ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.78
Committed: Thu Dec 4 03:48:19 2008 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_72, rel-2_73
Changes since 1.77: +28 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29 #if __GNUC__ >= 3
30 # define is_constant(c) __builtin_constant_p (c)
31 # define expect(expr,value) __builtin_expect ((expr),(value))
32 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 #else
34 # define is_constant(c) 0
35 # define expect(expr,value) (expr)
36 # define prefetch(addr,rw,locality)
37 #endif
38
39 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40 # define decltype(x) typeof(x)
41 #endif
42
43 // put into ifs if you are very sure that the expression
44 // is mostly true or mosty false. note that these return
45 // booleans, not the expression.
46 #define expect_false(expr) expect ((expr) != 0, 0)
47 #define expect_true(expr) expect ((expr) != 0, 1)
48
49 #include <pthread.h>
50
51 #include <cstddef>
52 #include <cmath>
53 #include <new>
54 #include <vector>
55
56 #include <glib.h>
57
58 #include <shstr.h>
59 #include <traits.h>
60
61 #if DEBUG_SALLOC
62 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63 # define g_slice_alloc(s) debug_slice_alloc(s)
64 # define g_slice_free1(s,p) debug_slice_free1(s,p)
65 void *g_slice_alloc (unsigned long size);
66 void *g_slice_alloc0 (unsigned long size);
67 void g_slice_free1 (unsigned long size, void *ptr);
68 #elif PREFER_MALLOC
69 # define g_slice_alloc0(s) calloc (1, (s))
70 # define g_slice_alloc(s) malloc ((s))
71 # define g_slice_free1(s,p) free ((p))
72 #endif
73
74 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 #define auto(var,expr) decltype(expr) var = (expr)
76
77 // very ugly macro that basicaly declares and initialises a variable
78 // that is in scope for the next statement only
79 // works only for stuff that can be assigned 0 and converts to false
80 // (note: works great for pointers)
81 // most ugly macro I ever wrote
82 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84 // in range including end
85 #define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88 // in range excluding end
89 #define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92 void cleanup (const char *cause, bool make_core = false);
93 void fork_abort (const char *msg);
94
95 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96 // as a is often a constant while b is the variable. it is still a bug, though.
97 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101 template<typename T> static inline void min_it (T &v, T m) { v = min (v, m); }
102 template<typename T> static inline void max_it (T &v, T m) { v = max (v, m); }
103 template<typename T> static inline void clamp_it (T &v, T a, T b) { v = clamp (v, a, b); }
104
105 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
111 template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
112 // div, round-up
113 template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
114 // div, round-down
115 template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
116
117 template<typename T>
118 static inline T
119 lerp (T val, T min_in, T max_in, T min_out, T max_out)
120 {
121 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
122 }
123
124 // lerp, round-down
125 template<typename T>
126 static inline T
127 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
128 {
129 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
130 }
131
132 // lerp, round-up
133 template<typename T>
134 static inline T
135 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
136 {
137 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
138 }
139
140 // lots of stuff taken from FXT
141
142 /* Rotate right. This is used in various places for checksumming */
143 //TODO: that sucks, use a better checksum algo
144 static inline uint32_t
145 rotate_right (uint32_t c, uint32_t count = 1)
146 {
147 return (c << (32 - count)) | (c >> count);
148 }
149
150 static inline uint32_t
151 rotate_left (uint32_t c, uint32_t count = 1)
152 {
153 return (c >> (32 - count)) | (c << count);
154 }
155
156 // Return abs(a-b)
157 // Both a and b must not have the most significant bit set
158 static inline uint32_t
159 upos_abs_diff (uint32_t a, uint32_t b)
160 {
161 long d1 = b - a;
162 long d2 = (d1 & (d1 >> 31)) << 1;
163
164 return d1 - d2; // == (b - d) - (a + d);
165 }
166
167 // Both a and b must not have the most significant bit set
168 static inline uint32_t
169 upos_min (uint32_t a, uint32_t b)
170 {
171 int32_t d = b - a;
172 d &= d >> 31;
173 return a + d;
174 }
175
176 // Both a and b must not have the most significant bit set
177 static inline uint32_t
178 upos_max (uint32_t a, uint32_t b)
179 {
180 int32_t d = b - a;
181 d &= d >> 31;
182 return b - d;
183 }
184
185 // this is much faster than crossfires original algorithm
186 // on modern cpus
187 inline int
188 isqrt (int n)
189 {
190 return (int)sqrtf ((float)n);
191 }
192
193 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
194 #if 0
195 // and has a max. error of 6 in the range -100..+100.
196 #else
197 // and has a max. error of 9 in the range -100..+100.
198 #endif
199 inline int
200 idistance (int dx, int dy)
201 {
202 unsigned int dx_ = abs (dx);
203 unsigned int dy_ = abs (dy);
204
205 #if 0
206 return dx_ > dy_
207 ? (dx_ * 61685 + dy_ * 26870) >> 16
208 : (dy_ * 61685 + dx_ * 26870) >> 16;
209 #else
210 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
211 #endif
212 }
213
214 /*
215 * absdir(int): Returns a number between 1 and 8, which represent
216 * the "absolute" direction of a number (it actually takes care of
217 * "overflow" in previous calculations of a direction).
218 */
219 inline int
220 absdir (int d)
221 {
222 return ((d - 1) & 7) + 1;
223 }
224
225 extern ssize_t slice_alloc; // statistics
226
227 void *salloc_ (int n) throw (std::bad_alloc);
228 void *salloc_ (int n, void *src) throw (std::bad_alloc);
229
230 // strictly the same as g_slice_alloc, but never returns 0
231 template<typename T>
232 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
233
234 // also copies src into the new area, like "memdup"
235 // if src is 0, clears the memory
236 template<typename T>
237 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
238
239 // clears the memory
240 template<typename T>
241 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
242
243 // for symmetry
244 template<typename T>
245 inline void sfree (T *ptr, int n = 1) throw ()
246 {
247 if (expect_true (ptr))
248 {
249 slice_alloc -= n * sizeof (T);
250 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
251 g_slice_free1 (n * sizeof (T), (void *)ptr);
252 assert (slice_alloc >= 0);//D
253 }
254 }
255
256 // nulls the pointer
257 template<typename T>
258 inline void sfree0 (T *&ptr, int n = 1) throw ()
259 {
260 sfree<T> (ptr, n);
261 ptr = 0;
262 }
263
264 // makes dynamically allocated objects zero-initialised
265 struct zero_initialised
266 {
267 void *operator new (size_t s, void *p)
268 {
269 memset (p, 0, s);
270 return p;
271 }
272
273 void *operator new (size_t s)
274 {
275 return salloc0<char> (s);
276 }
277
278 void *operator new[] (size_t s)
279 {
280 return salloc0<char> (s);
281 }
282
283 void operator delete (void *p, size_t s)
284 {
285 sfree ((char *)p, s);
286 }
287
288 void operator delete[] (void *p, size_t s)
289 {
290 sfree ((char *)p, s);
291 }
292 };
293
294 // makes dynamically allocated objects zero-initialised
295 struct slice_allocated
296 {
297 void *operator new (size_t s, void *p)
298 {
299 return p;
300 }
301
302 void *operator new (size_t s)
303 {
304 return salloc<char> (s);
305 }
306
307 void *operator new[] (size_t s)
308 {
309 return salloc<char> (s);
310 }
311
312 void operator delete (void *p, size_t s)
313 {
314 sfree ((char *)p, s);
315 }
316
317 void operator delete[] (void *p, size_t s)
318 {
319 sfree ((char *)p, s);
320 }
321 };
322
323 // a STL-compatible allocator that uses g_slice
324 // boy, this is verbose
325 template<typename Tp>
326 struct slice_allocator
327 {
328 typedef size_t size_type;
329 typedef ptrdiff_t difference_type;
330 typedef Tp *pointer;
331 typedef const Tp *const_pointer;
332 typedef Tp &reference;
333 typedef const Tp &const_reference;
334 typedef Tp value_type;
335
336 template <class U>
337 struct rebind
338 {
339 typedef slice_allocator<U> other;
340 };
341
342 slice_allocator () throw () { }
343 slice_allocator (const slice_allocator &) throw () { }
344 template<typename Tp2>
345 slice_allocator (const slice_allocator<Tp2> &) throw () { }
346
347 ~slice_allocator () { }
348
349 pointer address (reference x) const { return &x; }
350 const_pointer address (const_reference x) const { return &x; }
351
352 pointer allocate (size_type n, const_pointer = 0)
353 {
354 return salloc<Tp> (n);
355 }
356
357 void deallocate (pointer p, size_type n)
358 {
359 sfree<Tp> (p, n);
360 }
361
362 size_type max_size () const throw ()
363 {
364 return size_t (-1) / sizeof (Tp);
365 }
366
367 void construct (pointer p, const Tp &val)
368 {
369 ::new (p) Tp (val);
370 }
371
372 void destroy (pointer p)
373 {
374 p->~Tp ();
375 }
376 };
377
378 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
379 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
380 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
381 struct tausworthe_random_generator
382 {
383 // generator
384 uint32_t state [4];
385
386 void operator =(const tausworthe_random_generator &src)
387 {
388 state [0] = src.state [0];
389 state [1] = src.state [1];
390 state [2] = src.state [2];
391 state [3] = src.state [3];
392 }
393
394 void seed (uint32_t seed);
395 uint32_t next ();
396
397 // uniform distribution, 0 .. max (0, num - 1)
398 uint32_t operator ()(uint32_t num)
399 {
400 return is_constant (num)
401 ? (next () * (uint64_t)num) >> 32U
402 : get_range (num);
403 }
404
405 // return a number within (min .. max)
406 int operator () (int r_min, int r_max)
407 {
408 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
409 ? r_min + operator ()(r_max - r_min + 1)
410 : get_range (r_min, r_max);
411 }
412
413 double operator ()()
414 {
415 return this->next () / (double)0xFFFFFFFFU;
416 }
417
418 protected:
419 uint32_t get_range (uint32_t r_max);
420 int get_range (int r_min, int r_max);
421 };
422
423 typedef tausworthe_random_generator rand_gen;
424
425 extern rand_gen rndm, rmg_rndm;
426
427 INTERFACE_CLASS (attachable)
428 struct refcnt_base
429 {
430 typedef int refcnt_t;
431 mutable refcnt_t ACC (RW, refcnt);
432
433 MTH void refcnt_inc () const { ++refcnt; }
434 MTH void refcnt_dec () const { --refcnt; }
435
436 refcnt_base () : refcnt (0) { }
437 };
438
439 // to avoid branches with more advanced compilers
440 extern refcnt_base::refcnt_t refcnt_dummy;
441
442 template<class T>
443 struct refptr
444 {
445 // p if not null
446 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
447
448 void refcnt_dec ()
449 {
450 if (!is_constant (p))
451 --*refcnt_ref ();
452 else if (p)
453 --p->refcnt;
454 }
455
456 void refcnt_inc ()
457 {
458 if (!is_constant (p))
459 ++*refcnt_ref ();
460 else if (p)
461 ++p->refcnt;
462 }
463
464 T *p;
465
466 refptr () : p(0) { }
467 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
468 refptr (T *p) : p(p) { refcnt_inc (); }
469 ~refptr () { refcnt_dec (); }
470
471 const refptr<T> &operator =(T *o)
472 {
473 // if decrementing ever destroys we need to reverse the order here
474 refcnt_dec ();
475 p = o;
476 refcnt_inc ();
477 return *this;
478 }
479
480 const refptr<T> &operator =(const refptr<T> &o)
481 {
482 *this = o.p;
483 return *this;
484 }
485
486 T &operator * () const { return *p; }
487 T *operator ->() const { return p; }
488
489 operator T *() const { return p; }
490 };
491
492 typedef refptr<maptile> maptile_ptr;
493 typedef refptr<object> object_ptr;
494 typedef refptr<archetype> arch_ptr;
495 typedef refptr<client> client_ptr;
496 typedef refptr<player> player_ptr;
497
498 struct str_hash
499 {
500 std::size_t operator ()(const char *s) const
501 {
502 unsigned long hash = 0;
503
504 /* use the one-at-a-time hash function, which supposedly is
505 * better than the djb2-like one used by perl5.005, but
506 * certainly is better then the bug used here before.
507 * see http://burtleburtle.net/bob/hash/doobs.html
508 */
509 while (*s)
510 {
511 hash += *s++;
512 hash += hash << 10;
513 hash ^= hash >> 6;
514 }
515
516 hash += hash << 3;
517 hash ^= hash >> 11;
518 hash += hash << 15;
519
520 return hash;
521 }
522 };
523
524 struct str_equal
525 {
526 bool operator ()(const char *a, const char *b) const
527 {
528 return !strcmp (a, b);
529 }
530 };
531
532 // Mostly the same as std::vector, but insert/erase can reorder
533 // the elements, making append(=insert)/remove O(1) instead of O(n).
534 //
535 // NOTE: only some forms of erase are available
536 template<class T>
537 struct unordered_vector : std::vector<T, slice_allocator<T> >
538 {
539 typedef typename unordered_vector::iterator iterator;
540
541 void erase (unsigned int pos)
542 {
543 if (pos < this->size () - 1)
544 (*this)[pos] = (*this)[this->size () - 1];
545
546 this->pop_back ();
547 }
548
549 void erase (iterator i)
550 {
551 erase ((unsigned int )(i - this->begin ()));
552 }
553 };
554
555 // This container blends advantages of linked lists
556 // (efficiency) with vectors (random access) by
557 // by using an unordered vector and storing the vector
558 // index inside the object.
559 //
560 // + memory-efficient on most 64 bit archs
561 // + O(1) insert/remove
562 // + free unique (but varying) id for inserted objects
563 // + cache-friendly iteration
564 // - only works for pointers to structs
565 //
566 // NOTE: only some forms of erase/insert are available
567 typedef int object_vector_index;
568
569 template<class T, object_vector_index T::*indexmember>
570 struct object_vector : std::vector<T *, slice_allocator<T *> >
571 {
572 typedef typename object_vector::iterator iterator;
573
574 bool contains (const T *obj) const
575 {
576 return obj->*indexmember;
577 }
578
579 iterator find (const T *obj)
580 {
581 return obj->*indexmember
582 ? this->begin () + obj->*indexmember - 1
583 : this->end ();
584 }
585
586 void push_back (T *obj)
587 {
588 std::vector<T *, slice_allocator<T *> >::push_back (obj);
589 obj->*indexmember = this->size ();
590 }
591
592 void insert (T *obj)
593 {
594 push_back (obj);
595 }
596
597 void insert (T &obj)
598 {
599 insert (&obj);
600 }
601
602 void erase (T *obj)
603 {
604 unsigned int pos = obj->*indexmember;
605 obj->*indexmember = 0;
606
607 if (pos < this->size ())
608 {
609 (*this)[pos - 1] = (*this)[this->size () - 1];
610 (*this)[pos - 1]->*indexmember = pos;
611 }
612
613 this->pop_back ();
614 }
615
616 void erase (T &obj)
617 {
618 erase (&obj);
619 }
620 };
621
622 // basically does what strncpy should do, but appends "..." to strings exceeding length
623 void assign (char *dst, const char *src, int maxlen);
624
625 // type-safe version of assign
626 template<int N>
627 inline void assign (char (&dst)[N], const char *src)
628 {
629 assign ((char *)&dst, src, N);
630 }
631
632 typedef double tstamp;
633
634 // return current time as timestamp
635 tstamp now ();
636
637 int similar_direction (int a, int b);
638
639 // like sprintf, but returns a "static" buffer
640 const char *format (const char *format, ...);
641
642 /////////////////////////////////////////////////////////////////////////////
643 // threads, very very thin wrappers around pthreads
644
645 struct thread
646 {
647 pthread_t id;
648
649 void start (void *(*start_routine)(void *), void *arg = 0);
650
651 void cancel ()
652 {
653 pthread_cancel (id);
654 }
655
656 void *join ()
657 {
658 void *ret;
659
660 if (pthread_join (id, &ret))
661 cleanup ("pthread_join failed", 1);
662
663 return ret;
664 }
665 };
666
667 // note that mutexes are not classes
668 typedef pthread_mutex_t smutex;
669
670 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
671 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
672 #else
673 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
674 #endif
675
676 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
677 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
678 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
679
680 typedef pthread_cond_t scond;
681
682 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
683 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
684 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
685 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
686
687 #endif
688