ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/gvpe/doc/gvpe.texi
Revision: 1.5
Committed: Tue Feb 15 13:31:22 2011 UTC (13 years, 3 months ago) by root
Content type: application/x-texinfo
Branch: MAIN
CVS Tags: rel-2_25
Changes since 1.4: +132 -138 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 pcg 1.1 \input texinfo @c -*-texinfo-*-
2     @c GENERATED FILE, gvpe.texi.pod is the source, not gvpe.texi!
3     @c GENERATED FILE, gvpe.texi.pod is the source, not gvpe.texi!
4     @c GENERATED FILE, gvpe.texi.pod is the source, not gvpe.texi!
5     @c GENERATED FILE, gvpe.texi.pod is the source, not gvpe.texi!
6     @c GENERATED FILE, gvpe.texi.pod is the source, not gvpe.texi!
7     @c GENERATED FILE, gvpe.texi.pod is the source, not gvpe.texi!
8     @c %**start of header
9     @finalout
10     @setfilename gvpe.info
11     @settitle GNU Virtual Private Ethernet Manual
12     @setchapternewpage odd
13     @c %**end of header
14    
15     @ifinfo
16     @dircategory Networking tools
17     @direntry
18     * gvpe: (gvpe). The GNU VPE Manual.
19     @end direntry
20    
21     This is the info manual for vpe, the Virtual Private Ethernet daemon.
22    
23 pcg 1.3 Copyright @copyright{} 2003-2008 Marc Lehmann <gvpe@@schmorp.de>.
24 pcg 1.1
25     Permission is granted to make and distribute verbatim copies of this
26     manual provided the copyright notice and this permission notice are
27     preserved on all copies.
28    
29     Permission is granted to copy and distribute modified versions of this
30     manual under the conditions for verbatim copying, provided that the
31     entire resulting derived work is distributed under the terms of a
32     permission notice identical to this one.
33    
34     @end ifinfo
35    
36     @titlepage
37     @title gvpe Manual
38 root 1.5 @author Marc Lehmann
39 pcg 1.1
40     @page
41     @vskip 0pt plus 1filll
42     @cindex copyright
43    
44 pcg 1.3 Copyright @copyright{} 2003-2008 Marc Lehmann <gvpe@@schmorp.de>.
45 pcg 1.1
46     Permission is granted to make and distribute verbatim copies of this
47     manual provided the copyright notice and this permission notice are
48     preserved on all copies.
49    
50     Permission is granted to copy and distribute modified versions of this
51     manual under the conditions for verbatim copying, provided that the
52     entire resulting derived work is distributed under the terms of a
53     permission notice identical to this one.
54    
55     @end titlepage
56    
57     @contents
58    
59     @node Top,Overview,,(dir)
60    
61     @chapter Introduction
62     This is the documentation for the GNU Virtual Private Ethernet suite.
63     @refill
64     The GNU Virtual Private Ethernet suite implements a virtual (uses udp, tcp, rawip and other protocols for tunneling), private (encrypted, authenticated) ethernet (mac-based, broadcast-based network) that is shared among multiple nodes, in effect implementing an ethernet bus over public networks.
65     @refill
66    
67     @menu
68     * Overview:: Introduction to and Tutorial for GVPE (gvpe(5))
69     * OS Dependencies:: OS-Dependent Installation and Configuration Notes (gvpe.osdep(5))
70     * gvpe.conf:: The main configuration file (gvpe.conf(5))
71     * gvpectrl:: Configuration/Control Program Reference (gvpectrl(8))
72     * gvpe:: The GVPE Daemon (gvpe(8))
73     * gvpe.protocol:: The GVPE Transport and VPN Protocols (gvpe.protocol(7))
74     * Simple Example:: A simple yet realistic Example
75     * Complex Example:: A non-trivial Example
76     * Index:: Keyword and Concept index
77     @end menu
78    
79    
80     @node Overview,OS Dependencies,Top,Top
81    
82     @chapter Overview
83    
84     @section NAME
85     GNU-VPE - Overview of the GNU Virtual Private Ethernet suite.
86     @refill
87    
88    
89     @section DESCRIPTION
90     GVPE is a suite designed to provide a virtual private network for multiple nodes over an untrusted network. This document first gives an introduction to VPNs in general and then describes the specific implementation of GVPE.
91     @refill
92    
93    
94     @subsection WHAT IS A VPN?
95     VPN is an acronym, it stands for:
96     @refill
97    
98    
99     @itemize
100    
101    
102     @item
103 pcg 1.3 Virtual
104 pcg 1.1
105     Virtual means that no physical network is created (of course), but a network is @emph{emulated} by creating multiple tunnels between the member nodes by encapsulating and sending data over another transport network.
106     @refill
107     Usually the emulated network is a normal IP or Ethernet, and the transport network is the Internet. However, using a VPN system like GVPE to connect nodes over other untrusted networks such as Wireless LAN is not uncommon.
108     @refill
109    
110    
111     @item
112 pcg 1.3 Private
113 pcg 1.1
114     Private means that non-participating nodes cannot decode ("sniff)" nor inject ("spoof") packets. This means that nodes can be connected over untrusted networks such as the public Internet without fear of being eavesdropped while at the same time being able to trust data sent by other nodes.
115     @refill
116     In the case of GVPE, even participating nodes cannot sniff packets send to other nodes or spoof packets as if sent from other nodes, so communications between any two nodes is private to those two nodes.
117     @refill
118    
119    
120     @item
121 pcg 1.3 Network
122 pcg 1.1
123 root 1.5 Network means that more than two parties can participate in the network, so for instance it's possible to connect multiple branches of a company into a single network. Many so-called "VPN" solutions only create point-to-point tunnels, which in turn can be used to build larger networks.
124 pcg 1.1 @refill
125 root 1.5 GVPE provides a true multi-point network in which any number of nodes (at least a few dozen in practise, the theoretical limit is 4095 nodes) can participate.
126 pcg 1.1 @refill
127     @end itemize
128    
129    
130    
131     @subsection GVPE DESIGN GOALS
132    
133    
134     @itemize
135    
136    
137     @item
138 pcg 1.3 SIMPLE DESIGN
139 pcg 1.1
140     Cipher, HMAC algorithms and other key parameters must be selected at compile time - this makes it possible to only link in algorithms you actually need. It also makes the crypto part of the source very transparent and easy to inspect, and last not least this makes it possible to hardcode the layout of all packets into the binary. GVPE goes a step further and internally reserves blocks of the same length for all packets, which virtually removes all possibilities of buffer overflows, as there is only a single type of buffer and it's always of fixed length.
141     @refill
142    
143    
144     @item
145 pcg 1.3 EASY TO SETUP
146 pcg 1.1
147     A few lines of config (the config file is shared unmodified between all hosts) and a single run of @t{gvpectrl} to generate the keys suffices to make it work.
148     @refill
149    
150    
151     @item
152 pcg 1.3 MAC-BASED SECURITY
153 pcg 1.1
154     Since every host has it's own private key, other hosts cannot spoof traffic from this host. That makes it possible to filter packet by MAC address, e.g. to ensure that packets from a specific IP address come, in fact, from a specific host that is associated with that IP and not from another host.
155     @refill
156     @end itemize
157    
158    
159    
160     @section PROGRAMS
161 root 1.5 Gvpe comes with two programs: one daemon (@t{gvpe}) and one control program (@t{gvpectrl}).
162 pcg 1.1 @refill
163    
164    
165     @itemize
166    
167    
168     @item
169 pcg 1.3 gvpectrl
170 pcg 1.1
171 root 1.5 This program is used to generate the keys, check and give an overview of of the configuration and to control the daemon (restarting etc.).
172 pcg 1.1 @refill
173    
174    
175     @item
176 pcg 1.3 gvpe
177 pcg 1.1
178 root 1.5 This is the daemon used to establish and maintain connections to the other network nodes. It should be run on the gateway of each VPN subnet.
179 pcg 1.1 @refill
180     @end itemize
181    
182    
183    
184     @section COMPILETIME CONFIGURATION
185     Please have a look at the @t{gvpe.osdep(5)} manpage for platform-specific information.
186     @refill
187 root 1.5 Gvpe hardcodes most encryption parameters. While this reduces flexibility, it makes the program much simpler and helps making buffer overflows impossible under most circumstances.
188     @refill
189     Here are a few recipes for compiling your gvpe, showing the extremes (fast, small, insecure OR slow, large, more secure), between which you should choose:
190 pcg 1.1 @refill
191    
192    
193     @subsection AS LOW PACKET OVERHEAD AS POSSIBLE
194    
195    
196     @example
197     ./configure --enable-hmac-length=4 --enable-rand-length=0
198     @end example
199    
200 root 1.5 Minimize the header overhead of VPN packets (the above will result in only 4 bytes of overhead over the raw ethernet frame). This is a insecure configuration because a HMAC length of 4 makes collision attacks based on the birthday paradox pretty easy.
201 pcg 1.1 @refill
202    
203    
204     @subsection MINIMIZE CPU TIME REQUIRED
205    
206    
207     @example
208     ./configure --enable-cipher=bf --enable-digest=md4
209     @end example
210    
211 root 1.5 Use the fastest cipher and digest algorithms currently available in gvpe. MD4 has been broken and is quite insecure, though, so using another digest algorithm is recommended.
212 pcg 1.1 @refill
213    
214    
215     @subsection MAXIMIZE SECURITY
216    
217    
218     @example
219     ./configure --enable-hmac-length=16 --enable-rand-length=8 --enable-digest=sha1
220     @end example
221    
222 root 1.5 This uses a 16 byte HMAC checksum to authenticate packets (I guess 8-12 would also be pretty secure ;) and will additionally prefix each packet with 8 bytes of random data. In the long run, people should move to SHA-256 and beyond).
223 pcg 1.1 @refill
224 root 1.5 In general, remember that AES-128 seems to be as secure but faster than AES-192 or AES-256, more randomness helps against sniffing and a longer HMAC helps against spoofing. MD4 is a fast digest, SHA1, RIPEMD160, SHA256 are consecutively better, and Blowfish is a fast cipher (and also quite secure).
225 pcg 1.1 @refill
226    
227    
228     @section HOW TO SET UP A SIMPLE VPN
229     In this section I will describe how to get a simple VPN consisting of three hosts up and running.
230     @refill
231    
232    
233     @subsection STEP 1: configuration
234 root 1.5 First you have to create a daemon configuration file and put it into the configuration directory. This is usually @t{/etc/gvpe}, depending on how you configured gvpe, and can be overwritten using the @t{-c} command line switch.
235 pcg 1.1 @refill
236     Put the following lines into @t{/etc/gvpe/gvpe.conf}:
237     @refill
238    
239    
240     @example
241     udp-port = 50000 # the external port to listen on (configure your firewall)
242     mtu = 1400 # minimum MTU of all outgoing interfaces on all hosts
243     ifname = vpn0 # the local network device name
244    
245     node = first # just a nickname
246     hostname = first.example.net # the DNS name or IP address of the host
247    
248     node = second
249     hostname = 133.55.82.9
250    
251     node = third
252     hostname = third.example.net
253     @end example
254    
255 root 1.5 The only other file necessary is the @t{if-up} script that initializes the virtual ethernet interface on the local host. Put the following lines into @t{/etc/gvpe/if-up} and make it executable (@t{chmod 755 /etc/gvpe/if-up}):
256 pcg 1.1 @refill
257    
258    
259     @example
260     #!/bin/sh
261     ip link set $IFNAME address $MAC mtu $MTU up
262     [ $NODENAME = first ] && ip addr add 10.0.1.1 dev $IFNAME
263     [ $NODENAME = second ] && ip addr add 10.0.2.1 dev $IFNAME
264     [ $NODENAME = third ] && ip addr add 10.0.3.1 dev $IFNAME
265     ip route add 10.0.0.0/16 dev $IFNAME
266     @end example
267    
268 root 1.5 This script will give each node a different IP address in the @t{10.0/16} network. The internal network (if gvpe runs on a router) should then be set to a subset of that network, e.g. @t{10.0.1.0/24} on node @t{first}, @t{10.0.2.0/24} on node @t{second}, and so on.
269 pcg 1.1 @refill
270 root 1.5 By enabling routing on the gateway host that runs @t{gvpe} all nodes will be able to reach the other nodes. You can, of course, also use proxy ARP or other means of pseudo-bridging, or (best) full routing - the choice is yours.
271 pcg 1.1 @refill
272    
273    
274     @subsection STEP 2: create the RSA key pairs for all hosts
275 root 1.5 Run the following command to generate all key pairs for all nodes (that might take a while):
276 pcg 1.1 @refill
277    
278    
279     @example
280     gvpectrl -c /etc/gvpe -g
281     @end example
282    
283     This command will put the public keys into @t{/etc/gvpe/pubkeys/@emph{nodename}} and the private keys into @t{/etc/gvpe/hostkeys/@emph{nodename}}.
284     @refill
285    
286    
287     @subsection STEP 3: distribute the config files to all nodes
288 root 1.5 Now distribute the config files and private keys to the other nodes. This should be done in two steps, since only the private keys meant for a node should be distributed (so each node has only it's own private key).
289     @refill
290     The example uses rsync-over-ssh
291 pcg 1.1 @refill
292     First all the config files without the hostkeys should be distributed:
293     @refill
294    
295    
296     @example
297     rsync -avzessh /etc/gvpe first.example.net:/etc/. --exclude hostkeys
298     rsync -avzessh /etc/gvpe 133.55.82.9:/etc/. --exclude hostkeys
299     rsync -avzessh /etc/gvpe third.example.net:/etc/. --exclude hostkeys
300     @end example
301    
302     Then the hostkeys should be copied:
303     @refill
304    
305    
306     @example
307     rsync -avzessh /etc/gvpe/hostkeys/first first.example.net:/etc/hostkey
308     rsync -avzessh /etc/gvpe/hostkeys/second 133.55.82.9:/etc/hostkey
309     rsync -avzessh /etc/gvpe/hostkeys/third third.example.net:/etc/hostkey
310     @end example
311    
312 root 1.5 You should now check the configuration by issuing the command @t{gvpectrl -c /etc/gvpe -s} on each node and verify it's output.
313 pcg 1.1 @refill
314    
315    
316     @subsection STEP 4: starting gvpe
317     You should then start gvpe on each node by issuing a command like:
318     @refill
319    
320    
321     @example
322 root 1.5 gvpe -D -l info first # first is the nodename
323 pcg 1.1 @end example
324    
325 root 1.5 This will make the gvpe daemon stay in foreground. You should then see "connection established" messages. If you don't see them check your firewall and routing (use tcpdump ;).
326 pcg 1.1 @refill
327     If this works you should check your networking setup by pinging various endpoints.
328     @refill
329 root 1.5 To make gvpe run more permanently you can either run it as a daemon (by starting it without the @t{-D} switch), or, much better, from your inittab or equivalent. I use a line like this on all my systems:
330 pcg 1.1 @refill
331    
332    
333     @example
334     t1:2345:respawn:/opt/gvpe/sbin/gvpe -D -L first >/dev/null 2>&1
335     @end example
336    
337    
338    
339     @subsection STEP 5: enjoy
340     ... and play around. Sending a -HUP (@t{gvpectrl -kHUP}) to the daemon will make it try to connect to all other nodes again. If you run it from inittab, as is recommended, @t{gvpectrl -k} (or simply @t{killall gvpe}) will kill the daemon, start it again, making it read it's configuration files again.
341     @refill
342    
343    
344     @section COPYRIGHTS AND LICENSES
345     GVPE itself is distributed under the GENERAL PUBLIC LICENSE (see the file COPYING that should be part of your distribution).
346     @refill
347     In some configurations it uses modified versions of the tinc vpn suite, which is also available under the GENERAL PUBLIC LICENSE.
348     @refill
349    
350    
351    
352     @node OS Dependencies,gvpe.conf,Overview,Top
353    
354     @chapter OS Dependencies
355    
356     @section NAME
357     gvpe.osdep - os dependent information
358     @refill
359    
360    
361     @section DESCRIPTION
362     This file tries to capture OS-dependent configuration or build issues, quirks and platform limitations, as known.
363     @refill
364    
365    
366     @section TUN vs. TAP interface
367 root 1.5 Most operating systems nowadays support something called a @emph{tunnel}-device, which makes it possible to divert IPv4 (and often other protocols, too) into a user space daemon like @t{gvpe}. This is being referred to as a TUN-device.
368 pcg 1.1 @refill
369     This is fine for point-to-point tunnels, but for a virtual ethernet, an additional ethernet header is needed. This functionality (called a TAP device here) is only provided by a subset of the configurations.
370     @refill
371     On platforms only supporting a TUN-device, gvpe will invoke it's magical ethernet emulation package, which currently only handles ARP requests for the IPv4 protocol (but more could be added, bu the tincd network drivers might need to be modified for this to work). This means that on those platforms, only IPv4 will be supported.
372     @refill
373     Also, since there is no way (currently) to tell gvpe which IP subnets are found on a specific host, you will either need to hardwire the MAC address for TUN-style hosts on all networks (and avoid ARP altogether, which is possible), or you need to send a packet from these hosts into the vpn network to tell gvpe the local interface address.
374     @refill
375    
376    
377     @section Interface Initialisation
378     Unless otherwise notes, the network interface will be initialized with the expected MAC address and correct MTU value. With most interface drivers, this is done by running @t{/sbin/ifconfig}, so make sure that this command exists.
379     @refill
380    
381    
382     @section Interface Types
383    
384    
385     @subsection native/linux
386     TAP-device; already part of the kernel (only 2.4+ supported, but see tincd/linux). This is the configuration tested best, as gvpe is being developed on this platform.
387     @refill
388     @t{ifname} should be set to the name of the network device.
389     @refill
390     To hardwire ARP addresses, use iproute2 (@t{arp} can do it, too):
391     @refill
392    
393    
394     @example
395     MAC=fe:fd:80:00:00:$(printf "%02x" $NODEID)
396     ip neighbour add 10.11.12.13 lladdr $MAC nud permanent dev $IFNAME
397     @end example
398    
399    
400    
401     @subsection tincd/linux
402     TAP-device; already part of the kernel (2.2 only). See @t{native/linux} for more info.
403     @refill
404     @t{ifname} should be set to the path of a tap device, e.g. @t{/dev/tap0}. The interface will be named accordingly.
405     @refill
406    
407    
408     @subsection native/cygwin
409     TAP-device; The TAP device to be used must either be the CIPE driver (@t{http://cipe-win32.sourceforge.net/}), or (highly recommended) the newer TAP-Win32 driver bundled with openvpn (http://openvpn.sf.net/). Just download and run the openvpn installer. The only option you need to select is the TAP driver.
410     @refill
411     @t{ifname} should be set to the name of the device, found in the registry at (no kidding :):
412     @refill
413    
414    
415     @example
416     HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Network\@{4D36E972-E325-11CE-BFC1-08002BE10318@}\<adapterid>\Connection\Name
417     @end example
418    
419     The MAC address is dynamically being patched into packets and ARP-requests, so only IPv4 works with ARP on this platform.
420     @refill
421    
422    
423     @subsection tincd/bsd
424     TAP-device, maybe; migth work for many bsd variants.
425     @refill
426     This driver is a newer version of the @t{tincd/*bsd} drivers. It @emph{might} provide a TAP device, or might not work at all. You might try this interface type first, and, if it doesn't work, try one of the OS-specific drivers.
427     @refill
428    
429    
430     @subsection tincd/freebsd
431     TAP-device; part of the kernel (since 4.x, maybe earlier).
432     @refill
433     @t{ifname} should be set to the path of a tap device, e.g. @t{/dev/tap0}. The interface will be named accordingly.
434     @refill
435     These commands might be helpful examples:
436     @refill
437    
438    
439     @example
440     ifconfig $IFNAME 10.0.0.$NODEID
441     route add -net 10.0.0.0 -netmask 255.255.255.0 -interface $IFNAME 10.0.0.$NODEID
442     @end example
443    
444    
445    
446     @subsection tincd/netbsd
447     TUN-device; The interface is a point-to-point device. To initialize it, you currently need to configure it as a point-to-point device, giving it an address on your vpn (the exact address doesn't matter), like this:
448     @refill
449    
450    
451     @example
452     ifconfig $IFNAME mtu $MTU up
453     ifconfig $IFNAME 10.11.12.13 10.55.66.77
454     route add -net 10.0.0.0 10.55.66.77 255.0.0.0
455     ping -c1 10.55.66.77 # ping once to tell gvpe your gw ip
456     @end example
457    
458     The ping is required to tell the ARP emulator inside GVPE the local IP address.
459     @refill
460     @t{ifname} should be set to the path of a tun device, e.g. @t{/dev/tun0}. The interface will be named accordingly.
461     @refill
462    
463    
464     @subsection tincd/openbsd
465     TUN-device; already part of the kernel. See @t{tincd/netbsd} for more information.
466     @refill
467    
468    
469     @subsection native/darwin
470     TAP-device;
471     @refill
472     The necessary kernel extension can be found here:
473     @refill
474    
475    
476     @example
477     http://www-user.rhrk.uni-kl.de/~nissler/tuntap/
478     @end example
479    
480     There are two drivers, the one to use is the "tap" driver. It driver must be loaded before use, read the docs on how to install it as a startup item.
481     @refill
482     @t{ifname} should be set to the path of a tap device, e.g. @t{/dev/tap0}. The interface will be named accordingly.
483     @refill
484     These commands might be helpful examples:
485     @refill
486    
487    
488     @example
489     ifconfig $IFNAME 10.0.0.$NODEID
490     route add -net 10.0.0.0 -interface $IFNAME 255.255.255.0
491     @end example
492    
493    
494    
495     @subsection tincd/darwin
496     TUN-device; See @t{tincd/netbsd} for more information. @t{native/darwin} is preferable.
497     @refill
498     The necessary kernel extension can be found here:
499     @refill
500    
501    
502     @example
503     http://chrisp.de/en/projects/tunnel.html
504     @end example
505    
506     @t{ifname} should be set to the path of a tun device, e.g. @t{/dev/tun0}. The interface will be named accordingly.
507     @refill
508     The driver must be loaded before use:
509     @refill
510    
511    
512     @example
513     kmodload tunnel
514     @end example
515    
516    
517    
518     @subsection tincd/solaris
519     TUN-device; already part of the kernel(?), or available here:
520     @refill
521    
522    
523     @example
524     http://vtun.sourceforge.net/tun/
525     @end example
526    
527     Some precompiled tun drivers might be available here:
528     @refill
529    
530    
531     @example
532     http://www.monkey.org/~dugsong/fragroute/
533     @end example
534    
535     The interface MAC and MTU are @emph{NOT} set up for you. Please try it out and send me an @t{ifconfig} command invocation that does that.
536     @refill
537     See @t{tincd/netbsd} for more information.
538     @refill
539 root 1.5 Completely untested so far.
540 pcg 1.1 @refill
541    
542    
543     @subsection tincd/mingw
544     TAP-device; see @t{native/cygwin} for more information.
545     @refill
546     The setup is likely to be similar to @t{native/cygwin}.
547     @refill
548     Completely untested so far.
549     @refill
550    
551    
552     @subsection tincd/raw_socket
553     TAP-device; purpose unknown and untested, probably binds itself on an existing ethernet device (given by @t{ifname}). It must be down prior to running the command, and GVPE will try to set it's MAC address and MTU to the "correct" values.
554     @refill
555     Completely untested so far.
556     @refill
557    
558    
559     @subsection tincd/uml_socket
560 root 1.5 TAP-device; purpose unknown and untested, probably creates a UNIX datagram socket (path given by @t{ifname}) and reads and writes raw packets, so might be useful in other than UML contexts.
561 pcg 1.1 @refill
562 root 1.5 No network interface is created, and the MAC and MTU must be set as appropriate on the other side of the socket. GVPE will exit if the MAC address doesn't match what it expects.
563 pcg 1.1 @refill
564     Completely untested so far.
565     @refill
566    
567    
568     @subsection tincd/cygwin
569     Known to be broken, use @t{native/cygwin} instead.
570     @refill
571    
572    
573    
574     @node gvpe.conf,gvpectrl,OS Dependencies,Top
575    
576     @chapter gvpe.conf
577    
578     @section NAME
579     gvpe.conf - configuration file for the GNU VPE daemon
580     @refill
581    
582    
583     @section SYNOPSIS
584    
585    
586     @example
587 root 1.5 # global options for all nodes
588 pcg 1.1 udp-port = 407
589     mtu = 1492
590     ifname = vpn0
591    
592 root 1.5 # first node is named branch1 and is at 1.2.3.4
593 pcg 1.1 node = branch1
594     hostname = 1.2.3.4
595    
596 root 1.5 # second node uses dns to resolve the address
597 pcg 1.1 node = branch2
598     hostname = www.example.net
599     udp-port = 500 # this host uses a different udp-port
600    
601 root 1.5 # third node has no fixed ip address
602 pcg 1.1 node = branch3
603     connect = ondemand
604     @end example
605    
606    
607    
608     @section DESCRIPTION
609     The gvpe config file consists of a series of lines that contain @t{variable = value} pairs. Empty lines are ignored. Comments start with a @t{#} and extend to the end of the line. They can be used on their own lines, or after any directives. Whitespace is allowed around the @t{=} sign or after values, but not within the variable names or values themselves.
610     @refill
611     The only exception to the above is the "on" directive that can prefix any @t{name = value} setting and will only "execute" it on the named node, or (if the nodename starts with "!") on all nodes except the named one.
612     @refill
613 root 1.5 For example, set the MTU to @t{1450} everywhere, loglevel to @t{noise} on branch1, and connect to @t{ondemand} everywhere but on branch2:
614     @refill
615 pcg 1.1
616    
617     @example
618 root 1.5 mtu = 1450
619 pcg 1.1 on branch1 loglevel = noise
620     on !branch2 connect = ondemand
621     @end example
622    
623 root 1.5 All settings are applied "in order", that is, later settings of the same variable overwrite earlier ones.
624 pcg 1.1 @refill
625    
626    
627     @section ANATOMY OF A CONFIG FILE
628 root 1.5 Usually, a config file starts with a few global settings (like the UDP port to listen on), followed by node-specific sections that begin with a @t{node = nickname} line.
629 pcg 1.1 @refill
630 pcg 1.3 Every node that is part of the network must have a section that starts with @t{node = nickname}. The number and order of the nodes is important and must be the same on all nodes. It is not uncommon for node sections to be completely empty - if the default values are right.
631 pcg 1.1 @refill
632     Node-specific settings can be used at any time. If used before the first node section they will set the default values for all following nodes.
633     @refill
634    
635    
636     @section CONFIG VARIABLES
637    
638    
639     @subsection GLOBAL SETTINGS
640     Global settings will affect the behaviour of the running gvpe daemon, that is, they are in some sense node-specific (config files can set different values on different nodes using @t{on}), but will affect the behaviour of the gvpe daemon and all connections it creates.
641     @refill
642    
643    
644     @itemize
645    
646    
647     @item
648 pcg 1.3 dns-forw-host = hostname/ip
649 pcg 1.1
650     @cindex dns-forw-host
651 root 1.5 The DNS server to forward DNS requests to for the DNS tunnel protocol (default: @t{127.0.0.1}, changing it is highly recommended).
652 pcg 1.1 @refill
653    
654    
655     @item
656 pcg 1.3 dns-forw-port = port-number
657 pcg 1.1
658     @cindex dns-forw-port
659     The port where the @t{dns-forw-host} is to be contacted (default: @t{53}, which is fine in most cases).
660     @refill
661    
662    
663     @item
664 pcg 1.3 dns-max-outstanding = integer-number-of-requests
665 pcg 1.1
666     @cindex dns-max-outstanding
667     The maximum number of outstanding DNS transport requests (default: @t{100}). GVPE will never issue more requests then the given limit without receiving replies. In heavily overloaded situations it might help to set this to a low number (e.g. @t{3} or even @t{1}) to limit the number of parallel requests.
668     @refill
669 root 1.5 The default should be working OK for most links.
670 pcg 1.1 @refill
671    
672    
673     @item
674 pcg 1.3 dns-overlap-factor = float
675 pcg 1.1
676     @cindex dns-overlap-factor
677     The DNS transport uses the minimum request latency (@strong{min_latency}) seen during a connection as it's timing base. This factor (default: @t{0.5}, must be > 0) is multiplied by @strong{min_latency} to get the maximum sending rate (= minimum send interval), i.e. a factor of @t{1} means that a new request might be generated every @strong{min_latency} seconds, which means on average there should only ever be one outstanding request. A factor of @t{0.5} means that GVPE will send requests twice as often as the minimum latency measured.
678     @refill
679 root 1.5 For congested or picky DNS forwarders you could use a value nearer to or exceeding @t{1}.
680 pcg 1.1 @refill
681 root 1.5 The default should be working OK for most links.
682 pcg 1.1 @refill
683    
684    
685     @item
686 pcg 1.3 dns-send-interval = send-interval-in-seconds
687 pcg 1.1
688     @cindex dns-send-interval
689     The minimum send interval (= maximum rate) that the DNS transport will use to send new DNS requests. GVPE will not exceed this rate even when the latency is very low. The default is @t{0.01}, which means GVPE will not send more than 100 DNS requests per connection per second. For high-bandwidth links you could go lower, e.g. to @t{0.001} or so. For congested or rate-limited links, you might want to go higher, say @t{0.1}, @t{0.2} or even higher.
690     @refill
691 root 1.5 The default should be working OK for most links.
692 pcg 1.1 @refill
693    
694    
695     @item
696 pcg 1.3 dns-timeout-factor = float
697 pcg 1.1
698     @cindex dns-timeout-factor
699     Factor to multiply the @t{min_latency} (see @t{dns-overlap-factor}) by to get request timeouts. The default of @t{8} means that the DNS transport will resend the request when no reply has been received for longer than eight times the minimum (= expected) latency, assuming the request or reply has been lost.
700     @refill
701     For congested links a higher value might be necessary (e.g. @t{30}). If the link is very stable lower values (e.g. @t{2}) might work nicely. Values near or below @t{1} makes no sense whatsoever.
702     @refill
703 root 1.5 The default should be working OK for most links but will result in low throughput if packet loss is high.
704 pcg 1.1 @refill
705    
706    
707     @item
708 pcg 1.3 if-up = relative-or-absolute-path
709 pcg 1.1
710     @cindex if-up
711 root 1.5 Sets the path of a script that should be called immediately after the network interface is initialized (but not necessarily up). The following environment variables are passed to it (the values are just examples).
712 pcg 1.1 @refill
713     Variables that have the same value on all nodes:
714     @refill
715    
716    
717     @itemize
718    
719    
720     @item
721 pcg 1.3 CONFBASE=/etc/gvpe
722 pcg 1.1
723     @cindex CONFBASE
724     The configuration base directory.
725     @refill
726    
727    
728     @item
729 pcg 1.3 IFNAME=vpn0
730 pcg 1.1
731     @cindex IFNAME
732     The network interface to initialize.
733     @refill
734    
735    
736     @item
737 pcg 1.3 IFTYPE=native # or tincd
738 pcg 1.1
739     @cindex IFTYPE
740    
741    
742     @item
743 pcg 1.3 IFSUBTYPE=linux # or freebsd, darwin etc..
744 pcg 1.1
745     @cindex IFSUBTYPE
746     The interface type (@t{native} or @t{tincd}) and the subtype (usually the OS name in lowercase) that this GVPE was configured for. Can be used to select the correct syntax to use for network-related commands.
747     @refill
748    
749    
750     @item
751 pcg 1.3 MTU=1436
752 pcg 1.1
753     @cindex MTU
754 pcg 1.3 The MTU to set the interface to. You can use lower values (if done consistently on all nodes), but this is usually either inefficient or simply ineffective.
755 pcg 1.1 @refill
756    
757    
758     @item
759 pcg 1.3 NODES=5
760 pcg 1.1
761     @cindex NODES
762     The number of nodes in this GVPE network.
763     @refill
764     @end itemize
765    
766     Variables that are node-specific and with values pertaining to the node running this GVPE:
767     @refill
768    
769    
770     @itemize
771    
772    
773     @item
774 pcg 1.3 IFUPDATA=string
775 pcg 1.1
776     @cindex IFUPDATA
777     The value of the configuration directive @t{if-up-data}.
778     @refill
779    
780    
781     @item
782 pcg 1.3 MAC=fe:fd:80:00:00:01
783 pcg 1.1
784     @cindex MAC
785     The MAC address the network interface has to use.
786     @refill
787 root 1.5 Might be used to initialize interfaces on platforms where GVPE does not do this automatically. Please see the @t{gvpe.osdep(5)} man page for platform-specific information.
788 pcg 1.1 @refill
789    
790    
791     @item
792 pcg 1.3 NODENAME=branch1
793 pcg 1.1
794     @cindex NODENAME
795     The nickname of the node.
796     @refill
797    
798    
799     @item
800 pcg 1.3 NODEID=1
801 pcg 1.1
802     @cindex NODEID
803     The numerical node ID of the node running this instance of GVPE. The first node mentioned in the config file gets ID 1, the second ID 2 and so on.
804     @refill
805     @end itemize
806    
807     In addition, all node-specific variables (except @t{NODEID}) will be available with a postfix of @t{_nodeid}, which contains the value for that node, e.g. the @t{MAC_1} variable contains the MAC address of node #1, while the @t{NODENAME_22} variable contains the name of node #22.
808     @refill
809     Here is a simple if-up script:
810     @refill
811    
812    
813     @example
814     #!/bin/sh
815     ip link set $IFNAME up
816     [ $NODENAME = branch1 ] && ip addr add 10.0.0.1 dev $IFNAME
817     [ $NODENAME = branch2 ] && ip addr add 10.1.0.1 dev $IFNAME
818     ip route add 10.0.0.0/8 dev $IFNAME
819     @end example
820    
821 root 1.5 More complicated examples (using routing to reduce ARP traffic) can be found in the @file{etc/} subdirectory of the distribution.
822 pcg 1.1 @refill
823    
824    
825     @item
826 pcg 1.3 ifname = devname
827 pcg 1.1
828     @cindex ifname
829     Sets the tun interface name to the given name. The default is OS-specific and most probably something like @t{tun0}.
830     @refill
831    
832    
833     @item
834 pcg 1.3 ifpersist = yes|true|on | no|false|off
835 pcg 1.1
836     @cindex ifpersist
837     Should the tun/tap device be made persistent, that is, should the device stay up even when gvpe exits? Some versions of the tunnel device have problems sending packets when gvpe is restarted in persistent mode, so if the connections can be established but you cannot send packets from the local node, try to set this to @t{off} and do an ifconfig down on the device.
838     @refill
839    
840    
841     @item
842 pcg 1.3 ip-proto = numerical-ip-protocol
843 pcg 1.1
844     @cindex ip-proto
845 pcg 1.3 Sets the protocol number to be used for the rawip protocol. This is a global option because all nodes must use the same protocol, and since there are no port numbers, you cannot easily run more than one gvpe instance using the same protocol, nor can you share the protocol with other programs.
846 pcg 1.1 @refill
847 root 1.5 The default is 47 (GRE), which has a good chance of tunneling through firewalls (but note that gvpe's rawip protocol is not GRE compatible). Other common choices are 50 (IPSEC, ESP), 51 (IPSEC, AH), 4 (IPIP tunnels) or 98 (ENCAP, rfc1241).
848     @refill
849     Many versions of Linux seem to have a bug that causes them to reorder packets for some ip protocols (GRE, ESP) but not for others (AH), so choose wisely (that is, use 51, AH).
850 pcg 1.1 @refill
851    
852    
853     @item
854 pcg 1.3 http-proxy-host = hostname/ip
855 pcg 1.1
856     @cindex http-proxy-host
857     The @t{http-proxy-*} family of options are only available if gvpe was compiled with the @t{--enable-http-proxy} option and enable tunneling of tcp connections through a http proxy server.
858     @refill
859     @t{http-proxy-host} and @t{http-proxy-port} should specify the hostname and port number of the proxy server. See @t{http-proxy-loginpw} if your proxy requires authentication.
860     @refill
861 root 1.5 Please note that gvpe will still try to resolve all hostnames in the configuration file, so if you are behind a proxy without access to a DNS server better use numerical IP addresses.
862 pcg 1.1 @refill
863 root 1.5 To make best use of this option disable all protocols except TCP in your config file and make sure your routers (or all other nodes) are listening on a port that the proxy allows (443, https, is a common choice).
864 pcg 1.1 @refill
865 root 1.5 If you have a router, connecting to it will suffice. Otherwise TCP must be enabled on all nodes.
866 pcg 1.1 @refill
867     Example:
868     @refill
869    
870    
871     @example
872     http-proxy-host = proxy.example.com
873     http-proxy-port = 3128 # 8080 is another common choice
874     http-proxy-auth = schmorp:grumbeere
875     @end example
876    
877    
878    
879     @item
880 pcg 1.3 http-proxy-port = proxy-tcp-port
881 pcg 1.1
882     @cindex http-proxy-port
883     The port where your proxy server listens.
884     @refill
885    
886    
887     @item
888 pcg 1.3 http-proxy-auth = login:password
889 pcg 1.1
890     @cindex http-proxy-auth
891 root 1.5 The optional login and password used to authenticate to the proxy server, separated by a literal colon (@t{:}). Only basic authentication is currently supported.
892 pcg 1.1 @refill
893    
894    
895     @item
896 pcg 1.3 keepalive = seconds
897 pcg 1.1
898     @cindex keepalive
899 root 1.5 Sets the keepalive probe interval in seconds (default: @t{60}). After this many seconds of inactivity the daemon will start to send keepalive probe every 3 seconds until it receives a reply from the other end. If no reply is received within 15 seconds, the peer is considered unreachable and the connection is closed.
900 pcg 1.1 @refill
901    
902    
903     @item
904 pcg 1.3 loglevel = noise|trace|debug|info|notice|warn|error|critical
905 pcg 1.1
906     @cindex loglevel
907     Set the logging level. Connection established messages are logged at level @t{info}, notable errors are logged with @t{error}. Default is @t{info}.
908     @refill
909    
910    
911     @item
912 pcg 1.3 mtu = bytes
913 pcg 1.1
914     @cindex mtu
915 root 1.5 Sets the maximum MTU that should be used on outgoing packets (basically the MTU of the outgoing interface) The daemon will automatically calculate maximum overhead (e.g. UDP header size, encryption blocksize...) and pass this information to the @t{if-up} script.
916 pcg 1.1 @refill
917     Recommended values are 1500 (ethernet), 1492 (pppoe), 1472 (pptp).
918     @refill
919 root 1.5 This value must be the minimum of the MTU values of all nodes.
920 pcg 1.1 @refill
921    
922    
923     @item
924 pcg 1.3 node = nickname
925 pcg 1.1
926     @cindex node
927     Not really a config setting but introduces a node section. The nickname is used to select the right configuration section and must be passed as an argument to the gvpe daemon.
928     @refill
929    
930    
931     @item
932 pcg 1.3 node-up = relative-or-absolute-path
933 pcg 1.1
934     @cindex node-up
935 pcg 1.3 Sets a command (default: none) that should be called whenever a connection is established (even on rekeying operations). Note that node-up/down scripts will be run asynchronously, but execution is serialised, so there will only ever be one such script running.
936     @refill
937 root 1.5 In addition to all the variables passed to @t{if-up} scripts, the following environment variables will be set (values are just examples):
938 pcg 1.1 @refill
939    
940    
941     @itemize
942    
943    
944     @item
945 pcg 1.3 DESTNODE=branch2
946 pcg 1.1
947     @cindex DESTNODE
948     The name of the remote node.
949     @refill
950    
951    
952     @item
953 pcg 1.3 DESTID=2
954 pcg 1.1
955     @cindex DESTID
956     The node id of the remote node.
957     @refill
958    
959    
960     @item
961 root 1.5 DESTSI=rawip/88.99.77.55:0
962    
963     @cindex DESTSI
964     The "socket info" of the target node, protocol dependent but usually in the format protocol/ip:port.
965     @refill
966    
967    
968     @item
969 pcg 1.3 DESTIP=188.13.66.8
970 pcg 1.1
971     @cindex DESTIP
972 pcg 1.3 The numerical IP address of the remote node (gvpe accepts connections from everywhere, as long as the other node can authenticate itself).
973 pcg 1.1 @refill
974    
975    
976     @item
977 pcg 1.3 DESTPORT=655 # deprecated
978 pcg 1.1
979     @cindex DESTPORT
980 root 1.5 The protocol port used by the other side, if applicable.
981 pcg 1.1 @refill
982    
983    
984     @item
985 root 1.5 STATE=up
986 pcg 1.1
987     @cindex STATE
988 root 1.5 Node-up scripts get called with STATE=up, node-change scripts get called with STATE=change and node-down scripts get called with STATE=down.
989 pcg 1.1 @refill
990     @end itemize
991    
992 root 1.5 Here is a nontrivial example that uses nsupdate to update the name => ip mapping in some DNS zone:
993 pcg 1.1 @refill
994    
995    
996     @example
997     #!/bin/sh
998     @{
999     echo update delete $DESTNODE.lowttl.example.net. a
1000     echo update add $DESTNODE.lowttl.example.net. 1 in a $DESTIP
1001     echo
1002     @} | nsupdate -d -k $CONFBASE:key.example.net.
1003     @end example
1004    
1005    
1006    
1007     @item
1008 root 1.5 node-change = relative-or-absolute-path
1009    
1010     @cindex node-change
1011     Same as @t{node-change}, but gets called whenever something about a connection changes (such as the source IP address).
1012     @refill
1013    
1014    
1015     @item
1016 pcg 1.3 node-down = relative-or-absolute-path
1017 pcg 1.1
1018     @cindex node-down
1019     Same as @t{node-up}, but gets called whenever a connection is lost.
1020     @refill
1021    
1022    
1023     @item
1024 pcg 1.3 pid-file = path
1025 pcg 1.1
1026     @cindex pid-file
1027     The path to the pid file to check and create (default: @t{LOCALSTATEDIR/run/gvpe.pid}).
1028     @refill
1029    
1030    
1031     @item
1032 pcg 1.3 private-key = relative-path-to-key
1033 pcg 1.1
1034     @cindex private-key
1035     Sets the path (relative to the config directory) to the private key (default: @t{hostkey}). This is a printf format string so every @t{%} must be doubled. A single @t{%s} is replaced by the hostname, so you could use paths like @t{hostkeys/%s} to fetch the files at the location where @t{gvpectrl} puts them.
1036     @refill
1037 root 1.5 Since only the private key file of the current node is used and the private key file should be kept secret per-node to avoid spoofing, it is not recommended to use this feature.
1038 pcg 1.1 @refill
1039    
1040    
1041     @item
1042 pcg 1.3 rekey = seconds
1043 pcg 1.1
1044     @cindex rekey
1045 root 1.5 Sets the rekeying interval in seconds (default: @t{3600}). Connections are reestablished every @t{rekey} seconds, making them use a new encryption key.
1046     @refill
1047    
1048    
1049     @item
1050     nfmark = integer
1051    
1052     @cindex nfmark
1053     This advanced option, when set to a nonzero value (default: @t{0}), tries to set the netfilter mark (or fwmark) value on all sockets gvpe uses to send packets.
1054     @refill
1055     This can be used to make gvpe use a different set of routing rules. For example, on GNU/Linux, the @t{if-up} could set @t{nfmark} to 1000 and then put all routing rules into table @t{99} and then use an ip rule to make gvpe traffic avoid that routing table, in effect routing normal traffic via gvpe and gvpe traffic via the normal system routing tables:
1056 pcg 1.1 @refill
1057 root 1.5
1058    
1059     @example
1060     ip rule add not fwmark 1000 lookup 99
1061     @end example
1062    
1063 pcg 1.1 @end itemize
1064    
1065    
1066    
1067     @subsection NODE SPECIFIC SETTINGS
1068     The following settings are node-specific, that is, every node can have different settings, even within the same gvpe instance. Settings that are set before the first node section set the defaults, settings that are set within a node section only apply to the given node.
1069     @refill
1070    
1071    
1072     @itemize
1073    
1074    
1075     @item
1076 pcg 1.3 allow-direct = nodename
1077 pcg 1.1
1078     @cindex allow-direct
1079     Allow direct connections to this node. See @t{deny-direct} for more info.
1080     @refill
1081    
1082    
1083     @item
1084 pcg 1.3 compress = yes|true|on | no|false|off
1085 pcg 1.1
1086     @cindex compress
1087 root 1.5 For the current node, this specified whether it will accept compressed packets, and for all other nodes, this specifies whether to try to compress data packets sent to this node (default: @t{yes}). Compression is really cheap even on slow computers, has no size overhead at all and will only be used when the other side supports compression, so enabling this is often a good idea.
1088 pcg 1.1 @refill
1089    
1090    
1091     @item
1092 pcg 1.3 connect = ondemand | never | always | disabled
1093 pcg 1.1
1094     @cindex connect
1095 pcg 1.3 Sets the connect mode (default: @t{always}). It can be @t{always} (always try to establish and keep a connection to the given node), @t{never} (never initiate a connection to the given host, but accept connections), @t{ondemand} (try to establish a connection when there are outstanding packets in the queue and take it down after the keepalive interval) or @t{disabled} (node is bad, don't talk to it).
1096     @refill
1097     Routers will automatically be forced to @t{always} unless they are @t{disabled}, to ensure all nodes can talk to each other.
1098 pcg 1.1 @refill
1099    
1100    
1101     @item
1102 pcg 1.3 deny-direct = nodename | *
1103 pcg 1.1
1104     @cindex deny-direct
1105     Deny direct connections to the specified node (or all nodes when @t{*} is given). Only one node can be specified, but you can use multiple @t{allow-direct} and @t{deny-direct} statements. This only makes sense in networks with routers, as routers are required for indirect connections.
1106     @refill
1107 root 1.5 Sometimes, a node cannot reach some other nodes for reasons of network connectivity. For example, a node behind a firewall that only allows connections to/from a single other node in the network. In this case one should specify @t{deny-direct = *} and @t{allow-direct = othernodename} (the other node @emph{must} be a router for this to work).
1108 pcg 1.1 @refill
1109 root 1.5 The algorithm to check whether a connection may be direct is as follows:
1110 pcg 1.1 @refill
1111 root 1.5 1. Other node mentioned in an @t{allow-direct}? If yes, allow the connection.
1112 pcg 1.1 @refill
1113     2. Other node mentioned in a @t{deny-direct}? If yes, deny direct connections.
1114     @refill
1115     3. Allow the connection.
1116     @refill
1117 pcg 1.2 That is, @t{allow-direct} takes precedence over @t{deny-direct}.
1118 pcg 1.1 @refill
1119     The check is done in both directions, i.e. both nodes must allow a direct connection before one is attempted, so you only need to specify connect limitations on one node.
1120     @refill
1121    
1122    
1123     @item
1124 pcg 1.3 dns-domain = domain-suffix
1125 pcg 1.1
1126     @cindex dns-domain
1127     The DNS domain suffix that points to the DNS tunnel server for this node.
1128     @refill
1129     The domain must point to a NS record that points to the @emph{dns-hostname}, i.e.
1130     @refill
1131    
1132    
1133     @example
1134     dns-domainname = tunnel.example.net
1135     dns-hostname = tunnel-server.example.net
1136     @end example
1137    
1138     Corresponds to the following DNS entries in the @t{example.net} domain:
1139     @refill
1140    
1141    
1142     @example
1143     tunnel.example.net. NS tunnel-server.example.net.
1144     tunnel-server.example.net. A 13.13.13.13
1145     @end example
1146    
1147    
1148    
1149     @item
1150 pcg 1.3 dns-hostname = hostname/ip
1151 pcg 1.1
1152     @cindex dns-hostname
1153     The address to bind the DNS tunnel socket to, similar to the @t{hostname}, but for the DNS tunnel protocol only. Default: @t{0.0.0.0}, but that might change.
1154     @refill
1155    
1156    
1157     @item
1158 pcg 1.3 dns-port = port-number
1159 pcg 1.1
1160     @cindex dns-port
1161     The port to bind the DNS tunnel socket to. Must be @t{53} on DNS tunnel servers.
1162     @refill
1163    
1164    
1165     @item
1166 pcg 1.3 enable-dns = yes|true|on | no|false|off
1167 pcg 1.1
1168     @cindex enable-dns
1169     See gvpe.protocol(7) for a description of the DNS transport protocol. Avoid this protocol if you can.
1170     @refill
1171     Enable the DNS tunneling protocol on this node, either as server or as client. Support for this transport protocol is only available when gvpe was compiled using the @t{--enable-dns} option.
1172     @refill
1173    
1174    
1175     @item
1176 pcg 1.3 enable-icmp = yes|true|on | no|false|off
1177 pcg 1.1
1178     @cindex enable-icmp
1179     See gvpe.protocol(7) for a description of the ICMP transport protocol.
1180     @refill
1181 root 1.5 Enable the ICMP transport using ICMP packets of type @t{icmp-type} on this node.
1182 pcg 1.1 @refill
1183    
1184    
1185     @item
1186 pcg 1.3 enable-rawip = yes|true|on | no|false|off
1187 pcg 1.1
1188     @cindex enable-rawip
1189     See gvpe.protocol(7) for a description of the RAW IP transport protocol.
1190     @refill
1191     Enable the RAW IPv4 transport using the @t{ip-proto} protocol (default: @t{no}).
1192     @refill
1193    
1194    
1195     @item
1196 pcg 1.3 enable-tcp = yes|true|on | no|false|off
1197 pcg 1.1
1198     @cindex enable-tcp
1199     See gvpe.protocol(7) for a description of the TCP transport protocol.
1200     @refill
1201     Enable the TCPv4 transport using the @t{tcp-port} port (default: @t{no}). Support for this transport protocol is only available when gvpe was compiled using the @t{--enable-tcp} option.
1202     @refill
1203    
1204    
1205     @item
1206 pcg 1.3 enable-udp = yes|true|on | no|false|off
1207 pcg 1.1
1208     @cindex enable-udp
1209     See gvpe.protocol(7) for a description of the UDP transport protocol.
1210     @refill
1211     Enable the UDPv4 transport using the @t{udp-port} port (default: @t{no}, unless no other protocol is enabled for a node, in which case this protocol is enabled automatically).
1212     @refill
1213 root 1.5 NOTE: Please specify @t{enable-udp = yes} if you want to use it even though it might get switched on automatically, as some future version might default to another default protocol.
1214 pcg 1.1 @refill
1215    
1216    
1217     @item
1218 pcg 1.3 hostname = hostname | ip [can not be defaulted]
1219 pcg 1.1
1220     @cindex hostname
1221 root 1.5 Forces the address of this node to be set to the given DNS hostname or IP address. It will be resolved before each connect request, so dyndns should work fine. If this setting is not specified and a router is available, then the router will be queried for the address of this node. Otherwise, the connection attempt will fail.
1222     @refill
1223     Note that DNS resolving is done synchronously, pausing the daemon. If that is an issue you need to specify IP addresses.
1224 pcg 1.1 @refill
1225    
1226    
1227     @item
1228 pcg 1.3 icmp-type = integer
1229 pcg 1.1
1230     @cindex icmp-type
1231     Sets the type value to be used for outgoing (and incoming) packets sent via the ICMP transport.
1232     @refill
1233 root 1.5 The default is @t{0} (which is @t{echo-reply}, also known as "ping-reply"). Other useful values include @t{8} (@t{echo-request}, a.k.a. "ping") and @t{11} (@t{time-exceeded}), but any 8-bit value can be used.
1234 pcg 1.1 @refill
1235    
1236    
1237     @item
1238 pcg 1.3 if-up-data = value
1239 pcg 1.1
1240     @cindex if-up-data
1241     The value specified using this directive will be passed to the @t{if-up} script in the environment variable @t{IFUPDATA}.
1242     @refill
1243    
1244    
1245     @item
1246 pcg 1.3 inherit-tos = yes|true|on | no|false|off
1247 pcg 1.1
1248     @cindex inherit-tos
1249 root 1.5 Whether to inherit the TOS settings of packets sent to the tunnel when sending packets to this node (default: @t{yes}). If set to @t{yes} then outgoing tunnel packets will have the same TOS setting as the packets sent to the tunnel device, which is usually what you want.
1250 pcg 1.1 @refill
1251    
1252    
1253     @item
1254 pcg 1.3 max-retry = positive-number
1255 pcg 1.1
1256     @cindex max-retry
1257 root 1.5 The maximum interval in seconds (default: @t{3600}, one hour) between retries to establish a connection to this node. When a connection cannot be established, gvpe uses exponential back-off capped at this value. It's sometimes useful to set this to a much lower value (e.g. @t{120}) on connections to routers that usually are stable but sometimes are down, to assure quick reconnections even after longer downtimes.
1258 pcg 1.1 @refill
1259    
1260    
1261     @item
1262 pcg 1.3 max-ttl = seconds
1263    
1264     @cindex max-ttl
1265     Expire packets that couldn't be sent after this many seconds (default: @t{60}). Gvpe will normally queue packets for a node without an active connection, in the hope of establishing a connection soon. This value specifies the maximum lifetime a packet will stay in the queue, if a packet gets older, it will be thrown away.
1266     @refill
1267    
1268    
1269     @item
1270     max-queue = positive-number>=1
1271    
1272     @cindex max-queue
1273     The maximum number of packets that will be queued (default: @t{512}) for this node. If more packets are sent then earlier packets will be expired. See @t{max-ttl}, above.
1274     @refill
1275    
1276    
1277     @item
1278     router-priority = 0 | 1 | positive-number>=2
1279 pcg 1.1
1280     @cindex router-priority
1281 pcg 1.3 Sets the router priority of the given node (default: @t{0}, disabled).
1282 pcg 1.1 @refill
1283 pcg 1.3 If some node tries to connect to another node but it doesn't have a hostname, it asks a router node for it's IP address. The router node chosen is the one with the highest priority larger than @t{1} that is currently reachable. This is called a @emph{mediated} connection, as the connection itself will still be direct, but it uses another node to mediate between the two nodes.
1284 pcg 1.1 @refill
1285 pcg 1.3 The value @t{0} disables routing, that means if the node receives a packet not for itself it will not forward it but instead drop it.
1286     @refill
1287     The special value @t{1} allows other hosts to route through the router host, but they will never route through it by default (i.e. the config file of another node needs to specify a router priority higher than one to choose such a node for routing).
1288     @refill
1289     The idea behind this is that some hosts can, if required, bump the @t{router-priority} setting to higher than @t{1} in their local config to route through specific hosts. If @t{router-priority} is @t{0}, then routing will be refused, so @t{1} serves as a "enable, but do not use by default" switch.
1290     @refill
1291     Nodes with @t{router-priority} set to @t{2} or higher will always be forced to @t{connect} = @t{always} (unless they are @t{disabled}).
1292 pcg 1.1 @refill
1293    
1294    
1295     @item
1296 pcg 1.3 tcp-port = port-number
1297 pcg 1.1
1298     @cindex tcp-port
1299     Similar to @t{udp-port} (default: @t{655}), but sets the TCP port number.
1300     @refill
1301    
1302    
1303     @item
1304 pcg 1.3 udp-port = port-number
1305 pcg 1.1
1306     @cindex udp-port
1307     Sets the port number used by the UDP protocol (default: @t{655}, not officially assigned by IANA!).
1308     @refill
1309     @end itemize
1310    
1311    
1312    
1313     @section CONFIG DIRECTORY LAYOUT
1314     The default (or recommended) directory layout for the config directory is:
1315     @refill
1316    
1317    
1318     @itemize
1319    
1320    
1321     @item
1322 pcg 1.3 gvpe.conf
1323 pcg 1.1
1324     The config file.
1325     @refill
1326    
1327    
1328     @item
1329 pcg 1.3 if-up
1330 pcg 1.1
1331     The if-up script
1332     @refill
1333    
1334    
1335     @item
1336 root 1.5 node-up, node-down
1337 pcg 1.1
1338     If used the node up or node-down scripts.
1339     @refill
1340    
1341    
1342     @item
1343 pcg 1.3 hostkey
1344 pcg 1.1
1345     The private key (taken from @t{hostkeys/nodename}) of the current host.
1346     @refill
1347    
1348    
1349     @item
1350 pcg 1.3 pubkey/nodename
1351 pcg 1.1
1352     The public keys of the other nodes, one file per node.
1353     @refill
1354     @end itemize
1355    
1356    
1357    
1358    
1359     @node gvpectrl,gvpe,gvpe.conf,Top
1360    
1361     @chapter gvpectrl
1362    
1363     @section NAME
1364     @t{gvpectrl} - GNU Virtual Private Ethernet Control Program
1365     @refill
1366    
1367    
1368     @section SYNOPSIS
1369     @t{gvpectrl} [@strong{-ckgs}] [@strong{--config=}@emph{DIR}] [@strong{--generate-keys}] [@strong{--help}] [@strong{--kill}[@strong{=}@emph{SIGNAL}]] [@strong{--show-config}] [@strong{--version}]
1370     @refill
1371    
1372    
1373     @section DESCRIPTION
1374     This is the control program for the @t{gvpe}, the virtual private ethernet daemon.
1375     @refill
1376    
1377    
1378     @section OPTIONS
1379    
1380    
1381     @itemize
1382    
1383    
1384     @item
1385 pcg 1.3 @strong{-c}, @strong{--config=}@emph{DIR}
1386 pcg 1.1
1387     Read configuration options from @emph{DIR}.
1388     @refill
1389    
1390    
1391     @item
1392 pcg 1.3 @strong{-g}, @strong{--generate-keys}
1393 pcg 1.1
1394 root 1.5 Generate public/private RSA key-pair and exit.
1395 pcg 1.1 @refill
1396    
1397    
1398     @item
1399 pcg 1.3 @strong{-q}, @strong{--quiet}
1400    
1401     Suppresses messages the author finds nonessential for scripting purposes.
1402     @refill
1403    
1404    
1405     @item
1406     @strong{--help}
1407 pcg 1.1
1408     Display short list of options.
1409     @refill
1410    
1411    
1412     @item
1413 pcg 1.3 @strong{--kill}[@strong{=}@emph{SIGNAL}]
1414 pcg 1.1
1415     Attempt to kill a running @t{gvpectrl} (optionally with the specified @emph{SIGNAL} instead of @t{SIGTERM}) and exit.
1416     @refill
1417    
1418    
1419     @item
1420 pcg 1.3 @strong{--show-config}
1421 pcg 1.1
1422     Show a summary of the configuration, and how gvpe interprets it. Can also be very useful when designing firewall scripts.
1423     @refill
1424    
1425    
1426     @item
1427 pcg 1.3 @strong{--version}
1428 pcg 1.1
1429     Output version information and exit.
1430     @refill
1431     @end itemize
1432    
1433    
1434    
1435     @section BUGS
1436     If you find any bugs, report them to @t{gvpe@@schmorp.de}.
1437     @refill
1438    
1439    
1440    
1441     @node gvpe,gvpe.protocol,gvpectrl,Top
1442    
1443     @chapter gvpe
1444    
1445     @section NAME
1446     @t{gvpe} - GNU Virtual Private Ethernet Daemon
1447     @refill
1448    
1449    
1450     @section SYNOPSIS
1451     @t{gvpe} [@strong{-cDlL}] [@strong{--config=}@emph{DIR}] [@strong{--no-detach}] [@strong{-l=}@emph{LEVEL]}] [@strong{--kill}[@strong{=}@emph{SIGNAL}]] [@strong{--mlock}] [@strong{--help}] [@strong{--version}] @emph{NODENAME} [@emph{option...}]
1452     @refill
1453    
1454    
1455     @section DESCRIPTION
1456 root 1.5 See the gvpe(5) man page for an introduction to the gvpe suite.
1457 pcg 1.1 @refill
1458 root 1.5 This is the manual page for gvpe, the virtual private ethernet daemon. When started, @t{gvpe} will read it's configuration file to determine the network topology, and other configuration information, assuming the role of node @emph{NODENAME}
1459     @refill
1460     It will then create/connect to the tun/tap device and set up a socket for incoming connections. Then a @t{if-up} script will be executed to further configure the virtual network device. If that succeeds, it will detach from the controlling terminal and continue in the background, accepting and setting up connections to other gvpe daemons that are part of the same virtual private ethernet.
1461 pcg 1.1 @refill
1462     The optional arguments after the node name have to be of the form:
1463     @refill
1464    
1465    
1466     @example
1467     [I<nodename>.]var=value
1468     @end example
1469    
1470 root 1.5 If the argument has a prefix of @t{nodename.} (i.e. @t{laptop.enable-dns=yes}) then it will be parsed after all the config directives for that node, if not, it is parsed before the first node directive in the config file, and can be used to set global options or default variables.
1471 pcg 1.1 @refill
1472     For example, to start @t{gvpe} in the foreground, with log-level @t{info} on the node @t{laptop}, with TCP enabled and HTTP-Proxy host and Port set, use this:
1473     @refill
1474    
1475    
1476     @example
1477     gvpe -D -l info laptop \
1478     http-proxy-host=10.0.0.18 http-proxy-port=3128 \
1479     laptop.enable-tcp=yes
1480     @end example
1481    
1482    
1483    
1484     @section OPTIONS
1485    
1486    
1487     @itemize
1488    
1489    
1490     @item
1491 pcg 1.3 @strong{-c}, @strong{--config=}@emph{DIR}
1492 pcg 1.1
1493     Read configuration options from @emph{DIR}
1494     @refill
1495    
1496    
1497     @item
1498 pcg 1.3 @strong{-d}, @strong{--l=}@emph{LEVEL}
1499 pcg 1.1
1500     Set logging level to @emph{LEVEL} (one of: noise, trace, debug, info, notice, warn, error, critical).
1501     @refill
1502    
1503    
1504     @item
1505 pcg 1.3 @strong{--help}
1506 pcg 1.1
1507     Display short list of options.
1508     @refill
1509    
1510    
1511     @item
1512 pcg 1.3 @strong{-D}, @strong{--no-detach}
1513 pcg 1.1
1514     Don't fork and detach but stay in foreground and log messages to stderr in addition to syslog.
1515     @refill
1516    
1517    
1518     @item
1519 pcg 1.3 @strong{-L}, @strong{--mlock}
1520 pcg 1.1
1521 root 1.5 Lock @t{gvpe} into main memory. This will prevent sensitive data like shared private keys to be written to the system swap files/partitions.
1522 pcg 1.1 @refill
1523    
1524    
1525     @item
1526 pcg 1.3 @strong{--version}
1527 pcg 1.1
1528     Output version information and exit.
1529     @refill
1530     @end itemize
1531    
1532    
1533    
1534     @section SIGNALS
1535    
1536    
1537     @itemize
1538    
1539    
1540     @item
1541 pcg 1.3 HUP
1542 pcg 1.1
1543     Closes/resets all connections, resets the retry time and will start connecting again (it will NOT re-read the config file). This is useful e.g. in a @t{/etc/ppp/if-up} script.
1544     @refill
1545    
1546    
1547     @item
1548 pcg 1.3 TERM
1549 pcg 1.1
1550     Closes/resets all connections and exits.
1551     @refill
1552    
1553    
1554     @item
1555 pcg 1.3 USR1
1556 pcg 1.1
1557     Dump current network status into the syslog (at loglevel @t{notice}, so make sure your loglevel allows this).
1558     @refill
1559     @end itemize
1560    
1561    
1562    
1563     @section FILES
1564    
1565    
1566     @itemize
1567    
1568    
1569     @item
1570 pcg 1.3 @t{/etc/gvpe/gvpe.conf}
1571 pcg 1.1
1572     The configuration file for @t{gvpe}.
1573     @refill
1574    
1575    
1576     @item
1577 pcg 1.3 @t{/etc/gvpe/if-up}
1578 pcg 1.1
1579     Script which is executed as soon as the virtual network device has been allocated. Purpose is to further configure that device.
1580     @refill
1581    
1582    
1583     @item
1584 pcg 1.3 @t{/etc/gvpe/node-up}
1585 pcg 1.1
1586     Script which is executed whenever a node connects to this node. This can be used for example to run nsupdate.
1587     @refill
1588    
1589    
1590     @item
1591 pcg 1.3 @t{/etc/gvpe/node-down}
1592 pcg 1.1
1593     Script which is executed whenever a connection to another node is lost. for example to run nsupdate.
1594     @refill
1595    
1596    
1597     @item
1598 pcg 1.3 @t{/etc/gvpe/pubkey/*}
1599 pcg 1.1
1600     The directory containing the public keys for every node, usually autogenerated by executing @t{gvpectrl --generate-keys}.
1601     @refill
1602    
1603    
1604     @item
1605 pcg 1.3 @t{/var/run/gvpe.pid}
1606 pcg 1.1
1607     The PID of the currently running @t{gvpe} is stored in this file.
1608     @refill
1609     @end itemize
1610    
1611    
1612    
1613     @section BUGS
1614     The cryptography in gvpe has not been thoroughly checked by many people yet. Use it at your own risk!
1615     @refill
1616     If you find any bugs, report them to @t{gvpe@@schmorp.de}.
1617     @refill
1618    
1619    
1620    
1621     @node gvpe.protocol,Simple Example,gvpe,Top
1622    
1623     @chapter gvpe.protocol
1624    
1625     @section The GNU-VPE Protocols
1626    
1627    
1628     @section Overview
1629     GVPE can make use of a number of protocols. One of them is the GNU VPE protocol which is used to authenticate tunnels and send encrypted data packets. This protocol is described in more detail the second part of this document.
1630     @refill
1631     The first part of this document describes the transport protocols which are used by GVPE to send it's data packets over the network.
1632     @refill
1633    
1634    
1635     @section PART 1: Transport protocols
1636 pcg 1.3 GVPE offers a wide range of transport protocols that can be used to interchange data between nodes. Protocols differ in their overhead, speed, reliability, and robustness.
1637 pcg 1.1 @refill
1638     The following sections describe each transport protocol in more detail. They are sorted by overhead/efficiency, the most efficient transport is listed first:
1639     @refill
1640    
1641    
1642     @subsection RAW IP
1643     This protocol is the best choice, performance-wise, as the minimum overhead per packet is only 38 bytes.
1644     @refill
1645 root 1.5 It works by sending the VPN payload using raw IP frames (using the protocol set by @t{ip-proto}).
1646 pcg 1.1 @refill
1647 root 1.5 Using raw IP frames has the drawback that many firewalls block "unknown" protocols, so this transport only works if you have full IP connectivity between nodes.
1648 pcg 1.1 @refill
1649    
1650    
1651     @subsection ICMP
1652 pcg 1.3 This protocol offers very low overhead (minimum 42 bytes), and can sometimes tunnel through firewalls when other protocols can not.
1653 pcg 1.1 @refill
1654 root 1.5 It works by prepending an ICMP header with type @t{icmp-type} and a code of @t{255}. The default @t{icmp-type} is @t{echo-reply}, so the resulting packets look like echo replies, which looks rather strange to network administrators.
1655 pcg 1.1 @refill
1656 root 1.5 This transport should only be used if other transports (i.e. raw IP) are not available or undesirable (due to their overhead).
1657 pcg 1.1 @refill
1658    
1659    
1660     @subsection UDP
1661     This is a good general choice for the transport protocol as UDP packets tunnel well through most firewalls and routers, and the overhead per packet is moderate (minimum 58 bytes).
1662     @refill
1663     It should be used if RAW IP is not available.
1664     @refill
1665    
1666    
1667     @subsection TCP
1668     This protocol is a very bad choice, as it not only has high overhead (more than 60 bytes), but the transport also retries on it's own, which leads to congestion when the link has moderate packet loss (as both the TCP transport and the tunneled traffic will retry, increasing congestion more and more). It also has high latency and is quite inefficient.
1669     @refill
1670     It's only useful when tunneling through firewalls that block better protocols. If a node doesn't have direct internet access but a HTTP proxy that supports the CONNECT method it can be used to tunnel through a web proxy. For this to work, the @t{tcp-port} should be @t{443} (@t{https}), as most proxies do not allow connections to other ports.
1671     @refill
1672     It is an abuse of the usage a proxy was designed for, so make sure you are allowed to use it for GVPE.
1673     @refill
1674 pcg 1.3 This protocol also has server and client sides. If the @t{tcp-port} is set to zero, other nodes cannot connect to this node directly. If the @t{tcp-port} is non-zero, the node can act both as a client as well as a server.
1675 pcg 1.1 @refill
1676    
1677    
1678     @subsection DNS
1679     @strong{WARNING:} Parsing and generating DNS packets is rather tricky. The code almost certainly contains buffer overflows and other, likely exploitable, bugs. You have been warned.
1680     @refill
1681     This is the worst choice of transport protocol with respect to overhead (overhead can be 2-3 times higher than the transferred data), and latency (which can be many seconds). Some DNS servers might not be prepared to handle the traffic and drop or corrupt packets. The client also has to constantly poll the server for data, so the client will constantly create traffic even if it doesn't need to transport packets.
1682     @refill
1683     In addition, the same problems as the TCP transport also plague this protocol.
1684     @refill
1685 pcg 1.3 It's only use is to tunnel through firewalls that do not allow direct internet access. Similar to using a HTTP proxy (as the TCP transport does), it uses a local DNS server/forwarder (given by the @t{dns-forw-host} configuration value) as a proxy to send and receive data as a client, and an @t{NS} record pointing to the GVPE server (as given by the @t{dns-hostname} directive).
1686 pcg 1.1 @refill
1687 root 1.5 The only good side of this protocol is that it can tunnel through most firewalls mostly undetected, iff the local DNS server/forwarder is sane (which is true for most routers, wireless LAN gateways and nameservers).
1688 pcg 1.1 @refill
1689 root 1.5 Fine-tuning needs to be done by editing @t{src/vpn_dns.C} directly.
1690 pcg 1.1 @refill
1691    
1692    
1693     @section PART 2: The GNU VPE protocol
1694     This section, unfortunately, is not yet finished, although the protocol is stable (until bugs in the cryptography are found, which will likely completely change the following description). Nevertheless, it should give you some overview over the protocol.
1695     @refill
1696    
1697    
1698     @subsection Anatomy of a VPN packet
1699 root 1.5 The exact layout and field lengths of a VPN packet is determined at compile time and doesn't change. The same structure is used for all transport protocols, be it RAWIP or TCP.
1700 pcg 1.1 @refill
1701    
1702    
1703     @example
1704     +------+------+--------+------+
1705     | HMAC | TYPE | SRCDST | DATA |
1706     +------+------+--------+------+
1707     @end example
1708    
1709     The HMAC field is present in all packets, even if not used (e.g. in auth request packets), in which case it is set to all zeroes. The checksum itself is calculated over the TYPE, SRCDST and DATA fields in all cases.
1710     @refill
1711     The TYPE field is a single byte and determines the purpose of the packet (e.g. RESET, COMPRESSED/UNCOMPRESSED DATA, PING, AUTH REQUEST/RESPONSE, CONNECT REQUEST/INFO etc.).
1712     @refill
1713 pcg 1.3 SRCDST is a three byte field which contains the source and destination node IDs (12 bits each).
1714 pcg 1.1 @refill
1715     The DATA portion differs between each packet type, naturally, and is the only part that can be encrypted. Data packets contain more fields, as shown:
1716     @refill
1717    
1718    
1719     @example
1720     +------+------+--------+------+-------+------+
1721     | HMAC | TYPE | SRCDST | RAND | SEQNO | DATA |
1722     +------+------+--------+------+-------+------+
1723     @end example
1724    
1725     RAND is a sequence of fully random bytes, used to increase the entropy of the data for encryption purposes.
1726     @refill
1727 pcg 1.3 SEQNO is a 32-bit sequence number. It is negotiated at every connection initialization and starts at some random 31 bit value. VPE currently uses a sliding window of 512 packets/sequence numbers to detect reordering, duplication and replay attacks.
1728 pcg 1.1 @refill
1729    
1730    
1731 pcg 1.3 @subsection The authentication protocol
1732 root 1.5 Before nodes can exchange packets, they need to establish authenticity of the other side and a key. Every node has a private RSA key and the public RSA keys of all other nodes.
1733 pcg 1.1 @refill
1734 root 1.5 A host establishes a simplex connection by sending the other node an RSA encrypted challenge containing a random challenge (consisting of the encryption key to use when sending packets, more random data and PKCS1_OAEP padding) and a random 16 byte "challenge-id" (used to detect duplicate auth packets). The destination node will respond by replying with an (unencrypted) RIPEMD160 hash of the decrypted challenge, which will authenticate that node. The destination node will also set the outgoing encryption parameters as given in the packet.
1735 pcg 1.1 @refill
1736 root 1.5 When the source node receives a correct auth reply (by verifying the hash and the id, which will expire after 120 seconds), it will start to accept data packets from the destination node.
1737 pcg 1.1 @refill
1738 root 1.5 This means that a node can only initiate a simplex connection, telling the other side the key it has to use when it sends packets. The challenge reply is only used to set the current IP address of the other side and protocol parameters.
1739 pcg 1.1 @refill
1740 root 1.5 This protocol is completely symmetric, so to be able to send packets the destination node must send a challenge in the exact same way as already described (so, in essence, two simplex connections are created per node pair).
1741 pcg 1.1 @refill
1742    
1743    
1744     @subsection Retrying
1745 root 1.5 When there is no response to an auth request, the node will send auth requests in bursts with an exponential back-off. After some time it will resort to PING packets, which are very small (8 bytes + protocol header) and lightweight (no RSA operations required). A node that receives ping requests from an unconnected peer will respond by trying to create a connection.
1746 pcg 1.1 @refill
1747 root 1.5 In addition to the exponential back-off, there is a global rate-limit on a per-IP base. It allows long bursts but will limit total packet rate to something like one control packet every ten seconds, to avoid accidental floods due to protocol problems (like a RSA key file mismatch between two nodes).
1748 pcg 1.1 @refill
1749 pcg 1.3 The intervals between retries are limited by the @t{max-retry} configuration value. A node with @t{connect} = @t{always} will always retry, a node with @t{connect} = @t{ondemand} will only try (and re-try) to connect as long as there are packets in the queue, usually this limits the retry period to @t{max-ttl} seconds.
1750     @refill
1751     Sending packets over the VPN will reset the retry intervals as well, which means as long as somebody is trying to send packets to a given node, GVPE will try to connect every few seconds.
1752     @refill
1753 pcg 1.1
1754    
1755     @subsection Routing and Protocol translation
1756 pcg 1.3 The GVPE routing algorithm is easy: there isn't much routing to speak of: When routing packets to another node, GVPE trues the following options, in order:
1757 pcg 1.1 @refill
1758 pcg 1.3
1759    
1760     @itemize
1761    
1762    
1763     @item
1764 root 1.5 If the two nodes should be able to reach each other directly (common protocol, port known), then GVPE will send the packet directly to the other node.
1765 pcg 1.3
1766    
1767    
1768     @item
1769     If this isn't possible (e.g. because the node doesn't have a @t{hostname} or known port), but the nodes speak a common protocol and a router is available, then GVPE will ask a router to "mediate" between both nodes (see below).
1770    
1771    
1772    
1773     @item
1774     If a direct connection isn't possible (no common protocols) or forbidden (@t{deny-direct}) and there are any routers, then GVPE will try to send packets to the router with the highest priority that is connected already @emph{and} is able (as specified by the config file) to connect directly to the target node.
1775    
1776    
1777    
1778     @item
1779     If no such router exists, then GVPE will simply send the packet to the node with the highest priority available.
1780    
1781    
1782    
1783     @item
1784     Failing all that, the packet will be dropped.
1785    
1786     @end itemize
1787    
1788     A host can usually declare itself unreachable directly by setting it's port number(s) to zero. It can declare other hosts as unreachable by using a config-file that disables all protocols for these other hosts. Another option is to disable all protocols on that host in the other config files.
1789 pcg 1.1 @refill
1790 root 1.5 If two hosts cannot connect to each other because their IP address(es) are not known (such as dial-up hosts), one side will send a @emph{mediated} connection request to a router (routers must be configured to act as routers!), which will send both the originating and the destination host a connection info request with protocol information and IP address of the other host (if known). Both hosts will then try to establish a direct connection to the other peer, which is usually possible even when both hosts are behind a NAT gateway.
1791 pcg 1.1 @refill
1792 pcg 1.3 Routing via other nodes works because the SRCDST field is not encrypted, so the router can just forward the packet to the destination host. Since each host uses it's own private key, the router will not be able to decrypt or encrypt packets, it will just act as a simple router and protocol translator.
1793 pcg 1.1 @refill
1794    
1795    
1796    
1797     @node Simple Example,Complex Example,gvpe.protocol,Top
1798    
1799     @chapter Simple Example
1800     In this example, gvpe is used to implement a simple, UDP-based ethernet on three hosts.
1801     @refill
1802     The config file (@t{gvpe.conf}) is the same on all hosts:
1803     @refill
1804    
1805    
1806     @example
1807     enable-udp = yes # use UDP
1808     udp-port = 407 # use this UDP port
1809     mtu = 1492 # handy for TDSL
1810     ifname = vpn0 # I prefer vpn0 over e.g. tap0
1811    
1812     node = huffy # arbitrary node name
1813     hostname = 1.2.3.4 # ip address if this host
1814    
1815     node = welshy
1816     hostname = www.example.net # resolve at connection time
1817    
1818     node = wheelery
1819     # no hostname, will be determinded dynamically using router1 or router2
1820     @end example
1821    
1822     @t{gvpe} will execute the @t{if-up} script on every hosts, which, for linux, could look like this for all three hosts:
1823     @refill
1824    
1825    
1826     @example
1827     ifconfig $IFNAME hw ether $MAC mtu $MTU
1828     ifconfig $IFNAME 10.0.0.$NODE
1829     route add -net 10.0.0.0 netmask 255.0.0.0 dev $IFNAME
1830     @end example
1831    
1832     The @t{10.0.0.$NODE} resolves to @t{10.0.0.1} on @t{huffy}, @t{10.0.0.2} on @t{welshy} and so on. Other schemes, such as @t{10.$NODE.0.1} might be useful, too.
1833     @refill
1834     After generating the keys (gvpectrl) and starting the daemon (@t{gvpe -D -l info }@emph{NODENAME} for test purposes) the three hosts should be able to ping each other.
1835     @refill
1836     If you have an internal @t{10.x.x.x} network (with a tighter netmask then @t{255.0.0.0}, e.g. @t{10.1.0.0} on @t{huffy}, @t{10.2.0.0} on @t{welshy} and so on), you can now enable ip-forwarding and proxy-arp (or set the hosts as default gateway), and your three hosts should forward traffic from each network to each other.
1837     @refill
1838    
1839    
1840     @node Complex Example,complex/gvpe.conf,Simple Example,Top
1841    
1842     @chapter Complex Example
1843     These files are configuration files for "our" internal network.
1844    
1845     It is highly non-trivial, so don't use this configuration as the basis of
1846     your network unless you know what you are doing.
1847    
1848     It features: around 30 hosts, many of them have additional networks behind
1849     them and use an assortment of different tunneling protocols. The vpn is
1850     fully routed, no arp is used at all.
1851    
1852     The public IP addresses of connecting nodes are automatically registered
1853     via dns on the node ruth, using a node-up/node-down script.
1854    
1855     And last not least: the if-up script can generate information to be used
1856     in firewall rules (IP-net/MAC-address pairs) so ensure packet integrity so
1857     you can use your iptables etc. firewall to filter by IP address only.
1858    
1859     @menu
1860     * complex/gvpe.conf:: An example gvpe configuration
1861     * complex/if-up:: A fully-routing if-up config
1862     * complex/node-up:: A node-up/node-down script utilizing dynds
1863     @end menu
1864    
1865    
1866     @node complex/gvpe.conf,complex/if-up,Complex Example,Complex Example
1867    
1868     @chapter complex/gvpe.conf
1869    
1870    
1871     @example
1872     # sample configfile
1873     # the config file must be exactly(!) the same on all nodes
1874    
1875     rekey = 54321 # the rekeying interval
1876     keepalive = 300 # the keepalive interval
1877     on ruth keepalive = 120 # ruth is important and demands lower keepalives
1878     on surfer keepalive = 40
1879     mtu = 1492 # the mtu (minimum mtu of attached host)
1880     ifname = vpn0 # the tunnel interface name to use
1881     ifpersist = no # the tun device should be persistent
1882     inherit-tos = yes # should tunnel packets inherit tos flags?
1883     compress = yes # wether compression should be used (NYI)
1884     connect = ondemand # connect to this host always/never or ondemand
1885     router-priority = 1 # route for everybody - if necessary
1886    
1887     loglevel = notice # info logs connects, notice only important messages
1888     on mobil loglevel = info
1889     on doom loglevel = info
1890     on ruth loglevel = info
1891    
1892     udp-port = 407 # the udp port to use for sending/receiving packets
1893     tcp-port = 443 # the tcp port to listen for connections (we use https over proxy)
1894     ip-proto = 50 # (ab)use the ipsec protocol as rawip
1895     icmp-type = 0 # (ab)use echo replies for tunneling
1896     enable-udp = yes # udp is spoken almost everywhere
1897     enable-tcp = no # tcp is not spoken everywhere
1898     enable-rawip = no # rawip is not spoken everywhere
1899     enable-icmp = no # most hosts don't bother to icmp
1900    
1901     # every "node =" introduces a new node in the network
1902     # the options following it don't set defaults but are
1903     # node-specific.
1904    
1905     # marc@@lap
1906     node = mobil
1907    
1908     # marc@@home
1909     node = doom
1910     enable-rawip = yes
1911     enable-tcp = yes
1912    
1913     # marc@@uni
1914     node = ruth
1915     enable-rawip = yes
1916     enable-tcp = yes
1917     enable-icmp = yes
1918     hostname = 200.100.162.95
1919     connect = always
1920     router-priority = 30
1921     on ruth node-up = node-up
1922     on ruth node-down = node-up
1923    
1924     # marc@@mu
1925     node = frank
1926     enable-rawip = yes
1927     hostname = 44.88.167.250
1928     router-priority = 20
1929     connect = always
1930    
1931     # nethype
1932     node = rain
1933     enable-rawip = yes
1934     hostname = 145.253.105.130
1935     router-priority = 10
1936     connect = always
1937    
1938     # marco@@home
1939     node = marco
1940     enable-rawip = yes
1941    
1942     # stefan@@ka
1943     node = wappla
1944     connect = never
1945    
1946     # stefan@@lap
1947     node = stefan
1948     udp-port = 408
1949     connect = never
1950    
1951     # paul@@wg
1952     node = n8geil
1953     on ruth enable-icmp = yes
1954     on n8geil enable-icmp = yes
1955     enable-udp = no
1956    
1957     # paul@@lap
1958     node = syrr
1959    
1960     # paul@@lu
1961     node = donomos
1962    
1963     # marco@@hn
1964     node = core
1965    
1966     # elmex@@home
1967     node = elmex
1968     enable-rawip = yes
1969     hostname = 100.251.143.181
1970    
1971     # stefan@@kwc.at
1972     node = fwkw
1973     connect = never
1974     on stefan connect = always
1975     on wappla connect = always
1976     hostname = 182.73.81.146
1977    
1978     # elmex@@home
1979     node = jungfrau
1980     enable-rawip = yes
1981    
1982     # uni main router
1983     node = surfer
1984     enable-rawip = yes
1985     enable-tcp = no
1986     enable-icmp = yes
1987     hostname = 200.100.162.79
1988     connect = always
1989     router-priority = 40
1990    
1991     # jkneer@@marvin
1992     node = marvin
1993     enable-rawip = yes
1994     enable-udp = no
1995    
1996     # jkneer@@entrophy
1997     node = entrophy
1998     enable-udp = no
1999     enable-tcp = yes
2000    
2001     # mr. primitive
2002     node = voyager
2003     enable-udp = no
2004     enable-tcp = no
2005     on voyager enable-tcp = yes
2006     on voyager enable-udp = yes
2007    
2008     # v-server (barbados.dn-systems.de)
2009     #node = vserver
2010     #enable-udp = yes
2011     #hostname = 193.108.181.74
2012     @end example
2013    
2014    
2015    
2016     @node complex/if-up,complex/node-up,complex/gvpe.conf,Complex Example
2017    
2018     @chapter complex/if-up
2019    
2020    
2021     @example
2022     #!/bin/bash
2023    
2024     # Some environment variables will be set:
2025     #
2026     # CONFBASE=/etc/vpe # the configuration directory prefix
2027     # IFNAME=vpn0 # the network interface (ifname)
2028     # MAC=fe:fd:80:00:00:01 # the mac-address to use for the interface
2029     # NODENAME=cerebro # the selected nodename (-n switch)
2030     # NODEID=1 # the numerical node id
2031     # MTU=1436 # the tunnel packet overhead (set mtu to 1500-$OVERHEAD)
2032    
2033     # this if-up script is rather full-featured, and is used to
2034     # generate a fully-routed (no arp traffic) vpn. the main portion
2035     # consists of "ipn" calls (see below).
2036    
2037     # some hosts require additional specific configuration, this is handled
2038     # using if statements near the end of the script.
2039    
2040     # with the --fw switch, outputs mac/net pairs for your firewall use:
2041     # if-up --fw | while read mac net; do
2042     # iptables -t filter -A INPUT -i vpn0 -p all -m mac --mac-source \! $mac -s $net -j DROP
2043     # done
2044    
2045     ipn() @{
2046     local id="$1"; shift
2047     local mac=fe:fd:80:00:00:$(printf "%02x" $id)
2048     if [ -n "$FW" ]; then
2049     for net in "$@@"; do
2050     echo "$mac $net"
2051     done
2052     else
2053     local ip="$1"; shift
2054     if [ "$id" == $NODEID ]; then
2055     [ -n "$ADDR_ONLY" ] && ip addr add $ip broadcast 10.255.255.255 dev $IFNAME
2056     elif [ -z "$ADDR_ONLY" ]; then
2057     ip neighbour add $ip lladdr $mac nud permanent dev $IFNAME
2058     for route in "$@@"; do
2059     ip route add $route via $ip dev vpn0
2060     done
2061     fi
2062     fi
2063     @}
2064    
2065     ipns() @{
2066     # this contains the generic routing information for the vpn
2067     # each call to ipn has the following parameters:
2068     # ipn <node-id> <gateway-ip> [<route> ...]
2069     # the second line (ipn 2) means:
2070     # the second node (doom in the config file) has the ip address 10.0.0.5,
2071     # which is the gateway for the 10.0/28 network and three additional ip
2072     # addresses
2073    
2074     ipn 1 10.0.0.20
2075     ipn 2 10.0.0.5 10.0.0.0/28 #200.100.162.92 200.100.162.93 100.99.218.222
2076     ipn 3 10.0.0.17
2077     ipn 4 10.0.0.18
2078     ipn 5 10.0.0.19 10.3.0.0/16
2079     ipn 6 10.0.0.21 10.0.2.0/26 #200.100.162.17
2080     ipn 7 10.0.0.22 10.1.2.0/24 # wappla, off
2081     ipn 8 10.0.0.23 # stefan, off
2082     ipn 9 10.0.0.24 10.13.0.0/16
2083     ipn 10 10.0.0.25
2084     ipn 11 10.0.0.26
2085     ipn 12 10.0.0.27 10.0.2.64/26
2086     ipn 13 10.0.0.28 10.0.3.0/24
2087     ipn 14 10.0.0.29 10.1.1.0/24 # fwkw, off
2088     # mind the gateway ip gap
2089     ipn 15 10.9.0.30 10.0.4.0/24
2090     ipn 16 10.9.0.31
2091     ipn 17 10.9.0.32 10.42.0.0/16
2092     ipn 18 10.9.0.33
2093     ipn 19 10.9.0.34
2094     #ipn 20 10.9.0.35
2095     @}
2096    
2097     if [ "$1" == "--fw" ]; then
2098     FW=1
2099    
2100     ipns
2101     else
2102     exec >/var/log/vpe.if-up 2>&1
2103     set -x
2104    
2105     [ $NODENAME = "ruth" ] && ip link set $IFNAME down # hack
2106    
2107     # first set the link up and initialize the interface ip
2108     # address.
2109     ip link set $IFNAME address $MAC
2110     ip link set $IFNAME mtu $MTU up
2111     ADDR_ONLY=1 ipns # set addr only
2112    
2113     # now initialize the main vpn routes (10.0/8)
2114     # the second route is a hack to to reach some funnily-connected
2115     # machines.
2116     ip route add 10.0.0.0/8 dev $IFNAME
2117     ip route add 10.0.0.0/27 dev $IFNAME
2118    
2119     ipns # set the interface routes
2120    
2121     # now for something completely different, ehr, something not
2122     # easily doable with ipn, namely some extra specific highly complicated
2123     # and non-regular setups for some machines.
2124     if [ $NODENAME = doom ]; then
2125     ip addr add 200.100.162.92 dev $IFNAME
2126     ip route add 200.100.0.0/16 via 10.0.0.17 dev $IFNAME
2127     ip route flush table 101
2128     ip route add table 101 default src 200.100.162.92 via 10.0.0.17 dev $IFNAME
2129    
2130     ip addr add 100.99.218.222 dev $IFNAME
2131     ip route add 100.99.218.192/27 via 10.0.0.19 dev $IFNAME
2132     ip route flush table 103
2133     ip route add table 103 default src 100.99.218.222 via 10.0.0.19
2134    
2135     elif [ $NODENAME = marco ]; then
2136     ip addr add 200.100.162.17 dev $IFNAME
2137    
2138     for addr in 79 89 90 91 92 93 94 95; do
2139     ip route add 200.100.162.$addr dev ppp0
2140     done
2141     ip route add 200.100.76.0/23 dev ppp0
2142     ip route add src 200.100.162.17 200.100.0.0/16 via 10.0.0.17 dev $IFNAME
2143    
2144     elif [ $NODENAME = ruth ]; then
2145     ip route add 200.100.162.17 via 10.0.0.21 dev vpn0
2146     ip route add 200.100.162.92 via 10.0.0.5 dev vpn0
2147     ip route add 200.100.162.93 via 10.0.0.5 dev vpn0
2148    
2149     fi
2150    
2151     # and this is the second part of the 10.0/27 hack. don't ask.
2152     [ $NODENAME != fwkw ] && ip route add 10.0.0.0/24 via 10.0.0.29 dev $IFNAME
2153     fi
2154     @end example
2155    
2156    
2157    
2158     @node complex/node-up,Index,complex/if-up,Complex Example
2159    
2160     @chapter complex/node-up
2161    
2162    
2163     @example
2164     #!/bin/sh
2165    
2166     # Some environment variables will be set (in addition the ones
2167     # set in if-up, too):
2168     #
2169     # DESTNODE=doom # others nodename
2170     # DESTID=5 # others node id
2171     # DESTIP=188.13.66.8 # others ip
2172     # DESTPORT=407 # others port
2173     # STATE=up/down # node-up gets UP, node-down script gets DOWN
2174    
2175     if [ $STATE = up ]; then
2176     @{
2177     echo update delete $DESTNODE.lowttl.example.com. a
2178     echo update delete $DESTNODE-last.lowttl.example.com. a
2179     echo update add $DESTNODE.lowttl.example.com. 1 in a $DESTIP
2180     echo update add $DESTNODE-last.lowttl.example.com. 1 in a $DESTIP
2181     echo
2182     @} | nsupdate -d -k $CONFBASE:marc.example.net.
2183     else
2184     @{
2185     echo update delete $DESTNODE.lowttl.example.com. a
2186     echo update delete $DESTNODE-last.lowttl.example.com. a
2187     echo update add $DESTNODE-last.lowttl.example.com. 1 in a $DESTIP
2188     echo
2189     @} | nsupdate -d -k $CONFBASE:marc.example.net.
2190     fi
2191     @end example
2192    
2193    
2194    
2195     @node Index,,complex/node-up,Top
2196    
2197     @chapter Index
2198     @printindex cp
2199    
2200    
2201    
2202     @bye
2203