ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.84
Committed: Wed Dec 31 17:35:37 2008 UTC (15 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.83: +15 -3 lines
Log Message:
refactoring of shstr classe,s new shstr_tmp, lots of minor rewriting

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29 #if __GNUC__ >= 3
30 # define is_constant(c) __builtin_constant_p (c)
31 # define expect(expr,value) __builtin_expect ((expr),(value))
32 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 #else
34 # define is_constant(c) 0
35 # define expect(expr,value) (expr)
36 # define prefetch(addr,rw,locality)
37 #endif
38
39 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40 # define decltype(x) typeof(x)
41 #endif
42
43 // put into ifs if you are very sure that the expression
44 // is mostly true or mosty false. note that these return
45 // booleans, not the expression.
46 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
47 #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
48
49 #include <pthread.h>
50
51 #include <cstddef>
52 #include <cmath>
53 #include <new>
54 #include <vector>
55
56 #include <glib.h>
57
58 #include <shstr.h>
59 #include <traits.h>
60
61 #if DEBUG_SALLOC
62 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63 # define g_slice_alloc(s) debug_slice_alloc(s)
64 # define g_slice_free1(s,p) debug_slice_free1(s,p)
65 void *g_slice_alloc (unsigned long size);
66 void *g_slice_alloc0 (unsigned long size);
67 void g_slice_free1 (unsigned long size, void *ptr);
68 #elif PREFER_MALLOC
69 # define g_slice_alloc0(s) calloc (1, (s))
70 # define g_slice_alloc(s) malloc ((s))
71 # define g_slice_free1(s,p) free ((p))
72 #endif
73
74 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 #define auto(var,expr) decltype(expr) var = (expr)
76
77 // very ugly macro that basically declares and initialises a variable
78 // that is in scope for the next statement only
79 // works only for stuff that can be assigned 0 and converts to false
80 // (note: works great for pointers)
81 // most ugly macro I ever wrote
82 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84 // in range including end
85 #define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88 // in range excluding end
89 #define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92 void cleanup (const char *cause, bool make_core = false);
93 void fork_abort (const char *msg);
94
95 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96 // as a is often a constant while b is the variable. it is still a bug, though.
97 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104
105 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110 // sign returns -1 or +1
111 template<typename T>
112 static inline T sign (T v) { return v < 0 ? -1 : +1; }
113 // relies on 2c representation
114 template<>
115 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
116
117 // sign0 returns -1, 0 or +1
118 template<typename T>
119 static inline T sign0 (T v) { return v ? sign (v) : 0; }
120
121 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122 template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
123 // div, round-up
124 template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
125 // div, round-down
126 template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
127
128 template<typename T>
129 static inline T
130 lerp (T val, T min_in, T max_in, T min_out, T max_out)
131 {
132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
133 }
134
135 // lerp, round-down
136 template<typename T>
137 static inline T
138 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
139 {
140 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
141 }
142
143 // lerp, round-up
144 template<typename T>
145 static inline T
146 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
147 {
148 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
149 }
150
151 // lots of stuff taken from FXT
152
153 /* Rotate right. This is used in various places for checksumming */
154 //TODO: that sucks, use a better checksum algo
155 static inline uint32_t
156 rotate_right (uint32_t c, uint32_t count = 1)
157 {
158 return (c << (32 - count)) | (c >> count);
159 }
160
161 static inline uint32_t
162 rotate_left (uint32_t c, uint32_t count = 1)
163 {
164 return (c >> (32 - count)) | (c << count);
165 }
166
167 // Return abs(a-b)
168 // Both a and b must not have the most significant bit set
169 static inline uint32_t
170 upos_abs_diff (uint32_t a, uint32_t b)
171 {
172 long d1 = b - a;
173 long d2 = (d1 & (d1 >> 31)) << 1;
174
175 return d1 - d2; // == (b - d) - (a + d);
176 }
177
178 // Both a and b must not have the most significant bit set
179 static inline uint32_t
180 upos_min (uint32_t a, uint32_t b)
181 {
182 int32_t d = b - a;
183 d &= d >> 31;
184 return a + d;
185 }
186
187 // Both a and b must not have the most significant bit set
188 static inline uint32_t
189 upos_max (uint32_t a, uint32_t b)
190 {
191 int32_t d = b - a;
192 d &= d >> 31;
193 return b - d;
194 }
195
196 // this is much faster than crossfires original algorithm
197 // on modern cpus
198 inline int
199 isqrt (int n)
200 {
201 return (int)sqrtf ((float)n);
202 }
203
204 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
205 #if 0
206 // and has a max. error of 6 in the range -100..+100.
207 #else
208 // and has a max. error of 9 in the range -100..+100.
209 #endif
210 inline int
211 idistance (int dx, int dy)
212 {
213 unsigned int dx_ = abs (dx);
214 unsigned int dy_ = abs (dy);
215
216 #if 0
217 return dx_ > dy_
218 ? (dx_ * 61685 + dy_ * 26870) >> 16
219 : (dy_ * 61685 + dx_ * 26870) >> 16;
220 #else
221 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
222 #endif
223 }
224
225 /*
226 * absdir(int): Returns a number between 1 and 8, which represent
227 * the "absolute" direction of a number (it actually takes care of
228 * "overflow" in previous calculations of a direction).
229 */
230 inline int
231 absdir (int d)
232 {
233 return ((d - 1) & 7) + 1;
234 }
235
236 extern ssize_t slice_alloc; // statistics
237
238 void *salloc_ (int n) throw (std::bad_alloc);
239 void *salloc_ (int n, void *src) throw (std::bad_alloc);
240
241 // strictly the same as g_slice_alloc, but never returns 0
242 template<typename T>
243 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
244
245 // also copies src into the new area, like "memdup"
246 // if src is 0, clears the memory
247 template<typename T>
248 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249
250 // clears the memory
251 template<typename T>
252 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
253
254 // for symmetry
255 template<typename T>
256 inline void sfree (T *ptr, int n = 1) throw ()
257 {
258 if (expect_true (ptr))
259 {
260 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 }
265 }
266
267 // nulls the pointer
268 template<typename T>
269 inline void sfree0 (T *&ptr, int n = 1) throw ()
270 {
271 sfree<T> (ptr, n);
272 ptr = 0;
273 }
274
275 // makes dynamically allocated objects zero-initialised
276 struct zero_initialised
277 {
278 void *operator new (size_t s, void *p)
279 {
280 memset (p, 0, s);
281 return p;
282 }
283
284 void *operator new (size_t s)
285 {
286 return salloc0<char> (s);
287 }
288
289 void *operator new[] (size_t s)
290 {
291 return salloc0<char> (s);
292 }
293
294 void operator delete (void *p, size_t s)
295 {
296 sfree ((char *)p, s);
297 }
298
299 void operator delete[] (void *p, size_t s)
300 {
301 sfree ((char *)p, s);
302 }
303 };
304
305 // makes dynamically allocated objects zero-initialised
306 struct slice_allocated
307 {
308 void *operator new (size_t s, void *p)
309 {
310 return p;
311 }
312
313 void *operator new (size_t s)
314 {
315 return salloc<char> (s);
316 }
317
318 void *operator new[] (size_t s)
319 {
320 return salloc<char> (s);
321 }
322
323 void operator delete (void *p, size_t s)
324 {
325 sfree ((char *)p, s);
326 }
327
328 void operator delete[] (void *p, size_t s)
329 {
330 sfree ((char *)p, s);
331 }
332 };
333
334 // a STL-compatible allocator that uses g_slice
335 // boy, this is verbose
336 template<typename Tp>
337 struct slice_allocator
338 {
339 typedef size_t size_type;
340 typedef ptrdiff_t difference_type;
341 typedef Tp *pointer;
342 typedef const Tp *const_pointer;
343 typedef Tp &reference;
344 typedef const Tp &const_reference;
345 typedef Tp value_type;
346
347 template <class U>
348 struct rebind
349 {
350 typedef slice_allocator<U> other;
351 };
352
353 slice_allocator () throw () { }
354 slice_allocator (const slice_allocator &) throw () { }
355 template<typename Tp2>
356 slice_allocator (const slice_allocator<Tp2> &) throw () { }
357
358 ~slice_allocator () { }
359
360 pointer address (reference x) const { return &x; }
361 const_pointer address (const_reference x) const { return &x; }
362
363 pointer allocate (size_type n, const_pointer = 0)
364 {
365 return salloc<Tp> (n);
366 }
367
368 void deallocate (pointer p, size_type n)
369 {
370 sfree<Tp> (p, n);
371 }
372
373 size_type max_size () const throw ()
374 {
375 return size_t (-1) / sizeof (Tp);
376 }
377
378 void construct (pointer p, const Tp &val)
379 {
380 ::new (p) Tp (val);
381 }
382
383 void destroy (pointer p)
384 {
385 p->~Tp ();
386 }
387 };
388
389 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
390 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
391 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
392 struct tausworthe_random_generator
393 {
394 uint32_t state [4];
395
396 void operator =(const tausworthe_random_generator &src)
397 {
398 state [0] = src.state [0];
399 state [1] = src.state [1];
400 state [2] = src.state [2];
401 state [3] = src.state [3];
402 }
403
404 void seed (uint32_t seed);
405 uint32_t next ();
406 };
407
408 // Xorshift RNGs, George Marsaglia
409 // http://www.jstatsoft.org/v08/i14/paper
410 // this one is about 40% faster than the tausworthe one above (i.e. not much),
411 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
412 struct xorshift_random_generator
413 {
414 uint32_t x, y;
415
416 void operator =(const xorshift_random_generator &src)
417 {
418 x = src.x;
419 y = src.y;
420 }
421
422 void seed (uint32_t seed)
423 {
424 x = seed;
425 y = seed * 69069U;
426 }
427
428 uint32_t next ()
429 {
430 uint32_t t = x ^ (x << 10);
431 x = y;
432 y = y ^ (y >> 13) ^ t ^ (t >> 10);
433 return y;
434 }
435 };
436
437 template<class generator>
438 struct random_number_generator : generator
439 {
440 // uniform distribution, 0 .. max (0, num - 1)
441 uint32_t operator ()(uint32_t num)
442 {
443 return !is_constant (num) ? get_range (num) // non-constant
444 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
445 : this->next () & (num - 1); // constant, power-of-two
446 }
447
448 // return a number within (min .. max)
449 int operator () (int r_min, int r_max)
450 {
451 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
452 ? r_min + operator ()(r_max - r_min + 1)
453 : get_range (r_min, r_max);
454 }
455
456 double operator ()()
457 {
458 return this->next () / (double)0xFFFFFFFFU;
459 }
460
461 protected:
462 uint32_t get_range (uint32_t r_max);
463 int get_range (int r_min, int r_max);
464 };
465
466 typedef random_number_generator<tausworthe_random_generator> rand_gen;
467
468 extern rand_gen rndm, rmg_rndm;
469
470 INTERFACE_CLASS (attachable)
471 struct refcnt_base
472 {
473 typedef int refcnt_t;
474 mutable refcnt_t ACC (RW, refcnt);
475
476 MTH void refcnt_inc () const { ++refcnt; }
477 MTH void refcnt_dec () const { --refcnt; }
478
479 refcnt_base () : refcnt (0) { }
480 };
481
482 // to avoid branches with more advanced compilers
483 extern refcnt_base::refcnt_t refcnt_dummy;
484
485 template<class T>
486 struct refptr
487 {
488 // p if not null
489 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
490
491 void refcnt_dec ()
492 {
493 if (!is_constant (p))
494 --*refcnt_ref ();
495 else if (p)
496 --p->refcnt;
497 }
498
499 void refcnt_inc ()
500 {
501 if (!is_constant (p))
502 ++*refcnt_ref ();
503 else if (p)
504 ++p->refcnt;
505 }
506
507 T *p;
508
509 refptr () : p(0) { }
510 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
511 refptr (T *p) : p(p) { refcnt_inc (); }
512 ~refptr () { refcnt_dec (); }
513
514 const refptr<T> &operator =(T *o)
515 {
516 // if decrementing ever destroys we need to reverse the order here
517 refcnt_dec ();
518 p = o;
519 refcnt_inc ();
520 return *this;
521 }
522
523 const refptr<T> &operator =(const refptr<T> &o)
524 {
525 *this = o.p;
526 return *this;
527 }
528
529 T &operator * () const { return *p; }
530 T *operator ->() const { return p; }
531
532 operator T *() const { return p; }
533 };
534
535 typedef refptr<maptile> maptile_ptr;
536 typedef refptr<object> object_ptr;
537 typedef refptr<archetype> arch_ptr;
538 typedef refptr<client> client_ptr;
539 typedef refptr<player> player_ptr;
540
541 struct str_hash
542 {
543 std::size_t operator ()(const char *s) const
544 {
545 #if 0
546 uint32_t hash = 0;
547
548 /* use the one-at-a-time hash function, which supposedly is
549 * better than the djb2-like one used by perl5.005, but
550 * certainly is better then the bug used here before.
551 * see http://burtleburtle.net/bob/hash/doobs.html
552 */
553 while (*s)
554 {
555 hash += *s++;
556 hash += hash << 10;
557 hash ^= hash >> 6;
558 }
559
560 hash += hash << 3;
561 hash ^= hash >> 11;
562 hash += hash << 15;
563 #else
564 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
565 // it is about twice as fast as the one-at-a-time one,
566 // with good distribution.
567 // FNV-1a is faster on many cpus because the multiplication
568 // runs concurrent with the looping logic.
569 uint32_t hash = 2166136261;
570
571 while (*s)
572 hash = (hash ^ *s++) * 16777619;
573 #endif
574
575 return hash;
576 }
577 };
578
579 struct str_equal
580 {
581 bool operator ()(const char *a, const char *b) const
582 {
583 return !strcmp (a, b);
584 }
585 };
586
587 // Mostly the same as std::vector, but insert/erase can reorder
588 // the elements, making append(=insert)/remove O(1) instead of O(n).
589 //
590 // NOTE: only some forms of erase are available
591 template<class T>
592 struct unordered_vector : std::vector<T, slice_allocator<T> >
593 {
594 typedef typename unordered_vector::iterator iterator;
595
596 void erase (unsigned int pos)
597 {
598 if (pos < this->size () - 1)
599 (*this)[pos] = (*this)[this->size () - 1];
600
601 this->pop_back ();
602 }
603
604 void erase (iterator i)
605 {
606 erase ((unsigned int )(i - this->begin ()));
607 }
608 };
609
610 // This container blends advantages of linked lists
611 // (efficiency) with vectors (random access) by
612 // by using an unordered vector and storing the vector
613 // index inside the object.
614 //
615 // + memory-efficient on most 64 bit archs
616 // + O(1) insert/remove
617 // + free unique (but varying) id for inserted objects
618 // + cache-friendly iteration
619 // - only works for pointers to structs
620 //
621 // NOTE: only some forms of erase/insert are available
622 typedef int object_vector_index;
623
624 template<class T, object_vector_index T::*indexmember>
625 struct object_vector : std::vector<T *, slice_allocator<T *> >
626 {
627 typedef typename object_vector::iterator iterator;
628
629 bool contains (const T *obj) const
630 {
631 return obj->*indexmember;
632 }
633
634 iterator find (const T *obj)
635 {
636 return obj->*indexmember
637 ? this->begin () + obj->*indexmember - 1
638 : this->end ();
639 }
640
641 void push_back (T *obj)
642 {
643 std::vector<T *, slice_allocator<T *> >::push_back (obj);
644 obj->*indexmember = this->size ();
645 }
646
647 void insert (T *obj)
648 {
649 push_back (obj);
650 }
651
652 void insert (T &obj)
653 {
654 insert (&obj);
655 }
656
657 void erase (T *obj)
658 {
659 unsigned int pos = obj->*indexmember;
660 obj->*indexmember = 0;
661
662 if (pos < this->size ())
663 {
664 (*this)[pos - 1] = (*this)[this->size () - 1];
665 (*this)[pos - 1]->*indexmember = pos;
666 }
667
668 this->pop_back ();
669 }
670
671 void erase (T &obj)
672 {
673 erase (&obj);
674 }
675 };
676
677 // basically does what strncpy should do, but appends "..." to strings exceeding length
678 void assign (char *dst, const char *src, int maxlen);
679
680 // type-safe version of assign
681 template<int N>
682 inline void assign (char (&dst)[N], const char *src)
683 {
684 assign ((char *)&dst, src, N);
685 }
686
687 typedef double tstamp;
688
689 // return current time as timestamp
690 tstamp now ();
691
692 int similar_direction (int a, int b);
693
694 // like sprintf, but returns a "static" buffer
695 const char *format (const char *format, ...);
696
697 /////////////////////////////////////////////////////////////////////////////
698 // threads, very very thin wrappers around pthreads
699
700 struct thread
701 {
702 pthread_t id;
703
704 void start (void *(*start_routine)(void *), void *arg = 0);
705
706 void cancel ()
707 {
708 pthread_cancel (id);
709 }
710
711 void *join ()
712 {
713 void *ret;
714
715 if (pthread_join (id, &ret))
716 cleanup ("pthread_join failed", 1);
717
718 return ret;
719 }
720 };
721
722 // note that mutexes are not classes
723 typedef pthread_mutex_t smutex;
724
725 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
726 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
727 #else
728 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
729 #endif
730
731 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
732 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
733 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
734
735 typedef pthread_cond_t scond;
736
737 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
738 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
739 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
740 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
741
742 #endif
743