ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.75
Committed: Tue May 6 16:55:26 2008 UTC (16 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.74: +1 -1 lines
Log Message:
update copyright

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29 #if __GNUC__ >= 3
30 # define is_constant(c) __builtin_constant_p (c)
31 # define expect(expr,value) __builtin_expect ((expr),(value))
32 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 #else
34 # define is_constant(c) 0
35 # define expect(expr,value) (expr)
36 # define prefetch(addr,rw,locality)
37 #endif
38
39 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40 # define decltype(x) typeof(x)
41 #endif
42
43 // put into ifs if you are very sure that the expression
44 // is mostly true or mosty false. note that these return
45 // booleans, not the expression.
46 #define expect_false(expr) expect ((expr) != 0, 0)
47 #define expect_true(expr) expect ((expr) != 0, 1)
48
49 #include <pthread.h>
50
51 #include <cstddef>
52 #include <cmath>
53 #include <new>
54 #include <vector>
55
56 #include <glib.h>
57
58 #include <shstr.h>
59 #include <traits.h>
60
61 #if DEBUG_SALLOC
62 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63 # define g_slice_alloc(s) debug_slice_alloc(s)
64 # define g_slice_free1(s,p) debug_slice_free1(s,p)
65 void *g_slice_alloc (unsigned long size);
66 void *g_slice_alloc0 (unsigned long size);
67 void g_slice_free1 (unsigned long size, void *ptr);
68 #elif PREFER_MALLOC
69 # define g_slice_alloc0(s) calloc (1, (s))
70 # define g_slice_alloc(s) malloc ((s))
71 # define g_slice_free1(s,p) free ((p))
72 #endif
73
74 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 #define auto(var,expr) decltype(expr) var = (expr)
76
77 // very ugly macro that basicaly declares and initialises a variable
78 // that is in scope for the next statement only
79 // works only for stuff that can be assigned 0 and converts to false
80 // (note: works great for pointers)
81 // most ugly macro I ever wrote
82 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84 // in range including end
85 #define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88 // in range excluding end
89 #define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92 void cleanup (const char *cause, bool make_core = false);
93 void fork_abort (const char *msg);
94
95 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96 // as a is often a constant while b is the variable. it is still a bug, though.
97 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
102
103 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
104 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
105
106 template<typename T>
107 static inline T
108 lerp (T val, T min_in, T max_in, T min_out, T max_out)
109 {
110 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
111 }
112
113 // lots of stuff taken from FXT
114
115 /* Rotate right. This is used in various places for checksumming */
116 //TODO: that sucks, use a better checksum algo
117 static inline uint32_t
118 rotate_right (uint32_t c, uint32_t count = 1)
119 {
120 return (c << (32 - count)) | (c >> count);
121 }
122
123 static inline uint32_t
124 rotate_left (uint32_t c, uint32_t count = 1)
125 {
126 return (c >> (32 - count)) | (c << count);
127 }
128
129 // Return abs(a-b)
130 // Both a and b must not have the most significant bit set
131 static inline uint32_t
132 upos_abs_diff (uint32_t a, uint32_t b)
133 {
134 long d1 = b - a;
135 long d2 = (d1 & (d1 >> 31)) << 1;
136
137 return d1 - d2; // == (b - d) - (a + d);
138 }
139
140 // Both a and b must not have the most significant bit set
141 static inline uint32_t
142 upos_min (uint32_t a, uint32_t b)
143 {
144 int32_t d = b - a;
145 d &= d >> 31;
146 return a + d;
147 }
148
149 // Both a and b must not have the most significant bit set
150 static inline uint32_t
151 upos_max (uint32_t a, uint32_t b)
152 {
153 int32_t d = b - a;
154 d &= d >> 31;
155 return b - d;
156 }
157
158 // this is much faster than crossfires original algorithm
159 // on modern cpus
160 inline int
161 isqrt (int n)
162 {
163 return (int)sqrtf ((float)n);
164 }
165
166 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
167 #if 0
168 // and has a max. error of 6 in the range -100..+100.
169 #else
170 // and has a max. error of 9 in the range -100..+100.
171 #endif
172 inline int
173 idistance (int dx, int dy)
174 {
175 unsigned int dx_ = abs (dx);
176 unsigned int dy_ = abs (dy);
177
178 #if 0
179 return dx_ > dy_
180 ? (dx_ * 61685 + dy_ * 26870) >> 16
181 : (dy_ * 61685 + dx_ * 26870) >> 16;
182 #else
183 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
184 #endif
185 }
186
187 /*
188 * absdir(int): Returns a number between 1 and 8, which represent
189 * the "absolute" direction of a number (it actually takes care of
190 * "overflow" in previous calculations of a direction).
191 */
192 inline int
193 absdir (int d)
194 {
195 return ((d - 1) & 7) + 1;
196 }
197
198 extern ssize_t slice_alloc; // statistics
199
200 void *salloc_ (int n) throw (std::bad_alloc);
201 void *salloc_ (int n, void *src) throw (std::bad_alloc);
202
203 // strictly the same as g_slice_alloc, but never returns 0
204 template<typename T>
205 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
206
207 // also copies src into the new area, like "memdup"
208 // if src is 0, clears the memory
209 template<typename T>
210 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
211
212 // clears the memory
213 template<typename T>
214 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
215
216 // for symmetry
217 template<typename T>
218 inline void sfree (T *ptr, int n = 1) throw ()
219 {
220 if (expect_true (ptr))
221 {
222 slice_alloc -= n * sizeof (T);
223 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
224 g_slice_free1 (n * sizeof (T), (void *)ptr);
225 assert (slice_alloc >= 0);//D
226 }
227 }
228
229 // nulls the pointer
230 template<typename T>
231 inline void sfree0 (T *&ptr, int n = 1) throw ()
232 {
233 sfree<T> (ptr, n);
234 ptr = 0;
235 }
236
237 // makes dynamically allocated objects zero-initialised
238 struct zero_initialised
239 {
240 void *operator new (size_t s, void *p)
241 {
242 memset (p, 0, s);
243 return p;
244 }
245
246 void *operator new (size_t s)
247 {
248 return salloc0<char> (s);
249 }
250
251 void *operator new[] (size_t s)
252 {
253 return salloc0<char> (s);
254 }
255
256 void operator delete (void *p, size_t s)
257 {
258 sfree ((char *)p, s);
259 }
260
261 void operator delete[] (void *p, size_t s)
262 {
263 sfree ((char *)p, s);
264 }
265 };
266
267 // makes dynamically allocated objects zero-initialised
268 struct slice_allocated
269 {
270 void *operator new (size_t s, void *p)
271 {
272 return p;
273 }
274
275 void *operator new (size_t s)
276 {
277 return salloc<char> (s);
278 }
279
280 void *operator new[] (size_t s)
281 {
282 return salloc<char> (s);
283 }
284
285 void operator delete (void *p, size_t s)
286 {
287 sfree ((char *)p, s);
288 }
289
290 void operator delete[] (void *p, size_t s)
291 {
292 sfree ((char *)p, s);
293 }
294 };
295
296 // a STL-compatible allocator that uses g_slice
297 // boy, this is verbose
298 template<typename Tp>
299 struct slice_allocator
300 {
301 typedef size_t size_type;
302 typedef ptrdiff_t difference_type;
303 typedef Tp *pointer;
304 typedef const Tp *const_pointer;
305 typedef Tp &reference;
306 typedef const Tp &const_reference;
307 typedef Tp value_type;
308
309 template <class U>
310 struct rebind
311 {
312 typedef slice_allocator<U> other;
313 };
314
315 slice_allocator () throw () { }
316 slice_allocator (const slice_allocator &) throw () { }
317 template<typename Tp2>
318 slice_allocator (const slice_allocator<Tp2> &) throw () { }
319
320 ~slice_allocator () { }
321
322 pointer address (reference x) const { return &x; }
323 const_pointer address (const_reference x) const { return &x; }
324
325 pointer allocate (size_type n, const_pointer = 0)
326 {
327 return salloc<Tp> (n);
328 }
329
330 void deallocate (pointer p, size_type n)
331 {
332 sfree<Tp> (p, n);
333 }
334
335 size_type max_size () const throw ()
336 {
337 return size_t (-1) / sizeof (Tp);
338 }
339
340 void construct (pointer p, const Tp &val)
341 {
342 ::new (p) Tp (val);
343 }
344
345 void destroy (pointer p)
346 {
347 p->~Tp ();
348 }
349 };
350
351 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
352 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
353 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
354 struct tausworthe_random_generator
355 {
356 // generator
357 uint32_t state [4];
358
359 void operator =(const tausworthe_random_generator &src)
360 {
361 state [0] = src.state [0];
362 state [1] = src.state [1];
363 state [2] = src.state [2];
364 state [3] = src.state [3];
365 }
366
367 void seed (uint32_t seed);
368 uint32_t next ();
369
370 // uniform distribution
371 uint32_t operator ()(uint32_t num)
372 {
373 return is_constant (num)
374 ? (next () * (uint64_t)num) >> 32U
375 : get_range (num);
376 }
377
378 // return a number within (min .. max)
379 int operator () (int r_min, int r_max)
380 {
381 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
382 ? r_min + operator ()(r_max - r_min + 1)
383 : get_range (r_min, r_max);
384 }
385
386 double operator ()()
387 {
388 return this->next () / (double)0xFFFFFFFFU;
389 }
390
391 protected:
392 uint32_t get_range (uint32_t r_max);
393 int get_range (int r_min, int r_max);
394 };
395
396 typedef tausworthe_random_generator rand_gen;
397
398 extern rand_gen rndm, rmg_rndm;
399
400 INTERFACE_CLASS (attachable)
401 struct refcnt_base
402 {
403 typedef int refcnt_t;
404 mutable refcnt_t ACC (RW, refcnt);
405
406 MTH void refcnt_inc () const { ++refcnt; }
407 MTH void refcnt_dec () const { --refcnt; }
408
409 refcnt_base () : refcnt (0) { }
410 };
411
412 // to avoid branches with more advanced compilers
413 extern refcnt_base::refcnt_t refcnt_dummy;
414
415 template<class T>
416 struct refptr
417 {
418 // p if not null
419 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
420
421 void refcnt_dec ()
422 {
423 if (!is_constant (p))
424 --*refcnt_ref ();
425 else if (p)
426 --p->refcnt;
427 }
428
429 void refcnt_inc ()
430 {
431 if (!is_constant (p))
432 ++*refcnt_ref ();
433 else if (p)
434 ++p->refcnt;
435 }
436
437 T *p;
438
439 refptr () : p(0) { }
440 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
441 refptr (T *p) : p(p) { refcnt_inc (); }
442 ~refptr () { refcnt_dec (); }
443
444 const refptr<T> &operator =(T *o)
445 {
446 // if decrementing ever destroys we need to reverse the order here
447 refcnt_dec ();
448 p = o;
449 refcnt_inc ();
450 return *this;
451 }
452
453 const refptr<T> &operator =(const refptr<T> &o)
454 {
455 *this = o.p;
456 return *this;
457 }
458
459 T &operator * () const { return *p; }
460 T *operator ->() const { return p; }
461
462 operator T *() const { return p; }
463 };
464
465 typedef refptr<maptile> maptile_ptr;
466 typedef refptr<object> object_ptr;
467 typedef refptr<archetype> arch_ptr;
468 typedef refptr<client> client_ptr;
469 typedef refptr<player> player_ptr;
470
471 struct str_hash
472 {
473 std::size_t operator ()(const char *s) const
474 {
475 unsigned long hash = 0;
476
477 /* use the one-at-a-time hash function, which supposedly is
478 * better than the djb2-like one used by perl5.005, but
479 * certainly is better then the bug used here before.
480 * see http://burtleburtle.net/bob/hash/doobs.html
481 */
482 while (*s)
483 {
484 hash += *s++;
485 hash += hash << 10;
486 hash ^= hash >> 6;
487 }
488
489 hash += hash << 3;
490 hash ^= hash >> 11;
491 hash += hash << 15;
492
493 return hash;
494 }
495 };
496
497 struct str_equal
498 {
499 bool operator ()(const char *a, const char *b) const
500 {
501 return !strcmp (a, b);
502 }
503 };
504
505 // Mostly the same as std::vector, but insert/erase can reorder
506 // the elements, making append(=insert)/remove O(1) instead of O(n).
507 //
508 // NOTE: only some forms of erase are available
509 template<class T>
510 struct unordered_vector : std::vector<T, slice_allocator<T> >
511 {
512 typedef typename unordered_vector::iterator iterator;
513
514 void erase (unsigned int pos)
515 {
516 if (pos < this->size () - 1)
517 (*this)[pos] = (*this)[this->size () - 1];
518
519 this->pop_back ();
520 }
521
522 void erase (iterator i)
523 {
524 erase ((unsigned int )(i - this->begin ()));
525 }
526 };
527
528 // This container blends advantages of linked lists
529 // (efficiency) with vectors (random access) by
530 // by using an unordered vector and storing the vector
531 // index inside the object.
532 //
533 // + memory-efficient on most 64 bit archs
534 // + O(1) insert/remove
535 // + free unique (but varying) id for inserted objects
536 // + cache-friendly iteration
537 // - only works for pointers to structs
538 //
539 // NOTE: only some forms of erase/insert are available
540 typedef int object_vector_index;
541
542 template<class T, object_vector_index T::*indexmember>
543 struct object_vector : std::vector<T *, slice_allocator<T *> >
544 {
545 typedef typename object_vector::iterator iterator;
546
547 bool contains (const T *obj) const
548 {
549 return obj->*indexmember;
550 }
551
552 iterator find (const T *obj)
553 {
554 return obj->*indexmember
555 ? this->begin () + obj->*indexmember - 1
556 : this->end ();
557 }
558
559 void push_back (T *obj)
560 {
561 std::vector<T *, slice_allocator<T *> >::push_back (obj);
562 obj->*indexmember = this->size ();
563 }
564
565 void insert (T *obj)
566 {
567 push_back (obj);
568 }
569
570 void insert (T &obj)
571 {
572 insert (&obj);
573 }
574
575 void erase (T *obj)
576 {
577 unsigned int pos = obj->*indexmember;
578 obj->*indexmember = 0;
579
580 if (pos < this->size ())
581 {
582 (*this)[pos - 1] = (*this)[this->size () - 1];
583 (*this)[pos - 1]->*indexmember = pos;
584 }
585
586 this->pop_back ();
587 }
588
589 void erase (T &obj)
590 {
591 erase (&obj);
592 }
593 };
594
595 // basically does what strncpy should do, but appends "..." to strings exceeding length
596 void assign (char *dst, const char *src, int maxlen);
597
598 // type-safe version of assign
599 template<int N>
600 inline void assign (char (&dst)[N], const char *src)
601 {
602 assign ((char *)&dst, src, N);
603 }
604
605 typedef double tstamp;
606
607 // return current time as timestamp
608 tstamp now ();
609
610 int similar_direction (int a, int b);
611
612 // like sprintf, but returns a "static" buffer
613 const char *format (const char *format, ...);
614
615 /////////////////////////////////////////////////////////////////////////////
616 // threads, very very thin wrappers around pthreads
617
618 struct thread
619 {
620 pthread_t id;
621
622 void start (void *(*start_routine)(void *), void *arg = 0);
623
624 void cancel ()
625 {
626 pthread_cancel (id);
627 }
628
629 void *join ()
630 {
631 void *ret;
632
633 if (pthread_join (id, &ret))
634 cleanup ("pthread_join failed", 1);
635
636 return ret;
637 }
638 };
639
640 // note that mutexes are not classes
641 typedef pthread_mutex_t smutex;
642
643 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
644 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
645 #else
646 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
647 #endif
648
649 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
650 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
651 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
652
653 typedef pthread_cond_t scond;
654
655 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
656 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
657 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
658 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
659
660 #endif
661