ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.133
Committed: Sat Oct 8 21:54:05 2022 UTC (19 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 1.132: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
24 #ifndef UTIL_H__
25 #define UTIL_H__
26
27 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
28 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
29 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
30
31 #include <pthread.h>
32
33 #include <cstddef>
34 #include <cmath>
35 #include <new>
36 #include <vector>
37
38 #include <glib.h>
39
40 #include <flat_hash_map.hpp>
41
42 #include <shstr.h>
43 #include <traits.h>
44
45 #include "ecb.h"
46
47 #if DEBUG_SALLOC
48 # define g_slice_alloc0(s) debug_slice_alloc0(s)
49 # define g_slice_alloc(s) debug_slice_alloc(s)
50 # define g_slice_free1(s,p) debug_slice_free1(s,p)
51 void *g_slice_alloc (unsigned long size);
52 void *g_slice_alloc0 (unsigned long size);
53 void g_slice_free1 (unsigned long size, void *ptr);
54 #elif PREFER_MALLOC
55 # define g_slice_alloc0(s) calloc (1, (s))
56 # define g_slice_alloc(s) malloc ((s))
57 # define g_slice_free1(s,p) free ((p))
58 #endif
59
60 // very ugly macro that basically declares and initialises a variable
61 // that is in scope for the next statement only
62 // works only for stuff that can be assigned 0 and converts to false
63 // (note: works great for pointers)
64 // most ugly macro I ever wrote
65 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66
67 // in range including end
68 #define IN_RANGE_INC(val,beg,end) \
69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70
71 // in range excluding end
72 #define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74
75 ecb_cold void cleanup (const char *cause, bool make_core = false);
76 ecb_cold void fork_abort (const char *msg);
77
78 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
79 // as a is often a constant while b is the variable. it is still a bug, though.
80 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81 template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
88 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89
90 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93 // sign returns -1 or +1
94 template<typename T>
95 static inline T sign (T v) { return v < 0 ? -1 : +1; }
96 // relies on 2c representation
97 template<>
98 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99 template<>
100 inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101 template<>
102 inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104 // sign0 returns -1, 0 or +1
105 template<typename T>
106 static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108 //clashes with C++0x
109 template<typename T, typename U>
110 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112 // div* only work correctly for div > 0
113 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114 template<typename T> static inline T div (T val, T div)
115 {
116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117 }
118
119 template<> inline float div (float val, float div) { return val / div; }
120 template<> inline double div (double val, double div) { return val / div; }
121
122 // div, round-up
123 template<typename T> static inline T div_ru (T val, T div)
124 {
125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126 }
127 // div, round-down
128 template<typename T> static inline T div_rd (T val, T div)
129 {
130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131 }
132
133 // lerp* only work correctly for min_in < max_in
134 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135 template<typename T>
136 static inline T
137 lerp (T val, T min_in, T max_in, T min_out, T max_out)
138 {
139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140 }
141
142 // lerp, round-down
143 template<typename T>
144 static inline T
145 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146 {
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148 }
149
150 // lerp, round-up
151 template<typename T>
152 static inline T
153 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154 {
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156 }
157
158 // lots of stuff taken from FXT
159
160 /* Rotate right. This is used in various places for checksumming */
161 //TODO: that sucks, use a better checksum algo
162 static inline uint32_t
163 rotate_right (uint32_t c, uint32_t count = 1)
164 {
165 return (c << (32 - count)) | (c >> count);
166 }
167
168 static inline uint32_t
169 rotate_left (uint32_t c, uint32_t count = 1)
170 {
171 return (c >> (32 - count)) | (c << count);
172 }
173
174 // Return abs(a-b)
175 // Both a and b must not have the most significant bit set
176 static inline uint32_t
177 upos_abs_diff (uint32_t a, uint32_t b)
178 {
179 long d1 = b - a;
180 long d2 = (d1 & (d1 >> 31)) << 1;
181
182 return d1 - d2; // == (b - d) - (a + d);
183 }
184
185 // Both a and b must not have the most significant bit set
186 static inline uint32_t
187 upos_min (uint32_t a, uint32_t b)
188 {
189 int32_t d = b - a;
190 d &= d >> 31;
191 return a + d;
192 }
193
194 // Both a and b must not have the most significant bit set
195 static inline uint32_t
196 upos_max (uint32_t a, uint32_t b)
197 {
198 int32_t d = b - a;
199 d &= d >> 31;
200 return b - d;
201 }
202
203 // this is much faster than crossfire's original algorithm
204 // on modern cpus
205 inline int
206 isqrt (int n)
207 {
208 return (int)sqrtf ((float)n);
209 }
210
211 // this is kind of like the ^^ operator, if it would exist, without sequence point.
212 // more handy than it looks like, due to the implicit !! done on its arguments
213 inline bool
214 logical_xor (bool a, bool b)
215 {
216 return a != b;
217 }
218
219 inline bool
220 logical_implies (bool a, bool b)
221 {
222 return a <= b;
223 }
224
225 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
226 #if 0
227 // and has a max. error of 6 in the range -100..+100.
228 #else
229 // and has a max. error of 9 in the range -100..+100.
230 #endif
231 inline int
232 idistance (int dx, int dy)
233 {
234 unsigned int dx_ = abs (dx);
235 unsigned int dy_ = abs (dy);
236
237 #if 0
238 return dx_ > dy_
239 ? (dx_ * 61685 + dy_ * 26870) >> 16
240 : (dy_ * 61685 + dx_ * 26870) >> 16;
241 #else
242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
243 #endif
244 }
245
246 // can be substantially faster than floor, if your value range allows for it
247 template<typename T>
248 inline T
249 fastfloor (T x)
250 {
251 return std::floor (x);
252 }
253
254 inline float
255 fastfloor (float x)
256 {
257 return sint32(x) - (x < 0);
258 }
259
260 inline double
261 fastfloor (double x)
262 {
263 return sint64(x) - (x < 0);
264 }
265
266 /*
267 * absdir(int): Returns a number between 1 and 8, which represent
268 * the "absolute" direction of a number (it actually takes care of
269 * "overflow" in previous calculations of a direction).
270 */
271 inline int
272 absdir (int d)
273 {
274 return ((d - 1) & 7) + 1;
275 }
276
277 #define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281 extern ssize_t slice_alloc; // statistics
282
283 void *salloc_ (int n) noexcept;
284 void *salloc_ (int n, void *src) noexcept;
285
286 // strictly the same as g_slice_alloc, but never returns 0
287 template<typename T>
288 inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289
290 // also copies src into the new area, like "memdup"
291 // if src is 0, clears the memory
292 template<typename T>
293 inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295 // clears the memory
296 template<typename T>
297 inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299 // for symmetry
300 template<typename T>
301 inline void sfree (T *ptr, int n = 1) noexcept
302 {
303 if (ecb_expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 }
309 }
310
311 // nulls the pointer
312 template<typename T>
313 inline void sfree0 (T *&ptr, int n = 1) noexcept
314 {
315 sfree<T> (ptr, n);
316 ptr = 0;
317 }
318
319 // makes dynamically allocated objects zero-initialised
320 struct zero_initialised
321 {
322 void *operator new (size_t s, void *p)
323 {
324 memset (p, 0, s);
325 return p;
326 }
327
328 void *operator new (size_t s)
329 {
330 return salloc0<char> (s);
331 }
332
333 void *operator new[] (size_t s)
334 {
335 return salloc0<char> (s);
336 }
337
338 void operator delete (void *p, size_t s)
339 {
340 sfree ((char *)p, s);
341 }
342
343 void operator delete[] (void *p, size_t s)
344 {
345 sfree ((char *)p, s);
346 }
347 };
348
349 // makes dynamically allocated objects zero-initialised
350 struct slice_allocated
351 {
352 void *operator new (size_t s, void *p)
353 {
354 return p;
355 }
356
357 void *operator new (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void *operator new[] (size_t s)
363 {
364 return salloc<char> (s);
365 }
366
367 void operator delete (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371
372 void operator delete[] (void *p, size_t s)
373 {
374 sfree ((char *)p, s);
375 }
376 };
377
378 // a STL-compatible allocator that uses g_slice
379 // boy, this is much less verbose in newer C++ versions
380 template<typename Tp>
381 struct slice_allocator
382 {
383 using value_type = Tp;
384
385 slice_allocator () noexcept { }
386 template<class U> slice_allocator (const slice_allocator<U> &) noexcept {}
387
388 value_type *allocate (std::size_t n)
389 {
390 return salloc<Tp> (n);
391 }
392
393 void deallocate (value_type *p, std::size_t n)
394 {
395 sfree<Tp> (p, n);
396 }
397 };
398
399 template<class T, class U>
400 bool operator == (const slice_allocator<T> &, const slice_allocator<U> &) noexcept
401 {
402 return true;
403 }
404
405 template<class T, class U>
406 bool operator != (const slice_allocator<T> &x, const slice_allocator<U> &y) noexcept
407 {
408 return !(x == y);
409 }
410
411 // basically a memory area, but refcounted
412 struct refcnt_buf
413 {
414 char *data;
415
416 refcnt_buf (size_t size = 0);
417 refcnt_buf (void *data, size_t size);
418
419 refcnt_buf (const refcnt_buf &src)
420 {
421 data = src.data;
422 inc ();
423 }
424
425 ~refcnt_buf ();
426
427 refcnt_buf &operator =(const refcnt_buf &src);
428
429 operator char *()
430 {
431 return data;
432 }
433
434 size_t size () const
435 {
436 return _size ();
437 }
438
439 protected:
440 enum {
441 overhead = sizeof (uint32_t) * 2
442 };
443
444 uint32_t &_size () const
445 {
446 return ((unsigned int *)data)[-2];
447 }
448
449 uint32_t &_refcnt () const
450 {
451 return ((unsigned int *)data)[-1];
452 }
453
454 void _alloc (uint32_t size)
455 {
456 data = ((char *)salloc<char> (size + overhead)) + overhead;
457 _size () = size;
458 _refcnt () = 1;
459 }
460
461 void _dealloc ();
462
463 void inc ()
464 {
465 ++_refcnt ();
466 }
467
468 void dec ()
469 {
470 if (!--_refcnt ())
471 _dealloc ();
472 }
473 };
474
475 INTERFACE_CLASS (attachable)
476 struct refcnt_base
477 {
478 typedef int refcnt_t;
479 mutable refcnt_t ACC (RW, refcnt);
480
481 MTH void refcnt_inc () const { ++refcnt; }
482 MTH void refcnt_dec () const { --refcnt; }
483
484 refcnt_base () : refcnt (0) { }
485 };
486
487 // to avoid branches with more advanced compilers
488 extern refcnt_base::refcnt_t refcnt_dummy;
489
490 template<class T>
491 struct refptr
492 {
493 // p if not null
494 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
495
496 void refcnt_dec ()
497 {
498 if (!ecb_is_constant (p))
499 --*refcnt_ref ();
500 else if (p)
501 --p->refcnt;
502 }
503
504 void refcnt_inc ()
505 {
506 if (!ecb_is_constant (p))
507 ++*refcnt_ref ();
508 else if (p)
509 ++p->refcnt;
510 }
511
512 T *p;
513
514 refptr () : p(0) { }
515 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
516 refptr (T *p) : p(p) { refcnt_inc (); }
517 ~refptr () { refcnt_dec (); }
518
519 const refptr<T> &operator =(T *o)
520 {
521 // if decrementing ever destroys we need to reverse the order here
522 refcnt_dec ();
523 p = o;
524 refcnt_inc ();
525 return *this;
526 }
527
528 const refptr<T> &operator =(const refptr<T> &o)
529 {
530 *this = o.p;
531 return *this;
532 }
533
534 T &operator * () const { return *p; }
535 T *operator ->() const { return p; }
536
537 operator T *() const { return p; }
538 };
539
540 typedef refptr<maptile> maptile_ptr;
541 typedef refptr<object> object_ptr;
542 typedef refptr<archetype> arch_ptr;
543 typedef refptr<client> client_ptr;
544 typedef refptr<player> player_ptr;
545 typedef refptr<region> region_ptr;
546
547 #define STRHSH_NULL 2166136261
548
549 static inline uint32_t
550 strhsh (const char *s)
551 {
552 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
553 // it is about twice as fast as the one-at-a-time one,
554 // with good distribution.
555 // FNV-1a is faster on many cpus because the multiplication
556 // runs concurrently with the looping logic.
557 // we modify the hash a bit to improve its distribution
558 uint32_t hash = STRHSH_NULL;
559
560 while (*s)
561 hash = (hash ^ *s++) * 16777619U;
562
563 return hash ^ (hash >> 16);
564 }
565
566 static inline uint32_t
567 memhsh (const char *s, size_t len)
568 {
569 uint32_t hash = STRHSH_NULL;
570
571 while (len--)
572 hash = (hash ^ *s++) * 16777619U;
573
574 return hash;
575 }
576
577 struct str_hash
578 {
579 std::size_t operator ()(const char *s) const
580 {
581 return strhsh (s);
582 }
583
584 std::size_t operator ()(const shstr &s) const
585 {
586 return strhsh (s);
587 }
588
589 typedef ska::power_of_two_hash_policy hash_policy;
590 };
591
592 struct str_equal
593 {
594 bool operator ()(const char *a, const char *b) const
595 {
596 return !strcmp (a, b);
597 }
598 };
599
600 // Mostly the same as std::vector, but insert/erase can reorder
601 // the elements, making append(=insert)/remove O(1) instead of O(n).
602 //
603 // NOTE: only some forms of erase are available
604 template<class T>
605 struct unordered_vector : std::vector<T, slice_allocator<T> >
606 {
607 typedef typename unordered_vector::iterator iterator;
608
609 void erase (unsigned int pos)
610 {
611 if (pos < this->size () - 1)
612 (*this)[pos] = (*this)[this->size () - 1];
613
614 this->pop_back ();
615 }
616
617 void erase (iterator i)
618 {
619 erase ((unsigned int )(i - this->begin ()));
620 }
621 };
622
623 // This container blends advantages of linked lists
624 // (efficiency) with vectors (random access) by
625 // using an unordered vector and storing the vector
626 // index inside the object.
627 //
628 // + memory-efficient on most 64 bit archs
629 // + O(1) insert/remove
630 // + free unique (but varying) id for inserted objects
631 // + cache-friendly iteration
632 // - only works for pointers to structs
633 //
634 // NOTE: only some forms of erase/insert are available
635 typedef int object_vector_index;
636
637 template<class T, object_vector_index T::*indexmember>
638 struct object_vector : std::vector<T *, slice_allocator<T *> >
639 {
640 typedef typename object_vector::iterator iterator;
641
642 bool contains (const T *obj) const
643 {
644 return obj->*indexmember;
645 }
646
647 iterator find (const T *obj)
648 {
649 return obj->*indexmember
650 ? this->begin () + obj->*indexmember - 1
651 : this->end ();
652 }
653
654 void push_back (T *obj)
655 {
656 std::vector<T *, slice_allocator<T *> >::push_back (obj);
657 obj->*indexmember = this->size ();
658 }
659
660 void insert (T *obj)
661 {
662 push_back (obj);
663 }
664
665 void insert (T &obj)
666 {
667 insert (&obj);
668 }
669
670 void erase (T *obj)
671 {
672 object_vector_index pos = obj->*indexmember;
673 obj->*indexmember = 0;
674
675 if (pos < this->size ())
676 {
677 (*this)[pos - 1] = (*this)[this->size () - 1];
678 (*this)[pos - 1]->*indexmember = pos;
679 }
680
681 this->pop_back ();
682 }
683
684 void erase (T &obj)
685 {
686 erase (&obj);
687 }
688 };
689
690 /////////////////////////////////////////////////////////////////////////////
691
692 // something like a vector or stack, but without
693 // out of bounds checking
694 template<typename T>
695 struct fixed_stack
696 {
697 T *data;
698 int size;
699 int max;
700
701 fixed_stack ()
702 : size (0), data (0)
703 {
704 }
705
706 fixed_stack (int max)
707 : size (0), max (max)
708 {
709 data = salloc<T> (max);
710 }
711
712 void reset (int new_max)
713 {
714 sfree (data, max);
715 size = 0;
716 max = new_max;
717 data = salloc<T> (max);
718 }
719
720 void free ()
721 {
722 sfree (data, max);
723 data = 0;
724 }
725
726 ~fixed_stack ()
727 {
728 sfree (data, max);
729 }
730
731 T &operator[](int idx)
732 {
733 return data [idx];
734 }
735
736 void push (T v)
737 {
738 data [size++] = v;
739 }
740
741 T &pop ()
742 {
743 return data [--size];
744 }
745
746 T remove (int idx)
747 {
748 T v = data [idx];
749
750 data [idx] = data [--size];
751
752 return v;
753 }
754 };
755
756 /////////////////////////////////////////////////////////////////////////////
757
758 // basically does what strncpy should do, but appends "..." to strings exceeding length
759 // returns the number of bytes actually used (including \0)
760 int assign (char *dst, const char *src, int maxsize);
761
762 // type-safe version of assign
763 template<int N>
764 inline int assign (char (&dst)[N], const char *src)
765 {
766 return assign ((char *)&dst, src, N);
767 }
768
769 typedef double tstamp;
770
771 // return current time as timestamp
772 tstamp now ();
773
774 int similar_direction (int a, int b);
775
776 // like v?sprintf, but returns a "static" buffer
777 char *vformat (const char *format, va_list ap);
778 char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
779
780 // safety-check player input which will become object->msg
781 bool msg_is_safe (const char *msg);
782
783 /////////////////////////////////////////////////////////////////////////////
784 // threads, very very thin wrappers around pthreads
785
786 struct thread
787 {
788 pthread_t id;
789
790 void start (void *(*start_routine)(void *), void *arg = 0);
791
792 void cancel ()
793 {
794 pthread_cancel (id);
795 }
796
797 void *join ()
798 {
799 void *ret;
800
801 if (pthread_join (id, &ret))
802 cleanup ("pthread_join failed", 1);
803
804 return ret;
805 }
806 };
807
808 // note that mutexes are not classes
809 typedef pthread_mutex_t smutex;
810
811 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
812 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
813 #else
814 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
815 #endif
816
817 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
818 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
819 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
820
821 typedef pthread_cond_t scond;
822
823 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
824 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
825 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
826 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
827
828 #endif
829