ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.59
Committed: Sun Dec 16 02:50:33 2007 UTC (16 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_4
Changes since 1.58: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 //#define PREFER_MALLOC
26
27 #if __GNUC__ >= 3
28 # define is_constant(c) __builtin_constant_p (c)
29 # define expect(expr,value) __builtin_expect ((expr),(value))
30 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
31 #else
32 # define is_constant(c) 0
33 # define expect(expr,value) (expr)
34 # define prefetch(addr,rw,locality)
35 #endif
36
37 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
38 # define decltype(x) typeof(x)
39 #endif
40
41 // put into ifs if you are very sure that the expression
42 // is mostly true or mosty false. note that these return
43 // booleans, not the expression.
44 #define expect_false(expr) expect ((expr) != 0, 0)
45 #define expect_true(expr) expect ((expr) != 0, 1)
46
47 #include <cstddef>
48 #include <cmath>
49 #include <new>
50 #include <vector>
51
52 #include <glib.h>
53
54 #include <shstr.h>
55 #include <traits.h>
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 // very ugly macro that basicaly declares and initialises a variable
61 // that is in scope for the next statement only
62 // works only for stuff that can be assigned 0 and converts to false
63 // (note: works great for pointers)
64 // most ugly macro I ever wrote
65 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66
67 // in range including end
68 #define IN_RANGE_INC(val,beg,end) \
69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70
71 // in range excluding end
72 #define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74
75 void fork_abort (const char *msg);
76
77 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
78 // as a is often a constant while b is the variable. it is still a bug, though.
79 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82
83 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
84
85 template<typename T>
86 static inline T
87 lerp (T val, T min_in, T max_in, T min_out, T max_out)
88 {
89 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
90 }
91
92 // lots of stuff taken from FXT
93
94 /* Rotate right. This is used in various places for checksumming */
95 //TODO: that sucks, use a better checksum algo
96 static inline uint32_t
97 rotate_right (uint32_t c, uint32_t count = 1)
98 {
99 return (c << (32 - count)) | (c >> count);
100 }
101
102 static inline uint32_t
103 rotate_left (uint32_t c, uint32_t count = 1)
104 {
105 return (c >> (32 - count)) | (c << count);
106 }
107
108 // Return abs(a-b)
109 // Both a and b must not have the most significant bit set
110 static inline uint32_t
111 upos_abs_diff (uint32_t a, uint32_t b)
112 {
113 long d1 = b - a;
114 long d2 = (d1 & (d1 >> 31)) << 1;
115
116 return d1 - d2; // == (b - d) - (a + d);
117 }
118
119 // Both a and b must not have the most significant bit set
120 static inline uint32_t
121 upos_min (uint32_t a, uint32_t b)
122 {
123 int32_t d = b - a;
124 d &= d >> 31;
125 return a + d;
126 }
127
128 // Both a and b must not have the most significant bit set
129 static inline uint32_t
130 upos_max (uint32_t a, uint32_t b)
131 {
132 int32_t d = b - a;
133 d &= d >> 31;
134 return b - d;
135 }
136
137 // this is much faster than crossfires original algorithm
138 // on modern cpus
139 inline int
140 isqrt (int n)
141 {
142 return (int)sqrtf ((float)n);
143 }
144
145 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
146 #if 0
147 // and has a max. error of 6 in the range -100..+100.
148 #else
149 // and has a max. error of 9 in the range -100..+100.
150 #endif
151 inline int
152 idistance (int dx, int dy)
153 {
154 unsigned int dx_ = abs (dx);
155 unsigned int dy_ = abs (dy);
156
157 #if 0
158 return dx_ > dy_
159 ? (dx_ * 61685 + dy_ * 26870) >> 16
160 : (dy_ * 61685 + dx_ * 26870) >> 16;
161 #else
162 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
163 #endif
164 }
165
166 /*
167 * absdir(int): Returns a number between 1 and 8, which represent
168 * the "absolute" direction of a number (it actually takes care of
169 * "overflow" in previous calculations of a direction).
170 */
171 inline int
172 absdir (int d)
173 {
174 return ((d - 1) & 7) + 1;
175 }
176
177 extern size_t slice_alloc; // statistics
178
179 // makes dynamically allocated objects zero-initialised
180 struct zero_initialised
181 {
182 void *operator new (size_t s, void *p)
183 {
184 memset (p, 0, s);
185 return p;
186 }
187
188 void *operator new (size_t s)
189 {
190 slice_alloc += s;
191 return g_slice_alloc0 (s);
192 }
193
194 void *operator new[] (size_t s)
195 {
196 slice_alloc += s;
197 return g_slice_alloc0 (s);
198 }
199
200 void operator delete (void *p, size_t s)
201 {
202 slice_alloc -= s;
203 g_slice_free1 (s, p);
204 }
205
206 void operator delete[] (void *p, size_t s)
207 {
208 slice_alloc -= s;
209 g_slice_free1 (s, p);
210 }
211 };
212
213 void *salloc_ (int n) throw (std::bad_alloc);
214 void *salloc_ (int n, void *src) throw (std::bad_alloc);
215
216 // strictly the same as g_slice_alloc, but never returns 0
217 template<typename T>
218 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
219
220 // also copies src into the new area, like "memdup"
221 // if src is 0, clears the memory
222 template<typename T>
223 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
224
225 // clears the memory
226 template<typename T>
227 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
228
229 // for symmetry
230 template<typename T>
231 inline void sfree (T *ptr, int n = 1) throw ()
232 {
233 #ifdef PREFER_MALLOC
234 free (ptr);
235 #else
236 slice_alloc -= n * sizeof (T);
237 g_slice_free1 (n * sizeof (T), (void *)ptr);
238 #endif
239 }
240
241 // a STL-compatible allocator that uses g_slice
242 // boy, this is verbose
243 template<typename Tp>
244 struct slice_allocator
245 {
246 typedef size_t size_type;
247 typedef ptrdiff_t difference_type;
248 typedef Tp *pointer;
249 typedef const Tp *const_pointer;
250 typedef Tp &reference;
251 typedef const Tp &const_reference;
252 typedef Tp value_type;
253
254 template <class U>
255 struct rebind
256 {
257 typedef slice_allocator<U> other;
258 };
259
260 slice_allocator () throw () { }
261 slice_allocator (const slice_allocator &o) throw () { }
262 template<typename Tp2>
263 slice_allocator (const slice_allocator<Tp2> &) throw () { }
264
265 ~slice_allocator () { }
266
267 pointer address (reference x) const { return &x; }
268 const_pointer address (const_reference x) const { return &x; }
269
270 pointer allocate (size_type n, const_pointer = 0)
271 {
272 return salloc<Tp> (n);
273 }
274
275 void deallocate (pointer p, size_type n)
276 {
277 sfree<Tp> (p, n);
278 }
279
280 size_type max_size ()const throw ()
281 {
282 return size_t (-1) / sizeof (Tp);
283 }
284
285 void construct (pointer p, const Tp &val)
286 {
287 ::new (p) Tp (val);
288 }
289
290 void destroy (pointer p)
291 {
292 p->~Tp ();
293 }
294 };
295
296 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
297 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
298 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
299 struct tausworthe_random_generator
300 {
301 // generator
302 uint32_t state [4];
303
304 void operator =(const tausworthe_random_generator &src)
305 {
306 state [0] = src.state [0];
307 state [1] = src.state [1];
308 state [2] = src.state [2];
309 state [3] = src.state [3];
310 }
311
312 void seed (uint32_t seed);
313 uint32_t next ();
314
315 // uniform distribution
316 uint32_t operator ()(uint32_t num)
317 {
318 return is_constant (num)
319 ? (next () * (uint64_t)num) >> 32U
320 : get_range (num);
321 }
322
323 // return a number within (min .. max)
324 int operator () (int r_min, int r_max)
325 {
326 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
327 ? r_min + operator ()(r_max - r_min + 1)
328 : get_range (r_min, r_max);
329 }
330
331 double operator ()()
332 {
333 return this->next () / (double)0xFFFFFFFFU;
334 }
335
336 protected:
337 uint32_t get_range (uint32_t r_max);
338 int get_range (int r_min, int r_max);
339 };
340
341 typedef tausworthe_random_generator rand_gen;
342
343 extern rand_gen rndm;
344
345 INTERFACE_CLASS (attachable)
346 struct refcnt_base
347 {
348 typedef int refcnt_t;
349 mutable refcnt_t ACC (RW, refcnt);
350
351 MTH void refcnt_inc () const { ++refcnt; }
352 MTH void refcnt_dec () const { --refcnt; }
353
354 refcnt_base () : refcnt (0) { }
355 };
356
357 // to avoid branches with more advanced compilers
358 extern refcnt_base::refcnt_t refcnt_dummy;
359
360 template<class T>
361 struct refptr
362 {
363 // p if not null
364 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
365
366 void refcnt_dec ()
367 {
368 if (!is_constant (p))
369 --*refcnt_ref ();
370 else if (p)
371 --p->refcnt;
372 }
373
374 void refcnt_inc ()
375 {
376 if (!is_constant (p))
377 ++*refcnt_ref ();
378 else if (p)
379 ++p->refcnt;
380 }
381
382 T *p;
383
384 refptr () : p(0) { }
385 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
386 refptr (T *p) : p(p) { refcnt_inc (); }
387 ~refptr () { refcnt_dec (); }
388
389 const refptr<T> &operator =(T *o)
390 {
391 // if decrementing ever destroys we need to reverse the order here
392 refcnt_dec ();
393 p = o;
394 refcnt_inc ();
395 return *this;
396 }
397
398 const refptr<T> &operator =(const refptr<T> &o)
399 {
400 *this = o.p;
401 return *this;
402 }
403
404 T &operator * () const { return *p; }
405 T *operator ->() const { return p; }
406
407 operator T *() const { return p; }
408 };
409
410 typedef refptr<maptile> maptile_ptr;
411 typedef refptr<object> object_ptr;
412 typedef refptr<archetype> arch_ptr;
413 typedef refptr<client> client_ptr;
414 typedef refptr<player> player_ptr;
415
416 struct str_hash
417 {
418 std::size_t operator ()(const char *s) const
419 {
420 unsigned long hash = 0;
421
422 /* use the one-at-a-time hash function, which supposedly is
423 * better than the djb2-like one used by perl5.005, but
424 * certainly is better then the bug used here before.
425 * see http://burtleburtle.net/bob/hash/doobs.html
426 */
427 while (*s)
428 {
429 hash += *s++;
430 hash += hash << 10;
431 hash ^= hash >> 6;
432 }
433
434 hash += hash << 3;
435 hash ^= hash >> 11;
436 hash += hash << 15;
437
438 return hash;
439 }
440 };
441
442 struct str_equal
443 {
444 bool operator ()(const char *a, const char *b) const
445 {
446 return !strcmp (a, b);
447 }
448 };
449
450 // Mostly the same as std::vector, but insert/erase can reorder
451 // the elements, making append(=insert)/remove O(1) instead of O(n).
452 //
453 // NOTE: only some forms of erase are available
454 template<class T>
455 struct unordered_vector : std::vector<T, slice_allocator<T> >
456 {
457 typedef typename unordered_vector::iterator iterator;
458
459 void erase (unsigned int pos)
460 {
461 if (pos < this->size () - 1)
462 (*this)[pos] = (*this)[this->size () - 1];
463
464 this->pop_back ();
465 }
466
467 void erase (iterator i)
468 {
469 erase ((unsigned int )(i - this->begin ()));
470 }
471 };
472
473 // This container blends advantages of linked lists
474 // (efficiency) with vectors (random access) by
475 // by using an unordered vector and storing the vector
476 // index inside the object.
477 //
478 // + memory-efficient on most 64 bit archs
479 // + O(1) insert/remove
480 // + free unique (but varying) id for inserted objects
481 // + cache-friendly iteration
482 // - only works for pointers to structs
483 //
484 // NOTE: only some forms of erase/insert are available
485 typedef int object_vector_index;
486
487 template<class T, object_vector_index T::*indexmember>
488 struct object_vector : std::vector<T *, slice_allocator<T *> >
489 {
490 typedef typename object_vector::iterator iterator;
491
492 bool contains (const T *obj) const
493 {
494 return obj->*indexmember;
495 }
496
497 iterator find (const T *obj)
498 {
499 return obj->*indexmember
500 ? this->begin () + obj->*indexmember - 1
501 : this->end ();
502 }
503
504 void push_back (T *obj)
505 {
506 std::vector<T *, slice_allocator<T *> >::push_back (obj);
507 obj->*indexmember = this->size ();
508 }
509
510 void insert (T *obj)
511 {
512 push_back (obj);
513 }
514
515 void insert (T &obj)
516 {
517 insert (&obj);
518 }
519
520 void erase (T *obj)
521 {
522 unsigned int pos = obj->*indexmember;
523 obj->*indexmember = 0;
524
525 if (pos < this->size ())
526 {
527 (*this)[pos - 1] = (*this)[this->size () - 1];
528 (*this)[pos - 1]->*indexmember = pos;
529 }
530
531 this->pop_back ();
532 }
533
534 void erase (T &obj)
535 {
536 erase (&obj);
537 }
538 };
539
540 // basically does what strncpy should do, but appends "..." to strings exceeding length
541 void assign (char *dst, const char *src, int maxlen);
542
543 // type-safe version of assign
544 template<int N>
545 inline void assign (char (&dst)[N], const char *src)
546 {
547 assign ((char *)&dst, src, N);
548 }
549
550 typedef double tstamp;
551
552 // return current time as timestamp
553 tstamp now ();
554
555 int similar_direction (int a, int b);
556
557 // like sprintf, but returns a "static" buffer
558 const char *format (const char *format, ...);
559
560 #endif
561