ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.87
Committed: Mon Jan 12 03:40:21 2009 UTC (15 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_76, rel-2_77, rel-2_78
Changes since 1.86: +4 -3 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29 #if __GNUC__ >= 3
30 # define is_constant(c) __builtin_constant_p (c)
31 # define expect(expr,value) __builtin_expect ((expr),(value))
32 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 # define noinline __attribute__((__noinline__))
34 #else
35 # define is_constant(c) 0
36 # define expect(expr,value) (expr)
37 # define prefetch(addr,rw,locality)
38 # define noinline
39 #endif
40
41 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42 # define decltype(x) typeof(x)
43 #endif
44
45 // put into ifs if you are very sure that the expression
46 // is mostly true or mosty false. note that these return
47 // booleans, not the expression.
48 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49 #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51 #include <pthread.h>
52
53 #include <cstddef>
54 #include <cmath>
55 #include <new>
56 #include <vector>
57
58 #include <glib.h>
59
60 #include <shstr.h>
61 #include <traits.h>
62
63 #if DEBUG_SALLOC
64 # define g_slice_alloc0(s) debug_slice_alloc0(s)
65 # define g_slice_alloc(s) debug_slice_alloc(s)
66 # define g_slice_free1(s,p) debug_slice_free1(s,p)
67 void *g_slice_alloc (unsigned long size);
68 void *g_slice_alloc0 (unsigned long size);
69 void g_slice_free1 (unsigned long size, void *ptr);
70 #elif PREFER_MALLOC
71 # define g_slice_alloc0(s) calloc (1, (s))
72 # define g_slice_alloc(s) malloc ((s))
73 # define g_slice_free1(s,p) free ((p))
74 #endif
75
76 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
77 #define auto(var,expr) decltype(expr) var = (expr)
78
79 // very ugly macro that basically declares and initialises a variable
80 // that is in scope for the next statement only
81 // works only for stuff that can be assigned 0 and converts to false
82 // (note: works great for pointers)
83 // most ugly macro I ever wrote
84 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
85
86 // in range including end
87 #define IN_RANGE_INC(val,beg,end) \
88 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
89
90 // in range excluding end
91 #define IN_RANGE_EXC(val,beg,end) \
92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
93
94 void cleanup (const char *cause, bool make_core = false);
95 void fork_abort (const char *msg);
96
97 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
98 // as a is often a constant while b is the variable. it is still a bug, though.
99 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
100 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
101 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
102
103 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
107 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108
109 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111
112 // sign returns -1 or +1
113 template<typename T>
114 static inline T sign (T v) { return v < 0 ? -1 : +1; }
115 // relies on 2c representation
116 template<>
117 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119 // sign0 returns -1, 0 or +1
120 template<typename T>
121 static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124 template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
125 // div, round-up
126 template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
127 // div, round-down
128 template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
129
130 template<typename T>
131 static inline T
132 lerp (T val, T min_in, T max_in, T min_out, T max_out)
133 {
134 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
135 }
136
137 // lerp, round-down
138 template<typename T>
139 static inline T
140 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
141 {
142 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
143 }
144
145 // lerp, round-up
146 template<typename T>
147 static inline T
148 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
149 {
150 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151 }
152
153 // lots of stuff taken from FXT
154
155 /* Rotate right. This is used in various places for checksumming */
156 //TODO: that sucks, use a better checksum algo
157 static inline uint32_t
158 rotate_right (uint32_t c, uint32_t count = 1)
159 {
160 return (c << (32 - count)) | (c >> count);
161 }
162
163 static inline uint32_t
164 rotate_left (uint32_t c, uint32_t count = 1)
165 {
166 return (c >> (32 - count)) | (c << count);
167 }
168
169 // Return abs(a-b)
170 // Both a and b must not have the most significant bit set
171 static inline uint32_t
172 upos_abs_diff (uint32_t a, uint32_t b)
173 {
174 long d1 = b - a;
175 long d2 = (d1 & (d1 >> 31)) << 1;
176
177 return d1 - d2; // == (b - d) - (a + d);
178 }
179
180 // Both a and b must not have the most significant bit set
181 static inline uint32_t
182 upos_min (uint32_t a, uint32_t b)
183 {
184 int32_t d = b - a;
185 d &= d >> 31;
186 return a + d;
187 }
188
189 // Both a and b must not have the most significant bit set
190 static inline uint32_t
191 upos_max (uint32_t a, uint32_t b)
192 {
193 int32_t d = b - a;
194 d &= d >> 31;
195 return b - d;
196 }
197
198 // this is much faster than crossfires original algorithm
199 // on modern cpus
200 inline int
201 isqrt (int n)
202 {
203 return (int)sqrtf ((float)n);
204 }
205
206 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
207 #if 0
208 // and has a max. error of 6 in the range -100..+100.
209 #else
210 // and has a max. error of 9 in the range -100..+100.
211 #endif
212 inline int
213 idistance (int dx, int dy)
214 {
215 unsigned int dx_ = abs (dx);
216 unsigned int dy_ = abs (dy);
217
218 #if 0
219 return dx_ > dy_
220 ? (dx_ * 61685 + dy_ * 26870) >> 16
221 : (dy_ * 61685 + dx_ * 26870) >> 16;
222 #else
223 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
224 #endif
225 }
226
227 /*
228 * absdir(int): Returns a number between 1 and 8, which represent
229 * the "absolute" direction of a number (it actually takes care of
230 * "overflow" in previous calculations of a direction).
231 */
232 inline int
233 absdir (int d)
234 {
235 return ((d - 1) & 7) + 1;
236 }
237
238 extern ssize_t slice_alloc; // statistics
239
240 void *salloc_ (int n) throw (std::bad_alloc);
241 void *salloc_ (int n, void *src) throw (std::bad_alloc);
242
243 // strictly the same as g_slice_alloc, but never returns 0
244 template<typename T>
245 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
246
247 // also copies src into the new area, like "memdup"
248 // if src is 0, clears the memory
249 template<typename T>
250 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
251
252 // clears the memory
253 template<typename T>
254 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
255
256 // for symmetry
257 template<typename T>
258 inline void sfree (T *ptr, int n = 1) throw ()
259 {
260 if (expect_true (ptr))
261 {
262 slice_alloc -= n * sizeof (T);
263 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
264 g_slice_free1 (n * sizeof (T), (void *)ptr);
265 assert (slice_alloc >= 0);//D
266 }
267 }
268
269 // nulls the pointer
270 template<typename T>
271 inline void sfree0 (T *&ptr, int n = 1) throw ()
272 {
273 sfree<T> (ptr, n);
274 ptr = 0;
275 }
276
277 // makes dynamically allocated objects zero-initialised
278 struct zero_initialised
279 {
280 void *operator new (size_t s, void *p)
281 {
282 memset (p, 0, s);
283 return p;
284 }
285
286 void *operator new (size_t s)
287 {
288 return salloc0<char> (s);
289 }
290
291 void *operator new[] (size_t s)
292 {
293 return salloc0<char> (s);
294 }
295
296 void operator delete (void *p, size_t s)
297 {
298 sfree ((char *)p, s);
299 }
300
301 void operator delete[] (void *p, size_t s)
302 {
303 sfree ((char *)p, s);
304 }
305 };
306
307 // makes dynamically allocated objects zero-initialised
308 struct slice_allocated
309 {
310 void *operator new (size_t s, void *p)
311 {
312 return p;
313 }
314
315 void *operator new (size_t s)
316 {
317 return salloc<char> (s);
318 }
319
320 void *operator new[] (size_t s)
321 {
322 return salloc<char> (s);
323 }
324
325 void operator delete (void *p, size_t s)
326 {
327 sfree ((char *)p, s);
328 }
329
330 void operator delete[] (void *p, size_t s)
331 {
332 sfree ((char *)p, s);
333 }
334 };
335
336 // a STL-compatible allocator that uses g_slice
337 // boy, this is verbose
338 template<typename Tp>
339 struct slice_allocator
340 {
341 typedef size_t size_type;
342 typedef ptrdiff_t difference_type;
343 typedef Tp *pointer;
344 typedef const Tp *const_pointer;
345 typedef Tp &reference;
346 typedef const Tp &const_reference;
347 typedef Tp value_type;
348
349 template <class U>
350 struct rebind
351 {
352 typedef slice_allocator<U> other;
353 };
354
355 slice_allocator () throw () { }
356 slice_allocator (const slice_allocator &) throw () { }
357 template<typename Tp2>
358 slice_allocator (const slice_allocator<Tp2> &) throw () { }
359
360 ~slice_allocator () { }
361
362 pointer address (reference x) const { return &x; }
363 const_pointer address (const_reference x) const { return &x; }
364
365 pointer allocate (size_type n, const_pointer = 0)
366 {
367 return salloc<Tp> (n);
368 }
369
370 void deallocate (pointer p, size_type n)
371 {
372 sfree<Tp> (p, n);
373 }
374
375 size_type max_size () const throw ()
376 {
377 return size_t (-1) / sizeof (Tp);
378 }
379
380 void construct (pointer p, const Tp &val)
381 {
382 ::new (p) Tp (val);
383 }
384
385 void destroy (pointer p)
386 {
387 p->~Tp ();
388 }
389 };
390
391 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
392 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
393 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
394 struct tausworthe_random_generator
395 {
396 uint32_t state [4];
397
398 void operator =(const tausworthe_random_generator &src)
399 {
400 state [0] = src.state [0];
401 state [1] = src.state [1];
402 state [2] = src.state [2];
403 state [3] = src.state [3];
404 }
405
406 void seed (uint32_t seed);
407 uint32_t next ();
408 };
409
410 // Xorshift RNGs, George Marsaglia
411 // http://www.jstatsoft.org/v08/i14/paper
412 // this one is about 40% faster than the tausworthe one above (i.e. not much),
413 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
414 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
415 struct xorshift_random_generator
416 {
417 uint32_t x, y;
418
419 void operator =(const xorshift_random_generator &src)
420 {
421 x = src.x;
422 y = src.y;
423 }
424
425 void seed (uint32_t seed)
426 {
427 x = seed;
428 y = seed * 69069U;
429 }
430
431 uint32_t next ()
432 {
433 uint32_t t = x ^ (x << 10);
434 x = y;
435 y = y ^ (y >> 13) ^ t ^ (t >> 10);
436 return y;
437 }
438 };
439
440 template<class generator>
441 struct random_number_generator : generator
442 {
443 // uniform distribution, 0 .. max (0, num - 1)
444 uint32_t operator ()(uint32_t num)
445 {
446 return !is_constant (num) ? get_range (num) // non-constant
447 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
448 : this->next () & (num - 1); // constant, power-of-two
449 }
450
451 // return a number within (min .. max)
452 int operator () (int r_min, int r_max)
453 {
454 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
455 ? r_min + operator ()(r_max - r_min + 1)
456 : get_range (r_min, r_max);
457 }
458
459 double operator ()()
460 {
461 return this->next () / (double)0xFFFFFFFFU;
462 }
463
464 protected:
465 uint32_t get_range (uint32_t r_max);
466 int get_range (int r_min, int r_max);
467 };
468
469 typedef random_number_generator<tausworthe_random_generator> rand_gen;
470
471 extern rand_gen rndm, rmg_rndm;
472
473 INTERFACE_CLASS (attachable)
474 struct refcnt_base
475 {
476 typedef int refcnt_t;
477 mutable refcnt_t ACC (RW, refcnt);
478
479 MTH void refcnt_inc () const { ++refcnt; }
480 MTH void refcnt_dec () const { --refcnt; }
481
482 refcnt_base () : refcnt (0) { }
483 };
484
485 // to avoid branches with more advanced compilers
486 extern refcnt_base::refcnt_t refcnt_dummy;
487
488 template<class T>
489 struct refptr
490 {
491 // p if not null
492 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
493
494 void refcnt_dec ()
495 {
496 if (!is_constant (p))
497 --*refcnt_ref ();
498 else if (p)
499 --p->refcnt;
500 }
501
502 void refcnt_inc ()
503 {
504 if (!is_constant (p))
505 ++*refcnt_ref ();
506 else if (p)
507 ++p->refcnt;
508 }
509
510 T *p;
511
512 refptr () : p(0) { }
513 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
514 refptr (T *p) : p(p) { refcnt_inc (); }
515 ~refptr () { refcnt_dec (); }
516
517 const refptr<T> &operator =(T *o)
518 {
519 // if decrementing ever destroys we need to reverse the order here
520 refcnt_dec ();
521 p = o;
522 refcnt_inc ();
523 return *this;
524 }
525
526 const refptr<T> &operator =(const refptr<T> &o)
527 {
528 *this = o.p;
529 return *this;
530 }
531
532 T &operator * () const { return *p; }
533 T *operator ->() const { return p; }
534
535 operator T *() const { return p; }
536 };
537
538 typedef refptr<maptile> maptile_ptr;
539 typedef refptr<object> object_ptr;
540 typedef refptr<archetype> arch_ptr;
541 typedef refptr<client> client_ptr;
542 typedef refptr<player> player_ptr;
543
544 struct str_hash
545 {
546 std::size_t operator ()(const char *s) const
547 {
548 #if 0
549 uint32_t hash = 0;
550
551 /* use the one-at-a-time hash function, which supposedly is
552 * better than the djb2-like one used by perl5.005, but
553 * certainly is better then the bug used here before.
554 * see http://burtleburtle.net/bob/hash/doobs.html
555 */
556 while (*s)
557 {
558 hash += *s++;
559 hash += hash << 10;
560 hash ^= hash >> 6;
561 }
562
563 hash += hash << 3;
564 hash ^= hash >> 11;
565 hash += hash << 15;
566 #else
567 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
568 // it is about twice as fast as the one-at-a-time one,
569 // with good distribution.
570 // FNV-1a is faster on many cpus because the multiplication
571 // runs concurrent with the looping logic.
572 uint32_t hash = 2166136261;
573
574 while (*s)
575 hash = (hash ^ *s++) * 16777619;
576 #endif
577
578 return hash;
579 }
580 };
581
582 struct str_equal
583 {
584 bool operator ()(const char *a, const char *b) const
585 {
586 return !strcmp (a, b);
587 }
588 };
589
590 // Mostly the same as std::vector, but insert/erase can reorder
591 // the elements, making append(=insert)/remove O(1) instead of O(n).
592 //
593 // NOTE: only some forms of erase are available
594 template<class T>
595 struct unordered_vector : std::vector<T, slice_allocator<T> >
596 {
597 typedef typename unordered_vector::iterator iterator;
598
599 void erase (unsigned int pos)
600 {
601 if (pos < this->size () - 1)
602 (*this)[pos] = (*this)[this->size () - 1];
603
604 this->pop_back ();
605 }
606
607 void erase (iterator i)
608 {
609 erase ((unsigned int )(i - this->begin ()));
610 }
611 };
612
613 // This container blends advantages of linked lists
614 // (efficiency) with vectors (random access) by
615 // by using an unordered vector and storing the vector
616 // index inside the object.
617 //
618 // + memory-efficient on most 64 bit archs
619 // + O(1) insert/remove
620 // + free unique (but varying) id for inserted objects
621 // + cache-friendly iteration
622 // - only works for pointers to structs
623 //
624 // NOTE: only some forms of erase/insert are available
625 typedef int object_vector_index;
626
627 template<class T, object_vector_index T::*indexmember>
628 struct object_vector : std::vector<T *, slice_allocator<T *> >
629 {
630 typedef typename object_vector::iterator iterator;
631
632 bool contains (const T *obj) const
633 {
634 return obj->*indexmember;
635 }
636
637 iterator find (const T *obj)
638 {
639 return obj->*indexmember
640 ? this->begin () + obj->*indexmember - 1
641 : this->end ();
642 }
643
644 void push_back (T *obj)
645 {
646 std::vector<T *, slice_allocator<T *> >::push_back (obj);
647 obj->*indexmember = this->size ();
648 }
649
650 void insert (T *obj)
651 {
652 push_back (obj);
653 }
654
655 void insert (T &obj)
656 {
657 insert (&obj);
658 }
659
660 void erase (T *obj)
661 {
662 unsigned int pos = obj->*indexmember;
663 obj->*indexmember = 0;
664
665 if (pos < this->size ())
666 {
667 (*this)[pos - 1] = (*this)[this->size () - 1];
668 (*this)[pos - 1]->*indexmember = pos;
669 }
670
671 this->pop_back ();
672 }
673
674 void erase (T &obj)
675 {
676 erase (&obj);
677 }
678 };
679
680 // basically does what strncpy should do, but appends "..." to strings exceeding length
681 // returns the number of bytes actually used (including \0)
682 int assign (char *dst, const char *src, int maxsize);
683
684 // type-safe version of assign
685 template<int N>
686 inline int assign (char (&dst)[N], const char *src)
687 {
688 return assign ((char *)&dst, src, N);
689 }
690
691 typedef double tstamp;
692
693 // return current time as timestamp
694 tstamp now ();
695
696 int similar_direction (int a, int b);
697
698 // like sprintf, but returns a "static" buffer
699 const char *format (const char *format, ...);
700
701 /////////////////////////////////////////////////////////////////////////////
702 // threads, very very thin wrappers around pthreads
703
704 struct thread
705 {
706 pthread_t id;
707
708 void start (void *(*start_routine)(void *), void *arg = 0);
709
710 void cancel ()
711 {
712 pthread_cancel (id);
713 }
714
715 void *join ()
716 {
717 void *ret;
718
719 if (pthread_join (id, &ret))
720 cleanup ("pthread_join failed", 1);
721
722 return ret;
723 }
724 };
725
726 // note that mutexes are not classes
727 typedef pthread_mutex_t smutex;
728
729 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
730 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
731 #else
732 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
733 #endif
734
735 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
736 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
737 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
738
739 typedef pthread_cond_t scond;
740
741 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
742 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
743 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
744 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
745
746 #endif
747