ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.128
Committed: Tue Nov 27 18:47:35 2018 UTC (5 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.127: +4 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 #ifndef UTIL_H__
25 #define UTIL_H__
26
27 #include <compiler.h>
28
29 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
30 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
31 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
32
33 #include <pthread.h>
34
35 #include <cstddef>
36 #include <cmath>
37 #include <new>
38 #include <vector>
39
40 #include <glib.h>
41
42 #include <flat_hash_map.hpp>
43
44 #include <shstr.h>
45 #include <traits.h>
46
47 #if DEBUG_SALLOC
48 # define g_slice_alloc0(s) debug_slice_alloc0(s)
49 # define g_slice_alloc(s) debug_slice_alloc(s)
50 # define g_slice_free1(s,p) debug_slice_free1(s,p)
51 void *g_slice_alloc (unsigned long size);
52 void *g_slice_alloc0 (unsigned long size);
53 void g_slice_free1 (unsigned long size, void *ptr);
54 #elif PREFER_MALLOC
55 # define g_slice_alloc0(s) calloc (1, (s))
56 # define g_slice_alloc(s) malloc ((s))
57 # define g_slice_free1(s,p) free ((p))
58 #endif
59
60 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
61 #define auto(var,expr) decltype(expr) var = (expr)
62
63 #if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
64 // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
65 template<typename T, int N>
66 static inline int array_length (const T (&arr)[N])
67 {
68 return N;
69 }
70 #else
71 #define array_length(name) (sizeof (name) / sizeof (name [0]))
72 #endif
73
74 // very ugly macro that basically declares and initialises a variable
75 // that is in scope for the next statement only
76 // works only for stuff that can be assigned 0 and converts to false
77 // (note: works great for pointers)
78 // most ugly macro I ever wrote
79 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
80
81 // in range including end
82 #define IN_RANGE_INC(val,beg,end) \
83 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
84
85 // in range excluding end
86 #define IN_RANGE_EXC(val,beg,end) \
87 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
88
89 ecb_cold void cleanup (const char *cause, bool make_core = false);
90 ecb_cold void fork_abort (const char *msg);
91
92 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
93 // as a is often a constant while b is the variable. it is still a bug, though.
94 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
95 template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
96 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
97
98 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
99 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
100 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
101
102 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
103
104 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
105 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
106
107 // sign returns -1 or +1
108 template<typename T>
109 static inline T sign (T v) { return v < 0 ? -1 : +1; }
110 // relies on 2c representation
111 template<>
112 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
113 template<>
114 inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
115 template<>
116 inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
117
118 // sign0 returns -1, 0 or +1
119 template<typename T>
120 static inline T sign0 (T v) { return v ? sign (v) : 0; }
121
122 //clashes with C++0x
123 template<typename T, typename U>
124 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
125
126 // div* only work correctly for div > 0
127 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
128 template<typename T> static inline T div (T val, T div)
129 {
130 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
131 }
132
133 template<> inline float div (float val, float div) { return val / div; }
134 template<> inline double div (double val, double div) { return val / div; }
135
136 // div, round-up
137 template<typename T> static inline T div_ru (T val, T div)
138 {
139 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
140 }
141 // div, round-down
142 template<typename T> static inline T div_rd (T val, T div)
143 {
144 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
145 }
146
147 // lerp* only work correctly for min_in < max_in
148 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
149 template<typename T>
150 static inline T
151 lerp (T val, T min_in, T max_in, T min_out, T max_out)
152 {
153 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
154 }
155
156 // lerp, round-down
157 template<typename T>
158 static inline T
159 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
160 {
161 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
162 }
163
164 // lerp, round-up
165 template<typename T>
166 static inline T
167 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
168 {
169 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
170 }
171
172 // lots of stuff taken from FXT
173
174 /* Rotate right. This is used in various places for checksumming */
175 //TODO: that sucks, use a better checksum algo
176 static inline uint32_t
177 rotate_right (uint32_t c, uint32_t count = 1)
178 {
179 return (c << (32 - count)) | (c >> count);
180 }
181
182 static inline uint32_t
183 rotate_left (uint32_t c, uint32_t count = 1)
184 {
185 return (c >> (32 - count)) | (c << count);
186 }
187
188 // Return abs(a-b)
189 // Both a and b must not have the most significant bit set
190 static inline uint32_t
191 upos_abs_diff (uint32_t a, uint32_t b)
192 {
193 long d1 = b - a;
194 long d2 = (d1 & (d1 >> 31)) << 1;
195
196 return d1 - d2; // == (b - d) - (a + d);
197 }
198
199 // Both a and b must not have the most significant bit set
200 static inline uint32_t
201 upos_min (uint32_t a, uint32_t b)
202 {
203 int32_t d = b - a;
204 d &= d >> 31;
205 return a + d;
206 }
207
208 // Both a and b must not have the most significant bit set
209 static inline uint32_t
210 upos_max (uint32_t a, uint32_t b)
211 {
212 int32_t d = b - a;
213 d &= d >> 31;
214 return b - d;
215 }
216
217 // this is much faster than crossfire's original algorithm
218 // on modern cpus
219 inline int
220 isqrt (int n)
221 {
222 return (int)sqrtf ((float)n);
223 }
224
225 // this is kind of like the ^^ operator, if it would exist, without sequence point.
226 // more handy than it looks like, due to the implicit !! done on its arguments
227 inline bool
228 logical_xor (bool a, bool b)
229 {
230 return a != b;
231 }
232
233 inline bool
234 logical_implies (bool a, bool b)
235 {
236 return a <= b;
237 }
238
239 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
240 #if 0
241 // and has a max. error of 6 in the range -100..+100.
242 #else
243 // and has a max. error of 9 in the range -100..+100.
244 #endif
245 inline int
246 idistance (int dx, int dy)
247 {
248 unsigned int dx_ = abs (dx);
249 unsigned int dy_ = abs (dy);
250
251 #if 0
252 return dx_ > dy_
253 ? (dx_ * 61685 + dy_ * 26870) >> 16
254 : (dy_ * 61685 + dx_ * 26870) >> 16;
255 #else
256 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
257 #endif
258 }
259
260 // can be substantially faster than floor, if your value range allows for it
261 template<typename T>
262 inline T
263 fastfloor (T x)
264 {
265 return std::floor (x);
266 }
267
268 inline float
269 fastfloor (float x)
270 {
271 return sint32(x) - (x < 0);
272 }
273
274 inline double
275 fastfloor (double x)
276 {
277 return sint64(x) - (x < 0);
278 }
279
280 /*
281 * absdir(int): Returns a number between 1 and 8, which represent
282 * the "absolute" direction of a number (it actually takes care of
283 * "overflow" in previous calculations of a direction).
284 */
285 inline int
286 absdir (int d)
287 {
288 return ((d - 1) & 7) + 1;
289 }
290
291 #define for_all_bits_sparse_32(mask, idxvar) \
292 for (uint32_t idxvar, mask_ = mask; \
293 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
294
295 extern ssize_t slice_alloc; // statistics
296
297 void *salloc_ (int n);
298 void *salloc_ (int n, void *src);
299
300 // strictly the same as g_slice_alloc, but never returns 0
301 template<typename T>
302 inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
303
304 // also copies src into the new area, like "memdup"
305 // if src is 0, clears the memory
306 template<typename T>
307 inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
308
309 // clears the memory
310 template<typename T>
311 inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
312
313 // for symmetry
314 template<typename T>
315 inline void sfree (T *ptr, int n = 1) noexcept
316 {
317 if (expect_true (ptr))
318 {
319 slice_alloc -= n * sizeof (T);
320 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
321 g_slice_free1 (n * sizeof (T), (void *)ptr);
322 }
323 }
324
325 // nulls the pointer
326 template<typename T>
327 inline void sfree0 (T *&ptr, int n = 1) noexcept
328 {
329 sfree<T> (ptr, n);
330 ptr = 0;
331 }
332
333 // makes dynamically allocated objects zero-initialised
334 struct zero_initialised
335 {
336 void *operator new (size_t s, void *p)
337 {
338 memset (p, 0, s);
339 return p;
340 }
341
342 void *operator new (size_t s)
343 {
344 return salloc0<char> (s);
345 }
346
347 void *operator new[] (size_t s)
348 {
349 return salloc0<char> (s);
350 }
351
352 void operator delete (void *p, size_t s)
353 {
354 sfree ((char *)p, s);
355 }
356
357 void operator delete[] (void *p, size_t s)
358 {
359 sfree ((char *)p, s);
360 }
361 };
362
363 // makes dynamically allocated objects zero-initialised
364 struct slice_allocated
365 {
366 void *operator new (size_t s, void *p)
367 {
368 return p;
369 }
370
371 void *operator new (size_t s)
372 {
373 return salloc<char> (s);
374 }
375
376 void *operator new[] (size_t s)
377 {
378 return salloc<char> (s);
379 }
380
381 void operator delete (void *p, size_t s)
382 {
383 sfree ((char *)p, s);
384 }
385
386 void operator delete[] (void *p, size_t s)
387 {
388 sfree ((char *)p, s);
389 }
390 };
391
392 // a STL-compatible allocator that uses g_slice
393 // boy, this is verbose
394 template<typename Tp>
395 struct slice_allocator
396 {
397 typedef size_t size_type;
398 typedef ptrdiff_t difference_type;
399 typedef Tp *pointer;
400 typedef const Tp *const_pointer;
401 typedef Tp &reference;
402 typedef const Tp &const_reference;
403 typedef Tp value_type;
404
405 template <class U>
406 struct rebind
407 {
408 typedef slice_allocator<U> other;
409 };
410
411 slice_allocator () noexcept { }
412 slice_allocator (const slice_allocator &) noexcept { }
413 template<typename Tp2>
414 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
415
416 ~slice_allocator () { }
417
418 pointer address (reference x) const { return &x; }
419 const_pointer address (const_reference x) const { return &x; }
420
421 pointer allocate (size_type n, const_pointer = 0)
422 {
423 return salloc<Tp> (n);
424 }
425
426 void deallocate (pointer p, size_type n)
427 {
428 sfree<Tp> (p, n);
429 }
430
431 size_type max_size () const noexcept
432 {
433 return size_t (-1) / sizeof (Tp);
434 }
435
436 void construct (pointer p, const Tp &val)
437 {
438 ::new (p) Tp (val);
439 }
440
441 void destroy (pointer p)
442 {
443 p->~Tp ();
444 }
445 };
446
447 // basically a memory area, but refcounted
448 struct refcnt_buf
449 {
450 char *data;
451
452 refcnt_buf (size_t size = 0);
453 refcnt_buf (void *data, size_t size);
454
455 refcnt_buf (const refcnt_buf &src)
456 {
457 data = src.data;
458 inc ();
459 }
460
461 ~refcnt_buf ();
462
463 refcnt_buf &operator =(const refcnt_buf &src);
464
465 operator char *()
466 {
467 return data;
468 }
469
470 size_t size () const
471 {
472 return _size ();
473 }
474
475 protected:
476 enum {
477 overhead = sizeof (uint32_t) * 2
478 };
479
480 uint32_t &_size () const
481 {
482 return ((unsigned int *)data)[-2];
483 }
484
485 uint32_t &_refcnt () const
486 {
487 return ((unsigned int *)data)[-1];
488 }
489
490 void _alloc (uint32_t size)
491 {
492 data = ((char *)salloc<char> (size + overhead)) + overhead;
493 _size () = size;
494 _refcnt () = 1;
495 }
496
497 void _dealloc ();
498
499 void inc ()
500 {
501 ++_refcnt ();
502 }
503
504 void dec ()
505 {
506 if (!--_refcnt ())
507 _dealloc ();
508 }
509 };
510
511 INTERFACE_CLASS (attachable)
512 struct refcnt_base
513 {
514 typedef int refcnt_t;
515 mutable refcnt_t ACC (RW, refcnt);
516
517 MTH void refcnt_inc () const { ++refcnt; }
518 MTH void refcnt_dec () const { --refcnt; }
519
520 refcnt_base () : refcnt (0) { }
521 };
522
523 // to avoid branches with more advanced compilers
524 extern refcnt_base::refcnt_t refcnt_dummy;
525
526 template<class T>
527 struct refptr
528 {
529 // p if not null
530 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
531
532 void refcnt_dec ()
533 {
534 if (!ecb_is_constant (p))
535 --*refcnt_ref ();
536 else if (p)
537 --p->refcnt;
538 }
539
540 void refcnt_inc ()
541 {
542 if (!ecb_is_constant (p))
543 ++*refcnt_ref ();
544 else if (p)
545 ++p->refcnt;
546 }
547
548 T *p;
549
550 refptr () : p(0) { }
551 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
552 refptr (T *p) : p(p) { refcnt_inc (); }
553 ~refptr () { refcnt_dec (); }
554
555 const refptr<T> &operator =(T *o)
556 {
557 // if decrementing ever destroys we need to reverse the order here
558 refcnt_dec ();
559 p = o;
560 refcnt_inc ();
561 return *this;
562 }
563
564 const refptr<T> &operator =(const refptr<T> &o)
565 {
566 *this = o.p;
567 return *this;
568 }
569
570 T &operator * () const { return *p; }
571 T *operator ->() const { return p; }
572
573 operator T *() const { return p; }
574 };
575
576 typedef refptr<maptile> maptile_ptr;
577 typedef refptr<object> object_ptr;
578 typedef refptr<archetype> arch_ptr;
579 typedef refptr<client> client_ptr;
580 typedef refptr<player> player_ptr;
581 typedef refptr<region> region_ptr;
582
583 #define STRHSH_NULL 2166136261
584
585 static inline uint32_t
586 strhsh (const char *s)
587 {
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 // we modify the hash a bit to improve its distribution
594 uint32_t hash = STRHSH_NULL;
595
596 while (*s)
597 hash = (hash ^ *s++) * 16777619U;
598
599 return hash ^ (hash >> 16);
600 }
601
602 static inline uint32_t
603 memhsh (const char *s, size_t len)
604 {
605 uint32_t hash = STRHSH_NULL;
606
607 while (len--)
608 hash = (hash ^ *s++) * 16777619U;
609
610 return hash;
611 }
612
613 struct str_hash
614 {
615 std::size_t operator ()(const char *s) const
616 {
617 return strhsh (s);
618 }
619
620 std::size_t operator ()(const shstr &s) const
621 {
622 return strhsh (s);
623 }
624
625 typedef ska::power_of_two_hash_policy hash_policy;
626 };
627
628 struct str_equal
629 {
630 bool operator ()(const char *a, const char *b) const
631 {
632 return !strcmp (a, b);
633 }
634 };
635
636 // Mostly the same as std::vector, but insert/erase can reorder
637 // the elements, making append(=insert)/remove O(1) instead of O(n).
638 //
639 // NOTE: only some forms of erase are available
640 template<class T>
641 struct unordered_vector : std::vector<T, slice_allocator<T> >
642 {
643 typedef typename unordered_vector::iterator iterator;
644
645 void erase (unsigned int pos)
646 {
647 if (pos < this->size () - 1)
648 (*this)[pos] = (*this)[this->size () - 1];
649
650 this->pop_back ();
651 }
652
653 void erase (iterator i)
654 {
655 erase ((unsigned int )(i - this->begin ()));
656 }
657 };
658
659 // This container blends advantages of linked lists
660 // (efficiency) with vectors (random access) by
661 // using an unordered vector and storing the vector
662 // index inside the object.
663 //
664 // + memory-efficient on most 64 bit archs
665 // + O(1) insert/remove
666 // + free unique (but varying) id for inserted objects
667 // + cache-friendly iteration
668 // - only works for pointers to structs
669 //
670 // NOTE: only some forms of erase/insert are available
671 typedef int object_vector_index;
672
673 template<class T, object_vector_index T::*indexmember>
674 struct object_vector : std::vector<T *, slice_allocator<T *> >
675 {
676 typedef typename object_vector::iterator iterator;
677
678 bool contains (const T *obj) const
679 {
680 return obj->*indexmember;
681 }
682
683 iterator find (const T *obj)
684 {
685 return obj->*indexmember
686 ? this->begin () + obj->*indexmember - 1
687 : this->end ();
688 }
689
690 void push_back (T *obj)
691 {
692 std::vector<T *, slice_allocator<T *> >::push_back (obj);
693 obj->*indexmember = this->size ();
694 }
695
696 void insert (T *obj)
697 {
698 push_back (obj);
699 }
700
701 void insert (T &obj)
702 {
703 insert (&obj);
704 }
705
706 void erase (T *obj)
707 {
708 object_vector_index pos = obj->*indexmember;
709 obj->*indexmember = 0;
710
711 if (pos < this->size ())
712 {
713 (*this)[pos - 1] = (*this)[this->size () - 1];
714 (*this)[pos - 1]->*indexmember = pos;
715 }
716
717 this->pop_back ();
718 }
719
720 void erase (T &obj)
721 {
722 erase (&obj);
723 }
724 };
725
726 /////////////////////////////////////////////////////////////////////////////
727
728 // something like a vector or stack, but without
729 // out of bounds checking
730 template<typename T>
731 struct fixed_stack
732 {
733 T *data;
734 int size;
735 int max;
736
737 fixed_stack ()
738 : size (0), data (0)
739 {
740 }
741
742 fixed_stack (int max)
743 : size (0), max (max)
744 {
745 data = salloc<T> (max);
746 }
747
748 void reset (int new_max)
749 {
750 sfree (data, max);
751 size = 0;
752 max = new_max;
753 data = salloc<T> (max);
754 }
755
756 void free ()
757 {
758 sfree (data, max);
759 data = 0;
760 }
761
762 ~fixed_stack ()
763 {
764 sfree (data, max);
765 }
766
767 T &operator[](int idx)
768 {
769 return data [idx];
770 }
771
772 void push (T v)
773 {
774 data [size++] = v;
775 }
776
777 T &pop ()
778 {
779 return data [--size];
780 }
781
782 T remove (int idx)
783 {
784 T v = data [idx];
785
786 data [idx] = data [--size];
787
788 return v;
789 }
790 };
791
792 /////////////////////////////////////////////////////////////////////////////
793
794 // basically does what strncpy should do, but appends "..." to strings exceeding length
795 // returns the number of bytes actually used (including \0)
796 int assign (char *dst, const char *src, int maxsize);
797
798 // type-safe version of assign
799 template<int N>
800 inline int assign (char (&dst)[N], const char *src)
801 {
802 return assign ((char *)&dst, src, N);
803 }
804
805 typedef double tstamp;
806
807 // return current time as timestamp
808 tstamp now ();
809
810 int similar_direction (int a, int b);
811
812 // like v?sprintf, but returns a "static" buffer
813 char *vformat (const char *format, va_list ap);
814 char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
815
816 // safety-check player input which will become object->msg
817 bool msg_is_safe (const char *msg);
818
819 /////////////////////////////////////////////////////////////////////////////
820 // threads, very very thin wrappers around pthreads
821
822 struct thread
823 {
824 pthread_t id;
825
826 void start (void *(*start_routine)(void *), void *arg = 0);
827
828 void cancel ()
829 {
830 pthread_cancel (id);
831 }
832
833 void *join ()
834 {
835 void *ret;
836
837 if (pthread_join (id, &ret))
838 cleanup ("pthread_join failed", 1);
839
840 return ret;
841 }
842 };
843
844 // note that mutexes are not classes
845 typedef pthread_mutex_t smutex;
846
847 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
848 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
849 #else
850 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
851 #endif
852
853 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
854 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
855 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
856
857 typedef pthread_cond_t scond;
858
859 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
860 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
861 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
862 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
863
864 #endif
865