ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/gvpe/src/curve25519-donna.c
Revision: 1.1
Committed: Tue Jul 16 16:44:36 2013 UTC (10 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Log Message:
3.x

File Contents

# User Rev Content
1 root 1.1 /* Copyright 2008, Google Inc.
2     * All rights reserved.
3     *
4     * Redistribution and use in source and binary forms, with or without
5     * modification, are permitted provided that the following conditions are
6     * met:
7     *
8     * * Redistributions of source code must retain the above copyright
9     * notice, this list of conditions and the following disclaimer.
10     * * Redistributions in binary form must reproduce the above
11     * copyright notice, this list of conditions and the following disclaimer
12     * in the documentation and/or other materials provided with the
13     * distribution.
14     * * Neither the name of Google Inc. nor the names of its
15     * contributors may be used to endorse or promote products derived from
16     * this software without specific prior written permission.
17     *
18     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29     *
30     * curve25519-donna: Curve25519 elliptic curve, public key function
31     *
32     * http://code.google.com/p/curve25519-donna/
33     *
34     * Adam Langley <agl@imperialviolet.org>
35     *
36     * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
37     *
38     * More information about curve25519 can be found here
39     * http://cr.yp.to/ecdh.html
40     *
41     * djb's sample implementation of curve25519 is written in a special assembly
42     * language called qhasm and uses the floating point registers.
43     *
44     * This is, almost, a clean room reimplementation from the curve25519 paper. It
45     * uses many of the tricks described therein. Only the crecip function is taken
46     * from the sample implementation.
47     */
48    
49     #include <string.h>
50     #include <stdint.h>
51    
52     #ifdef _MSC_VER
53     #define inline __inline
54     #endif
55    
56     typedef uint8_t u8;
57     typedef int32_t s32;
58     typedef int64_t limb;
59    
60     /* Field element representation:
61     *
62     * Field elements are written as an array of signed, 64-bit limbs, least
63     * significant first. The value of the field element is:
64     * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
65     *
66     * i.e. the limbs are 26, 25, 26, 25, ... bits wide.
67     */
68    
69     /* Sum two numbers: output += in */
70     static void fsum(limb *output, const limb *in) {
71     unsigned i;
72     for (i = 0; i < 10; i += 2) {
73     output[0+i] = (output[0+i] + in[0+i]);
74     output[1+i] = (output[1+i] + in[1+i]);
75     }
76     }
77    
78     /* Find the difference of two numbers: output = in - output
79     * (note the order of the arguments!)
80     */
81     static void fdifference(limb *output, const limb *in) {
82     unsigned i;
83     for (i = 0; i < 10; ++i) {
84     output[i] = (in[i] - output[i]);
85     }
86     }
87    
88     /* Multiply a number by a scalar: output = in * scalar */
89     static void fscalar_product(limb *output, const limb *in, const limb scalar) {
90     unsigned i;
91     for (i = 0; i < 10; ++i) {
92     output[i] = in[i] * scalar;
93     }
94     }
95    
96     /* Multiply two numbers: output = in2 * in
97     *
98     * output must be distinct to both inputs. The inputs are reduced coefficient
99     * form, the output is not.
100     */
101     static void fproduct(limb *output, const limb *in2, const limb *in) {
102     output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
103     output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
104     ((limb) ((s32) in2[1])) * ((s32) in[0]);
105     output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
106     ((limb) ((s32) in2[0])) * ((s32) in[2]) +
107     ((limb) ((s32) in2[2])) * ((s32) in[0]);
108     output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
109     ((limb) ((s32) in2[2])) * ((s32) in[1]) +
110     ((limb) ((s32) in2[0])) * ((s32) in[3]) +
111     ((limb) ((s32) in2[3])) * ((s32) in[0]);
112     output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
113     2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
114     ((limb) ((s32) in2[3])) * ((s32) in[1])) +
115     ((limb) ((s32) in2[0])) * ((s32) in[4]) +
116     ((limb) ((s32) in2[4])) * ((s32) in[0]);
117     output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
118     ((limb) ((s32) in2[3])) * ((s32) in[2]) +
119     ((limb) ((s32) in2[1])) * ((s32) in[4]) +
120     ((limb) ((s32) in2[4])) * ((s32) in[1]) +
121     ((limb) ((s32) in2[0])) * ((s32) in[5]) +
122     ((limb) ((s32) in2[5])) * ((s32) in[0]);
123     output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
124     ((limb) ((s32) in2[1])) * ((s32) in[5]) +
125     ((limb) ((s32) in2[5])) * ((s32) in[1])) +
126     ((limb) ((s32) in2[2])) * ((s32) in[4]) +
127     ((limb) ((s32) in2[4])) * ((s32) in[2]) +
128     ((limb) ((s32) in2[0])) * ((s32) in[6]) +
129     ((limb) ((s32) in2[6])) * ((s32) in[0]);
130     output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
131     ((limb) ((s32) in2[4])) * ((s32) in[3]) +
132     ((limb) ((s32) in2[2])) * ((s32) in[5]) +
133     ((limb) ((s32) in2[5])) * ((s32) in[2]) +
134     ((limb) ((s32) in2[1])) * ((s32) in[6]) +
135     ((limb) ((s32) in2[6])) * ((s32) in[1]) +
136     ((limb) ((s32) in2[0])) * ((s32) in[7]) +
137     ((limb) ((s32) in2[7])) * ((s32) in[0]);
138     output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
139     2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
140     ((limb) ((s32) in2[5])) * ((s32) in[3]) +
141     ((limb) ((s32) in2[1])) * ((s32) in[7]) +
142     ((limb) ((s32) in2[7])) * ((s32) in[1])) +
143     ((limb) ((s32) in2[2])) * ((s32) in[6]) +
144     ((limb) ((s32) in2[6])) * ((s32) in[2]) +
145     ((limb) ((s32) in2[0])) * ((s32) in[8]) +
146     ((limb) ((s32) in2[8])) * ((s32) in[0]);
147     output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
148     ((limb) ((s32) in2[5])) * ((s32) in[4]) +
149     ((limb) ((s32) in2[3])) * ((s32) in[6]) +
150     ((limb) ((s32) in2[6])) * ((s32) in[3]) +
151     ((limb) ((s32) in2[2])) * ((s32) in[7]) +
152     ((limb) ((s32) in2[7])) * ((s32) in[2]) +
153     ((limb) ((s32) in2[1])) * ((s32) in[8]) +
154     ((limb) ((s32) in2[8])) * ((s32) in[1]) +
155     ((limb) ((s32) in2[0])) * ((s32) in[9]) +
156     ((limb) ((s32) in2[9])) * ((s32) in[0]);
157     output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
158     ((limb) ((s32) in2[3])) * ((s32) in[7]) +
159     ((limb) ((s32) in2[7])) * ((s32) in[3]) +
160     ((limb) ((s32) in2[1])) * ((s32) in[9]) +
161     ((limb) ((s32) in2[9])) * ((s32) in[1])) +
162     ((limb) ((s32) in2[4])) * ((s32) in[6]) +
163     ((limb) ((s32) in2[6])) * ((s32) in[4]) +
164     ((limb) ((s32) in2[2])) * ((s32) in[8]) +
165     ((limb) ((s32) in2[8])) * ((s32) in[2]);
166     output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
167     ((limb) ((s32) in2[6])) * ((s32) in[5]) +
168     ((limb) ((s32) in2[4])) * ((s32) in[7]) +
169     ((limb) ((s32) in2[7])) * ((s32) in[4]) +
170     ((limb) ((s32) in2[3])) * ((s32) in[8]) +
171     ((limb) ((s32) in2[8])) * ((s32) in[3]) +
172     ((limb) ((s32) in2[2])) * ((s32) in[9]) +
173     ((limb) ((s32) in2[9])) * ((s32) in[2]);
174     output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
175     2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
176     ((limb) ((s32) in2[7])) * ((s32) in[5]) +
177     ((limb) ((s32) in2[3])) * ((s32) in[9]) +
178     ((limb) ((s32) in2[9])) * ((s32) in[3])) +
179     ((limb) ((s32) in2[4])) * ((s32) in[8]) +
180     ((limb) ((s32) in2[8])) * ((s32) in[4]);
181     output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
182     ((limb) ((s32) in2[7])) * ((s32) in[6]) +
183     ((limb) ((s32) in2[5])) * ((s32) in[8]) +
184     ((limb) ((s32) in2[8])) * ((s32) in[5]) +
185     ((limb) ((s32) in2[4])) * ((s32) in[9]) +
186     ((limb) ((s32) in2[9])) * ((s32) in[4]);
187     output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
188     ((limb) ((s32) in2[5])) * ((s32) in[9]) +
189     ((limb) ((s32) in2[9])) * ((s32) in[5])) +
190     ((limb) ((s32) in2[6])) * ((s32) in[8]) +
191     ((limb) ((s32) in2[8])) * ((s32) in[6]);
192     output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
193     ((limb) ((s32) in2[8])) * ((s32) in[7]) +
194     ((limb) ((s32) in2[6])) * ((s32) in[9]) +
195     ((limb) ((s32) in2[9])) * ((s32) in[6]);
196     output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
197     2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
198     ((limb) ((s32) in2[9])) * ((s32) in[7]));
199     output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
200     ((limb) ((s32) in2[9])) * ((s32) in[8]);
201     output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
202     }
203    
204     /* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
205     static void freduce_degree(limb *output) {
206     /* Each of these shifts and adds ends up multiplying the value by 19. */
207     output[8] += output[18] << 4;
208     output[8] += output[18] << 1;
209     output[8] += output[18];
210     output[7] += output[17] << 4;
211     output[7] += output[17] << 1;
212     output[7] += output[17];
213     output[6] += output[16] << 4;
214     output[6] += output[16] << 1;
215     output[6] += output[16];
216     output[5] += output[15] << 4;
217     output[5] += output[15] << 1;
218     output[5] += output[15];
219     output[4] += output[14] << 4;
220     output[4] += output[14] << 1;
221     output[4] += output[14];
222     output[3] += output[13] << 4;
223     output[3] += output[13] << 1;
224     output[3] += output[13];
225     output[2] += output[12] << 4;
226     output[2] += output[12] << 1;
227     output[2] += output[12];
228     output[1] += output[11] << 4;
229     output[1] += output[11] << 1;
230     output[1] += output[11];
231     output[0] += output[10] << 4;
232     output[0] += output[10] << 1;
233     output[0] += output[10];
234     }
235    
236     #if (-1 & 3) != 3
237     #error "This code only works on a two's complement system"
238     #endif
239    
240     /* return v / 2^26, using only shifts and adds. */
241     static inline limb
242     div_by_2_26(const limb v)
243     {
244     /* High word of v; no shift needed*/
245     const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
246     /* Set to all 1s if v was negative; else set to 0s. */
247     const int32_t sign = ((int32_t) highword) >> 31;
248     /* Set to 0x3ffffff if v was negative; else set to 0. */
249     const int32_t roundoff = ((uint32_t) sign) >> 6;
250     /* Should return v / (1<<26) */
251     return (v + roundoff) >> 26;
252     }
253    
254     /* return v / (2^25), using only shifts and adds. */
255     static inline limb
256     div_by_2_25(const limb v)
257     {
258     /* High word of v; no shift needed*/
259     const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
260     /* Set to all 1s if v was negative; else set to 0s. */
261     const int32_t sign = ((int32_t) highword) >> 31;
262     /* Set to 0x1ffffff if v was negative; else set to 0. */
263     const int32_t roundoff = ((uint32_t) sign) >> 7;
264     /* Should return v / (1<<25) */
265     return (v + roundoff) >> 25;
266     }
267    
268     static inline s32
269     div_s32_by_2_25(const s32 v)
270     {
271     const s32 roundoff = ((uint32_t)(v >> 31)) >> 7;
272     return (v + roundoff) >> 25;
273     }
274    
275     /* Reduce all coefficients of the short form input so that |x| < 2^26.
276     *
277     * On entry: |output[i]| < 2^62
278     */
279     static void freduce_coefficients(limb *output) {
280     unsigned i;
281    
282     output[10] = 0;
283    
284     for (i = 0; i < 10; i += 2) {
285     limb over = div_by_2_26(output[i]);
286     output[i] -= over << 26;
287     output[i+1] += over;
288    
289     over = div_by_2_25(output[i+1]);
290     output[i+1] -= over << 25;
291     output[i+2] += over;
292     }
293     /* Now |output[10]| < 2 ^ 38 and all other coefficients are reduced. */
294     output[0] += output[10] << 4;
295     output[0] += output[10] << 1;
296     output[0] += output[10];
297    
298     output[10] = 0;
299    
300     /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19 * 2^38
301     * So |over| will be no more than 77825 */
302     {
303     limb over = div_by_2_26(output[0]);
304     output[0] -= over << 26;
305     output[1] += over;
306     }
307    
308     /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 77825
309     * So |over| will be no more than 1. */
310     {
311     /* output[1] fits in 32 bits, so we can use div_s32_by_2_25 here. */
312     s32 over32 = div_s32_by_2_25((s32) output[1]);
313     output[1] -= over32 << 25;
314     output[2] += over32;
315     }
316    
317     /* Finally, output[0,1,3..9] are reduced, and output[2] is "nearly reduced":
318     * we have |output[2]| <= 2^26. This is good enough for all of our math,
319     * but it will require an extra freduce_coefficients before fcontract. */
320     }
321    
322     /* A helpful wrapper around fproduct: output = in * in2.
323     *
324     * output must be distinct to both inputs. The output is reduced degree and
325     * reduced coefficient.
326     */
327     static void
328     fmul(limb *output, const limb *in, const limb *in2) {
329     limb t[19];
330     fproduct(t, in, in2);
331     freduce_degree(t);
332     freduce_coefficients(t);
333     memcpy(output, t, sizeof(limb) * 10);
334     }
335    
336     static void fsquare_inner(limb *output, const limb *in) {
337     output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
338     output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
339     output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
340     ((limb) ((s32) in[0])) * ((s32) in[2]));
341     output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
342     ((limb) ((s32) in[0])) * ((s32) in[3]));
343     output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
344     4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
345     2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
346     output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
347     ((limb) ((s32) in[1])) * ((s32) in[4]) +
348     ((limb) ((s32) in[0])) * ((s32) in[5]));
349     output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
350     ((limb) ((s32) in[2])) * ((s32) in[4]) +
351     ((limb) ((s32) in[0])) * ((s32) in[6]) +
352     2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
353     output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
354     ((limb) ((s32) in[2])) * ((s32) in[5]) +
355     ((limb) ((s32) in[1])) * ((s32) in[6]) +
356     ((limb) ((s32) in[0])) * ((s32) in[7]));
357     output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
358     2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
359     ((limb) ((s32) in[0])) * ((s32) in[8]) +
360     2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
361     ((limb) ((s32) in[3])) * ((s32) in[5])));
362     output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
363     ((limb) ((s32) in[3])) * ((s32) in[6]) +
364     ((limb) ((s32) in[2])) * ((s32) in[7]) +
365     ((limb) ((s32) in[1])) * ((s32) in[8]) +
366     ((limb) ((s32) in[0])) * ((s32) in[9]));
367     output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
368     ((limb) ((s32) in[4])) * ((s32) in[6]) +
369     ((limb) ((s32) in[2])) * ((s32) in[8]) +
370     2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
371     ((limb) ((s32) in[1])) * ((s32) in[9])));
372     output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
373     ((limb) ((s32) in[4])) * ((s32) in[7]) +
374     ((limb) ((s32) in[3])) * ((s32) in[8]) +
375     ((limb) ((s32) in[2])) * ((s32) in[9]));
376     output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
377     2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
378     2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
379     ((limb) ((s32) in[3])) * ((s32) in[9])));
380     output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
381     ((limb) ((s32) in[5])) * ((s32) in[8]) +
382     ((limb) ((s32) in[4])) * ((s32) in[9]));
383     output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
384     ((limb) ((s32) in[6])) * ((s32) in[8]) +
385     2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
386     output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
387     ((limb) ((s32) in[6])) * ((s32) in[9]));
388     output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
389     4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
390     output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
391     output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
392     }
393    
394     static void
395     fsquare(limb *output, const limb *in) {
396     limb t[19];
397     fsquare_inner(t, in);
398     freduce_degree(t);
399     freduce_coefficients(t);
400     memcpy(output, t, sizeof(limb) * 10);
401     }
402    
403     /* Take a little-endian, 32-byte number and expand it into polynomial form */
404     static void
405     fexpand(limb *output, const u8 *input) {
406     #define F(n,start,shift,mask) \
407     output[n] = ((((limb) input[start + 0]) | \
408     ((limb) input[start + 1]) << 8 | \
409     ((limb) input[start + 2]) << 16 | \
410     ((limb) input[start + 3]) << 24) >> shift) & mask;
411     F(0, 0, 0, 0x3ffffff);
412     F(1, 3, 2, 0x1ffffff);
413     F(2, 6, 3, 0x3ffffff);
414     F(3, 9, 5, 0x1ffffff);
415     F(4, 12, 6, 0x3ffffff);
416     F(5, 16, 0, 0x1ffffff);
417     F(6, 19, 1, 0x3ffffff);
418     F(7, 22, 3, 0x1ffffff);
419     F(8, 25, 4, 0x3ffffff);
420     F(9, 28, 6, 0x1ffffff);
421     #undef F
422     }
423    
424     #if (-32 >> 1) != -16
425     #error "This code only works when >> does sign-extension on negative numbers"
426     #endif
427    
428     /* Take a fully reduced polynomial form number and contract it into a
429     * little-endian, 32-byte array
430     */
431     static void
432     fcontract(u8 *output, limb *input) {
433     int i;
434     int j;
435    
436     for (j = 0; j < 2; ++j) {
437     for (i = 0; i < 9; ++i) {
438     if ((i & 1) == 1) {
439     /* This calculation is a time-invariant way to make input[i] positive
440     by borrowing from the next-larger limb.
441     */
442     const s32 mask = (s32)(input[i]) >> 31;
443     const s32 carry = -(((s32)(input[i]) & mask) >> 25);
444     input[i] = (s32)(input[i]) + (carry << 25);
445     input[i+1] = (s32)(input[i+1]) - carry;
446     } else {
447     const s32 mask = (s32)(input[i]) >> 31;
448     const s32 carry = -(((s32)(input[i]) & mask) >> 26);
449     input[i] = (s32)(input[i]) + (carry << 26);
450     input[i+1] = (s32)(input[i+1]) - carry;
451     }
452     }
453     {
454     const s32 mask = (s32)(input[9]) >> 31;
455     const s32 carry = -(((s32)(input[9]) & mask) >> 25);
456     input[9] = (s32)(input[9]) + (carry << 25);
457     input[0] = (s32)(input[0]) - (carry * 19);
458     }
459     }
460    
461     /* The first borrow-propagation pass above ended with every limb
462     except (possibly) input[0] non-negative.
463    
464     Since each input limb except input[0] is decreased by at most 1
465     by a borrow-propagation pass, the second borrow-propagation pass
466     could only have wrapped around to decrease input[0] again if the
467     first pass left input[0] negative *and* input[1] through input[9]
468     were all zero. In that case, input[1] is now 2^25 - 1, and this
469     last borrow-propagation step will leave input[1] non-negative.
470     */
471     {
472     const s32 mask = (s32)(input[0]) >> 31;
473     const s32 carry = -(((s32)(input[0]) & mask) >> 26);
474     input[0] = (s32)(input[0]) + (carry << 26);
475     input[1] = (s32)(input[1]) - carry;
476     }
477    
478     /* Both passes through the above loop, plus the last 0-to-1 step, are
479     necessary: if input[9] is -1 and input[0] through input[8] are 0,
480     negative values will remain in the array until the end.
481     */
482    
483     input[1] <<= 2;
484     input[2] <<= 3;
485     input[3] <<= 5;
486     input[4] <<= 6;
487     input[6] <<= 1;
488     input[7] <<= 3;
489     input[8] <<= 4;
490     input[9] <<= 6;
491     #define F(i, s) \
492     output[s+0] |= input[i] & 0xff; \
493     output[s+1] = (input[i] >> 8) & 0xff; \
494     output[s+2] = (input[i] >> 16) & 0xff; \
495     output[s+3] = (input[i] >> 24) & 0xff;
496     output[0] = 0;
497     output[16] = 0;
498     F(0,0);
499     F(1,3);
500     F(2,6);
501     F(3,9);
502     F(4,12);
503     F(5,16);
504     F(6,19);
505     F(7,22);
506     F(8,25);
507     F(9,28);
508     #undef F
509     }
510    
511     /* Input: Q, Q', Q-Q'
512     * Output: 2Q, Q+Q'
513     *
514     * x2 z3: long form
515     * x3 z3: long form
516     * x z: short form, destroyed
517     * xprime zprime: short form, destroyed
518     * qmqp: short form, preserved
519     */
520     static void fmonty(limb *x2, limb *z2, /* output 2Q */
521     limb *x3, limb *z3, /* output Q + Q' */
522     limb *x, limb *z, /* input Q */
523     limb *xprime, limb *zprime, /* input Q' */
524     const limb *qmqp /* input Q - Q' */) {
525     limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
526     zzprime[19], zzzprime[19], xxxprime[19];
527    
528     memcpy(origx, x, 10 * sizeof(limb));
529     fsum(x, z);
530     fdifference(z, origx); // does x - z
531    
532     memcpy(origxprime, xprime, sizeof(limb) * 10);
533     fsum(xprime, zprime);
534     fdifference(zprime, origxprime);
535     fproduct(xxprime, xprime, z);
536     fproduct(zzprime, x, zprime);
537     freduce_degree(xxprime);
538     freduce_coefficients(xxprime);
539     freduce_degree(zzprime);
540     freduce_coefficients(zzprime);
541     memcpy(origxprime, xxprime, sizeof(limb) * 10);
542     fsum(xxprime, zzprime);
543     fdifference(zzprime, origxprime);
544     fsquare(xxxprime, xxprime);
545     fsquare(zzzprime, zzprime);
546     fproduct(zzprime, zzzprime, qmqp);
547     freduce_degree(zzprime);
548     freduce_coefficients(zzprime);
549     memcpy(x3, xxxprime, sizeof(limb) * 10);
550     memcpy(z3, zzprime, sizeof(limb) * 10);
551    
552     fsquare(xx, x);
553     fsquare(zz, z);
554     fproduct(x2, xx, zz);
555     freduce_degree(x2);
556     freduce_coefficients(x2);
557     fdifference(zz, xx); // does zz = xx - zz
558     memset(zzz + 10, 0, sizeof(limb) * 9);
559     fscalar_product(zzz, zz, 121665);
560     /* No need to call freduce_degree here:
561     fscalar_product doesn't increase the degree of its input. */
562     freduce_coefficients(zzz);
563     fsum(zzz, xx);
564     fproduct(z2, zz, zzz);
565     freduce_degree(z2);
566     freduce_coefficients(z2);
567     }
568    
569     /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
570     * them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
571     * side-channel attacks.
572     *
573     * NOTE that this function requires that 'iswap' be 1 or 0; other values give
574     * wrong results. Also, the two limb arrays must be in reduced-coefficient,
575     * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
576     * and all all values in a[0..9],b[0..9] must have magnitude less than
577     * INT32_MAX.
578     */
579     static void
580     swap_conditional(limb a[19], limb b[19], limb iswap) {
581     unsigned i;
582     const s32 swap = (s32) -iswap;
583    
584     for (i = 0; i < 10; ++i) {
585     const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
586     a[i] = ((s32)a[i]) ^ x;
587     b[i] = ((s32)b[i]) ^ x;
588     }
589     }
590    
591     /* Calculates nQ where Q is the x-coordinate of a point on the curve
592     *
593     * resultx/resultz: the x coordinate of the resulting curve point (short form)
594     * n: a little endian, 32-byte number
595     * q: a point of the curve (short form)
596     */
597     static void
598     cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
599     limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
600     limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
601     limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
602     limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
603    
604     unsigned i, j;
605    
606     memcpy(nqpqx, q, sizeof(limb) * 10);
607    
608     for (i = 0; i < 32; ++i) {
609     u8 byte = n[31 - i];
610     for (j = 0; j < 8; ++j) {
611     const limb bit = byte >> 7;
612    
613     swap_conditional(nqx, nqpqx, bit);
614     swap_conditional(nqz, nqpqz, bit);
615     fmonty(nqx2, nqz2,
616     nqpqx2, nqpqz2,
617     nqx, nqz,
618     nqpqx, nqpqz,
619     q);
620     swap_conditional(nqx2, nqpqx2, bit);
621     swap_conditional(nqz2, nqpqz2, bit);
622    
623     t = nqx;
624     nqx = nqx2;
625     nqx2 = t;
626     t = nqz;
627     nqz = nqz2;
628     nqz2 = t;
629     t = nqpqx;
630     nqpqx = nqpqx2;
631     nqpqx2 = t;
632     t = nqpqz;
633     nqpqz = nqpqz2;
634     nqpqz2 = t;
635    
636     byte <<= 1;
637     }
638     }
639    
640     memcpy(resultx, nqx, sizeof(limb) * 10);
641     memcpy(resultz, nqz, sizeof(limb) * 10);
642     }
643    
644     // -----------------------------------------------------------------------------
645     // Shamelessly copied from djb's code
646     // -----------------------------------------------------------------------------
647     static void
648     crecip(limb *out, const limb *z) {
649     limb z2[10];
650     limb z9[10];
651     limb z11[10];
652     limb z2_5_0[10];
653     limb z2_10_0[10];
654     limb z2_20_0[10];
655     limb z2_50_0[10];
656     limb z2_100_0[10];
657     limb t0[10];
658     limb t1[10];
659     int i;
660    
661     /* 2 */ fsquare(z2,z);
662     /* 4 */ fsquare(t1,z2);
663     /* 8 */ fsquare(t0,t1);
664     /* 9 */ fmul(z9,t0,z);
665     /* 11 */ fmul(z11,z9,z2);
666     /* 22 */ fsquare(t0,z11);
667     /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
668    
669     /* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
670     /* 2^7 - 2^2 */ fsquare(t1,t0);
671     /* 2^8 - 2^3 */ fsquare(t0,t1);
672     /* 2^9 - 2^4 */ fsquare(t1,t0);
673     /* 2^10 - 2^5 */ fsquare(t0,t1);
674     /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
675    
676     /* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
677     /* 2^12 - 2^2 */ fsquare(t1,t0);
678     /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
679     /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
680    
681     /* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
682     /* 2^22 - 2^2 */ fsquare(t1,t0);
683     /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
684     /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
685    
686     /* 2^41 - 2^1 */ fsquare(t1,t0);
687     /* 2^42 - 2^2 */ fsquare(t0,t1);
688     /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
689     /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
690    
691     /* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
692     /* 2^52 - 2^2 */ fsquare(t1,t0);
693     /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
694     /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
695    
696     /* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
697     /* 2^102 - 2^2 */ fsquare(t0,t1);
698     /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
699     /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
700    
701     /* 2^201 - 2^1 */ fsquare(t0,t1);
702     /* 2^202 - 2^2 */ fsquare(t1,t0);
703     /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
704     /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
705    
706     /* 2^251 - 2^1 */ fsquare(t1,t0);
707     /* 2^252 - 2^2 */ fsquare(t0,t1);
708     /* 2^253 - 2^3 */ fsquare(t1,t0);
709     /* 2^254 - 2^4 */ fsquare(t0,t1);
710     /* 2^255 - 2^5 */ fsquare(t1,t0);
711     /* 2^255 - 21 */ fmul(out,t1,z11);
712     }
713    
714     int curve25519_donna(u8 *, const u8 *, const u8 *);
715    
716     int
717     curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
718     limb bp[10], x[10], z[11], zmone[10];
719     uint8_t e[32];
720     int i;
721    
722     for (i = 0; i < 32; ++i) e[i] = secret[i];
723     e[0] &= 248;
724     e[31] &= 127;
725     e[31] |= 64;
726    
727     fexpand(bp, basepoint);
728     cmult(x, z, e, bp);
729     crecip(zmone, z);
730     fmul(z, x, zmone);
731     freduce_coefficients(z);
732     fcontract(mypublic, z);
733     return 0;
734     }