ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.88
Committed: Tue May 5 04:51:56 2009 UTC (15 years ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_80, rel-2_79
Changes since 1.87: +15 -3 lines
Log Message:
adjust los lightness a bit

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29 #if __GNUC__ >= 3
30 # define is_constant(c) __builtin_constant_p (c)
31 # define expect(expr,value) __builtin_expect ((expr),(value))
32 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 # define noinline __attribute__((__noinline__))
34 #else
35 # define is_constant(c) 0
36 # define expect(expr,value) (expr)
37 # define prefetch(addr,rw,locality)
38 # define noinline
39 #endif
40
41 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42 # define decltype(x) typeof(x)
43 #endif
44
45 // put into ifs if you are very sure that the expression
46 // is mostly true or mosty false. note that these return
47 // booleans, not the expression.
48 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49 #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51 #include <pthread.h>
52
53 #include <cstddef>
54 #include <cmath>
55 #include <new>
56 #include <vector>
57
58 #include <glib.h>
59
60 #include <shstr.h>
61 #include <traits.h>
62
63 #if DEBUG_SALLOC
64 # define g_slice_alloc0(s) debug_slice_alloc0(s)
65 # define g_slice_alloc(s) debug_slice_alloc(s)
66 # define g_slice_free1(s,p) debug_slice_free1(s,p)
67 void *g_slice_alloc (unsigned long size);
68 void *g_slice_alloc0 (unsigned long size);
69 void g_slice_free1 (unsigned long size, void *ptr);
70 #elif PREFER_MALLOC
71 # define g_slice_alloc0(s) calloc (1, (s))
72 # define g_slice_alloc(s) malloc ((s))
73 # define g_slice_free1(s,p) free ((p))
74 #endif
75
76 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
77 #define auto(var,expr) decltype(expr) var = (expr)
78
79 // very ugly macro that basically declares and initialises a variable
80 // that is in scope for the next statement only
81 // works only for stuff that can be assigned 0 and converts to false
82 // (note: works great for pointers)
83 // most ugly macro I ever wrote
84 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
85
86 // in range including end
87 #define IN_RANGE_INC(val,beg,end) \
88 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
89
90 // in range excluding end
91 #define IN_RANGE_EXC(val,beg,end) \
92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
93
94 void cleanup (const char *cause, bool make_core = false);
95 void fork_abort (const char *msg);
96
97 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
98 // as a is often a constant while b is the variable. it is still a bug, though.
99 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
100 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
101 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
102
103 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
107 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108
109 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111
112 // sign returns -1 or +1
113 template<typename T>
114 static inline T sign (T v) { return v < 0 ? -1 : +1; }
115 // relies on 2c representation
116 template<>
117 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119 // sign0 returns -1, 0 or +1
120 template<typename T>
121 static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123 // div* only work correctly for div > 0
124 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125 template<typename T> static inline T div (T val, T div)
126 {
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128 }
129 // div, round-up
130 template<typename T> static inline T div_ru (T val, T div)
131 {
132 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
133 }
134 // div, round-down
135 template<typename T> static inline T div_rd (T val, T div)
136 {
137 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
138 }
139
140 // lerp* only work correctly for min_in < max_in
141 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
142 template<typename T>
143 static inline T
144 lerp (T val, T min_in, T max_in, T min_out, T max_out)
145 {
146 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147 }
148
149 // lerp, round-down
150 template<typename T>
151 static inline T
152 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
153 {
154 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
155 }
156
157 // lerp, round-up
158 template<typename T>
159 static inline T
160 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
161 {
162 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
163 }
164
165 // lots of stuff taken from FXT
166
167 /* Rotate right. This is used in various places for checksumming */
168 //TODO: that sucks, use a better checksum algo
169 static inline uint32_t
170 rotate_right (uint32_t c, uint32_t count = 1)
171 {
172 return (c << (32 - count)) | (c >> count);
173 }
174
175 static inline uint32_t
176 rotate_left (uint32_t c, uint32_t count = 1)
177 {
178 return (c >> (32 - count)) | (c << count);
179 }
180
181 // Return abs(a-b)
182 // Both a and b must not have the most significant bit set
183 static inline uint32_t
184 upos_abs_diff (uint32_t a, uint32_t b)
185 {
186 long d1 = b - a;
187 long d2 = (d1 & (d1 >> 31)) << 1;
188
189 return d1 - d2; // == (b - d) - (a + d);
190 }
191
192 // Both a and b must not have the most significant bit set
193 static inline uint32_t
194 upos_min (uint32_t a, uint32_t b)
195 {
196 int32_t d = b - a;
197 d &= d >> 31;
198 return a + d;
199 }
200
201 // Both a and b must not have the most significant bit set
202 static inline uint32_t
203 upos_max (uint32_t a, uint32_t b)
204 {
205 int32_t d = b - a;
206 d &= d >> 31;
207 return b - d;
208 }
209
210 // this is much faster than crossfires original algorithm
211 // on modern cpus
212 inline int
213 isqrt (int n)
214 {
215 return (int)sqrtf ((float)n);
216 }
217
218 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
219 #if 0
220 // and has a max. error of 6 in the range -100..+100.
221 #else
222 // and has a max. error of 9 in the range -100..+100.
223 #endif
224 inline int
225 idistance (int dx, int dy)
226 {
227 unsigned int dx_ = abs (dx);
228 unsigned int dy_ = abs (dy);
229
230 #if 0
231 return dx_ > dy_
232 ? (dx_ * 61685 + dy_ * 26870) >> 16
233 : (dy_ * 61685 + dx_ * 26870) >> 16;
234 #else
235 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
236 #endif
237 }
238
239 /*
240 * absdir(int): Returns a number between 1 and 8, which represent
241 * the "absolute" direction of a number (it actually takes care of
242 * "overflow" in previous calculations of a direction).
243 */
244 inline int
245 absdir (int d)
246 {
247 return ((d - 1) & 7) + 1;
248 }
249
250 extern ssize_t slice_alloc; // statistics
251
252 void *salloc_ (int n) throw (std::bad_alloc);
253 void *salloc_ (int n, void *src) throw (std::bad_alloc);
254
255 // strictly the same as g_slice_alloc, but never returns 0
256 template<typename T>
257 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
258
259 // also copies src into the new area, like "memdup"
260 // if src is 0, clears the memory
261 template<typename T>
262 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
263
264 // clears the memory
265 template<typename T>
266 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
267
268 // for symmetry
269 template<typename T>
270 inline void sfree (T *ptr, int n = 1) throw ()
271 {
272 if (expect_true (ptr))
273 {
274 slice_alloc -= n * sizeof (T);
275 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
276 g_slice_free1 (n * sizeof (T), (void *)ptr);
277 assert (slice_alloc >= 0);//D
278 }
279 }
280
281 // nulls the pointer
282 template<typename T>
283 inline void sfree0 (T *&ptr, int n = 1) throw ()
284 {
285 sfree<T> (ptr, n);
286 ptr = 0;
287 }
288
289 // makes dynamically allocated objects zero-initialised
290 struct zero_initialised
291 {
292 void *operator new (size_t s, void *p)
293 {
294 memset (p, 0, s);
295 return p;
296 }
297
298 void *operator new (size_t s)
299 {
300 return salloc0<char> (s);
301 }
302
303 void *operator new[] (size_t s)
304 {
305 return salloc0<char> (s);
306 }
307
308 void operator delete (void *p, size_t s)
309 {
310 sfree ((char *)p, s);
311 }
312
313 void operator delete[] (void *p, size_t s)
314 {
315 sfree ((char *)p, s);
316 }
317 };
318
319 // makes dynamically allocated objects zero-initialised
320 struct slice_allocated
321 {
322 void *operator new (size_t s, void *p)
323 {
324 return p;
325 }
326
327 void *operator new (size_t s)
328 {
329 return salloc<char> (s);
330 }
331
332 void *operator new[] (size_t s)
333 {
334 return salloc<char> (s);
335 }
336
337 void operator delete (void *p, size_t s)
338 {
339 sfree ((char *)p, s);
340 }
341
342 void operator delete[] (void *p, size_t s)
343 {
344 sfree ((char *)p, s);
345 }
346 };
347
348 // a STL-compatible allocator that uses g_slice
349 // boy, this is verbose
350 template<typename Tp>
351 struct slice_allocator
352 {
353 typedef size_t size_type;
354 typedef ptrdiff_t difference_type;
355 typedef Tp *pointer;
356 typedef const Tp *const_pointer;
357 typedef Tp &reference;
358 typedef const Tp &const_reference;
359 typedef Tp value_type;
360
361 template <class U>
362 struct rebind
363 {
364 typedef slice_allocator<U> other;
365 };
366
367 slice_allocator () throw () { }
368 slice_allocator (const slice_allocator &) throw () { }
369 template<typename Tp2>
370 slice_allocator (const slice_allocator<Tp2> &) throw () { }
371
372 ~slice_allocator () { }
373
374 pointer address (reference x) const { return &x; }
375 const_pointer address (const_reference x) const { return &x; }
376
377 pointer allocate (size_type n, const_pointer = 0)
378 {
379 return salloc<Tp> (n);
380 }
381
382 void deallocate (pointer p, size_type n)
383 {
384 sfree<Tp> (p, n);
385 }
386
387 size_type max_size () const throw ()
388 {
389 return size_t (-1) / sizeof (Tp);
390 }
391
392 void construct (pointer p, const Tp &val)
393 {
394 ::new (p) Tp (val);
395 }
396
397 void destroy (pointer p)
398 {
399 p->~Tp ();
400 }
401 };
402
403 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
404 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
405 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
406 struct tausworthe_random_generator
407 {
408 uint32_t state [4];
409
410 void operator =(const tausworthe_random_generator &src)
411 {
412 state [0] = src.state [0];
413 state [1] = src.state [1];
414 state [2] = src.state [2];
415 state [3] = src.state [3];
416 }
417
418 void seed (uint32_t seed);
419 uint32_t next ();
420 };
421
422 // Xorshift RNGs, George Marsaglia
423 // http://www.jstatsoft.org/v08/i14/paper
424 // this one is about 40% faster than the tausworthe one above (i.e. not much),
425 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
426 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
427 struct xorshift_random_generator
428 {
429 uint32_t x, y;
430
431 void operator =(const xorshift_random_generator &src)
432 {
433 x = src.x;
434 y = src.y;
435 }
436
437 void seed (uint32_t seed)
438 {
439 x = seed;
440 y = seed * 69069U;
441 }
442
443 uint32_t next ()
444 {
445 uint32_t t = x ^ (x << 10);
446 x = y;
447 y = y ^ (y >> 13) ^ t ^ (t >> 10);
448 return y;
449 }
450 };
451
452 template<class generator>
453 struct random_number_generator : generator
454 {
455 // uniform distribution, 0 .. max (0, num - 1)
456 uint32_t operator ()(uint32_t num)
457 {
458 return !is_constant (num) ? get_range (num) // non-constant
459 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
460 : this->next () & (num - 1); // constant, power-of-two
461 }
462
463 // return a number within (min .. max)
464 int operator () (int r_min, int r_max)
465 {
466 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
467 ? r_min + operator ()(r_max - r_min + 1)
468 : get_range (r_min, r_max);
469 }
470
471 double operator ()()
472 {
473 return this->next () / (double)0xFFFFFFFFU;
474 }
475
476 protected:
477 uint32_t get_range (uint32_t r_max);
478 int get_range (int r_min, int r_max);
479 };
480
481 typedef random_number_generator<tausworthe_random_generator> rand_gen;
482
483 extern rand_gen rndm, rmg_rndm;
484
485 INTERFACE_CLASS (attachable)
486 struct refcnt_base
487 {
488 typedef int refcnt_t;
489 mutable refcnt_t ACC (RW, refcnt);
490
491 MTH void refcnt_inc () const { ++refcnt; }
492 MTH void refcnt_dec () const { --refcnt; }
493
494 refcnt_base () : refcnt (0) { }
495 };
496
497 // to avoid branches with more advanced compilers
498 extern refcnt_base::refcnt_t refcnt_dummy;
499
500 template<class T>
501 struct refptr
502 {
503 // p if not null
504 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
505
506 void refcnt_dec ()
507 {
508 if (!is_constant (p))
509 --*refcnt_ref ();
510 else if (p)
511 --p->refcnt;
512 }
513
514 void refcnt_inc ()
515 {
516 if (!is_constant (p))
517 ++*refcnt_ref ();
518 else if (p)
519 ++p->refcnt;
520 }
521
522 T *p;
523
524 refptr () : p(0) { }
525 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
526 refptr (T *p) : p(p) { refcnt_inc (); }
527 ~refptr () { refcnt_dec (); }
528
529 const refptr<T> &operator =(T *o)
530 {
531 // if decrementing ever destroys we need to reverse the order here
532 refcnt_dec ();
533 p = o;
534 refcnt_inc ();
535 return *this;
536 }
537
538 const refptr<T> &operator =(const refptr<T> &o)
539 {
540 *this = o.p;
541 return *this;
542 }
543
544 T &operator * () const { return *p; }
545 T *operator ->() const { return p; }
546
547 operator T *() const { return p; }
548 };
549
550 typedef refptr<maptile> maptile_ptr;
551 typedef refptr<object> object_ptr;
552 typedef refptr<archetype> arch_ptr;
553 typedef refptr<client> client_ptr;
554 typedef refptr<player> player_ptr;
555
556 struct str_hash
557 {
558 std::size_t operator ()(const char *s) const
559 {
560 #if 0
561 uint32_t hash = 0;
562
563 /* use the one-at-a-time hash function, which supposedly is
564 * better than the djb2-like one used by perl5.005, but
565 * certainly is better then the bug used here before.
566 * see http://burtleburtle.net/bob/hash/doobs.html
567 */
568 while (*s)
569 {
570 hash += *s++;
571 hash += hash << 10;
572 hash ^= hash >> 6;
573 }
574
575 hash += hash << 3;
576 hash ^= hash >> 11;
577 hash += hash << 15;
578 #else
579 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
580 // it is about twice as fast as the one-at-a-time one,
581 // with good distribution.
582 // FNV-1a is faster on many cpus because the multiplication
583 // runs concurrent with the looping logic.
584 uint32_t hash = 2166136261;
585
586 while (*s)
587 hash = (hash ^ *s++) * 16777619;
588 #endif
589
590 return hash;
591 }
592 };
593
594 struct str_equal
595 {
596 bool operator ()(const char *a, const char *b) const
597 {
598 return !strcmp (a, b);
599 }
600 };
601
602 // Mostly the same as std::vector, but insert/erase can reorder
603 // the elements, making append(=insert)/remove O(1) instead of O(n).
604 //
605 // NOTE: only some forms of erase are available
606 template<class T>
607 struct unordered_vector : std::vector<T, slice_allocator<T> >
608 {
609 typedef typename unordered_vector::iterator iterator;
610
611 void erase (unsigned int pos)
612 {
613 if (pos < this->size () - 1)
614 (*this)[pos] = (*this)[this->size () - 1];
615
616 this->pop_back ();
617 }
618
619 void erase (iterator i)
620 {
621 erase ((unsigned int )(i - this->begin ()));
622 }
623 };
624
625 // This container blends advantages of linked lists
626 // (efficiency) with vectors (random access) by
627 // by using an unordered vector and storing the vector
628 // index inside the object.
629 //
630 // + memory-efficient on most 64 bit archs
631 // + O(1) insert/remove
632 // + free unique (but varying) id for inserted objects
633 // + cache-friendly iteration
634 // - only works for pointers to structs
635 //
636 // NOTE: only some forms of erase/insert are available
637 typedef int object_vector_index;
638
639 template<class T, object_vector_index T::*indexmember>
640 struct object_vector : std::vector<T *, slice_allocator<T *> >
641 {
642 typedef typename object_vector::iterator iterator;
643
644 bool contains (const T *obj) const
645 {
646 return obj->*indexmember;
647 }
648
649 iterator find (const T *obj)
650 {
651 return obj->*indexmember
652 ? this->begin () + obj->*indexmember - 1
653 : this->end ();
654 }
655
656 void push_back (T *obj)
657 {
658 std::vector<T *, slice_allocator<T *> >::push_back (obj);
659 obj->*indexmember = this->size ();
660 }
661
662 void insert (T *obj)
663 {
664 push_back (obj);
665 }
666
667 void insert (T &obj)
668 {
669 insert (&obj);
670 }
671
672 void erase (T *obj)
673 {
674 unsigned int pos = obj->*indexmember;
675 obj->*indexmember = 0;
676
677 if (pos < this->size ())
678 {
679 (*this)[pos - 1] = (*this)[this->size () - 1];
680 (*this)[pos - 1]->*indexmember = pos;
681 }
682
683 this->pop_back ();
684 }
685
686 void erase (T &obj)
687 {
688 erase (&obj);
689 }
690 };
691
692 // basically does what strncpy should do, but appends "..." to strings exceeding length
693 // returns the number of bytes actually used (including \0)
694 int assign (char *dst, const char *src, int maxsize);
695
696 // type-safe version of assign
697 template<int N>
698 inline int assign (char (&dst)[N], const char *src)
699 {
700 return assign ((char *)&dst, src, N);
701 }
702
703 typedef double tstamp;
704
705 // return current time as timestamp
706 tstamp now ();
707
708 int similar_direction (int a, int b);
709
710 // like sprintf, but returns a "static" buffer
711 const char *format (const char *format, ...);
712
713 /////////////////////////////////////////////////////////////////////////////
714 // threads, very very thin wrappers around pthreads
715
716 struct thread
717 {
718 pthread_t id;
719
720 void start (void *(*start_routine)(void *), void *arg = 0);
721
722 void cancel ()
723 {
724 pthread_cancel (id);
725 }
726
727 void *join ()
728 {
729 void *ret;
730
731 if (pthread_join (id, &ret))
732 cleanup ("pthread_join failed", 1);
733
734 return ret;
735 }
736 };
737
738 // note that mutexes are not classes
739 typedef pthread_mutex_t smutex;
740
741 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
742 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
743 #else
744 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
745 #endif
746
747 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
748 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
749 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
750
751 typedef pthread_cond_t scond;
752
753 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
754 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
755 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
756 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
757
758 #endif
759