);
688 obj->*indexmember = this->size ();
689 }
690
691 void insert (T *obj)
692 {
693 push_back (obj);
694 }
695
696 void insert (T &obj)
697 {
698 insert (&obj);
699 }
700
701 void erase (T *obj)
702 {
703 object_vector_index pos = obj->*indexmember;
704 obj->*indexmember = 0;
705
706 if (pos < this->size ())
707 {
708 (*this)[pos - 1] = (*this)[this->size () - 1];
709 (*this)[pos - 1]->*indexmember = pos;
710 }
711
712 this->pop_back ();
713 }
714
715 void erase (T &obj)
716 {
717 erase (&obj);
718 }
719 };
720
721 /////////////////////////////////////////////////////////////////////////////
722
723 // something like a vector or stack, but without
724 // out of bounds checking
725 template<typename T>
726 struct fixed_stack
727 {
728 T *data;
729 int size;
730 int max;
731
732 fixed_stack ()
733 : size (0), data (0)
734 {
735 }
736
737 fixed_stack (int max)
738 : size (0), max (max)
739 {
740 data = salloc<T> (max);
741 }
742
743 void reset (int new_max)
744 {
745 sfree (data, max);
746 size = 0;
747 max = new_max;
748 data = salloc<T> (max);
749 }
750
751 void free ()
752 {
753 sfree (data, max);
754 data = 0;
755 }
756
757 ~fixed_stack ()
758 {
759 sfree (data, max);
760 }
761
762 T &operator[](int idx)
763 {
764 return data [idx];
765 }
766
767 void push (T v)
768 {
769 data [size++] = v;
770 }
771
772 T &pop ()
773 {
774 return data [--size];
775 }
776
777 T remove (int idx)
778 {
779 T v = data [idx];
780
781 data [idx] = data [--size];
782
783 return v;
784 }
785 };
786
787 /////////////////////////////////////////////////////////////////////////////
788
789 // basically does what strncpy should do, but appends "..." to strings exceeding length
790 // returns the number of bytes actually used (including \0)
791 int assign (char *dst, const char *src, int maxsize);
792
793 // type-safe version of assign
794 template<int N>
795 inline int assign (char (&dst)[N], const char *src)
796 {
797 return assign ((char *)&dst, src, N);
798 }
799
800 typedef double tstamp;
801
802 // return current time as timestamp
803 tstamp now ();
804
805 int similar_direction (int a, int b);
806
807 // like v?sprintf, but returns a "static" buffer
808 char *vformat (const char *format, va_list ap);
809 char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
810
811 // safety-check player input which will become object->msg
812 bool msg_is_safe (const char *msg);
813
814 /////////////////////////////////////////////////////////////////////////////
815 // threads, very very thin wrappers around pthreads
816
817 struct thread
818 {
819 pthread_t id;
820
821 void start (void *(*start_routine)(void *), void *arg = 0);
822
823 void cancel ()
824 {
825 pthread_cancel (id);
826 }
827
828 void *join ()
829 {
830 void *ret;
831
832 if (pthread_join (id, &ret))
833 cleanup ("pthread_join failed", 1);
834
835 return ret;
836 }
837 };
838
839 // note that mutexes are not classes
840 typedef pthread_mutex_t smutex;
841
842 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
843 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
844 #else
845 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
846 #endif
847
848 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
849 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
850 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
851
852 typedef pthread_cond_t scond;
853
854 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
855 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
856 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
857 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
858
859 #endif
860