ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/gvpe/src/curve25519-donna.c
Revision: 1.2
Committed: Sat Jan 17 07:59:47 2015 UTC (9 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-3_0, HEAD
Changes since 1.1: +210 -84 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 /* Copyright 2008, Google Inc.
2     * All rights reserved.
3     *
4     * Redistribution and use in source and binary forms, with or without
5     * modification, are permitted provided that the following conditions are
6     * met:
7     *
8     * * Redistributions of source code must retain the above copyright
9     * notice, this list of conditions and the following disclaimer.
10     * * Redistributions in binary form must reproduce the above
11     * copyright notice, this list of conditions and the following disclaimer
12     * in the documentation and/or other materials provided with the
13     * distribution.
14     * * Neither the name of Google Inc. nor the names of its
15     * contributors may be used to endorse or promote products derived from
16     * this software without specific prior written permission.
17     *
18     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29     *
30     * curve25519-donna: Curve25519 elliptic curve, public key function
31     *
32     * http://code.google.com/p/curve25519-donna/
33     *
34     * Adam Langley <agl@imperialviolet.org>
35     *
36     * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
37     *
38     * More information about curve25519 can be found here
39     * http://cr.yp.to/ecdh.html
40     *
41     * djb's sample implementation of curve25519 is written in a special assembly
42     * language called qhasm and uses the floating point registers.
43     *
44     * This is, almost, a clean room reimplementation from the curve25519 paper. It
45     * uses many of the tricks described therein. Only the crecip function is taken
46 root 1.2 * from the sample implementation. */
47 root 1.1
48     #include <string.h>
49     #include <stdint.h>
50    
51     #ifdef _MSC_VER
52     #define inline __inline
53     #endif
54    
55     typedef uint8_t u8;
56     typedef int32_t s32;
57     typedef int64_t limb;
58    
59     /* Field element representation:
60     *
61     * Field elements are written as an array of signed, 64-bit limbs, least
62     * significant first. The value of the field element is:
63     * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
64     *
65 root 1.2 * i.e. the limbs are 26, 25, 26, 25, ... bits wide. */
66 root 1.1
67     /* Sum two numbers: output += in */
68     static void fsum(limb *output, const limb *in) {
69     unsigned i;
70     for (i = 0; i < 10; i += 2) {
71 root 1.2 output[0+i] = output[0+i] + in[0+i];
72     output[1+i] = output[1+i] + in[1+i];
73 root 1.1 }
74     }
75    
76     /* Find the difference of two numbers: output = in - output
77 root 1.2 * (note the order of the arguments!). */
78 root 1.1 static void fdifference(limb *output, const limb *in) {
79     unsigned i;
80     for (i = 0; i < 10; ++i) {
81 root 1.2 output[i] = in[i] - output[i];
82 root 1.1 }
83     }
84    
85     /* Multiply a number by a scalar: output = in * scalar */
86     static void fscalar_product(limb *output, const limb *in, const limb scalar) {
87     unsigned i;
88     for (i = 0; i < 10; ++i) {
89     output[i] = in[i] * scalar;
90     }
91     }
92    
93     /* Multiply two numbers: output = in2 * in
94     *
95     * output must be distinct to both inputs. The inputs are reduced coefficient
96     * form, the output is not.
97 root 1.2 *
98     * output[x] <= 14 * the largest product of the input limbs. */
99 root 1.1 static void fproduct(limb *output, const limb *in2, const limb *in) {
100     output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
101     output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
102     ((limb) ((s32) in2[1])) * ((s32) in[0]);
103     output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
104     ((limb) ((s32) in2[0])) * ((s32) in[2]) +
105     ((limb) ((s32) in2[2])) * ((s32) in[0]);
106     output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
107     ((limb) ((s32) in2[2])) * ((s32) in[1]) +
108     ((limb) ((s32) in2[0])) * ((s32) in[3]) +
109     ((limb) ((s32) in2[3])) * ((s32) in[0]);
110     output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
111     2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
112     ((limb) ((s32) in2[3])) * ((s32) in[1])) +
113     ((limb) ((s32) in2[0])) * ((s32) in[4]) +
114     ((limb) ((s32) in2[4])) * ((s32) in[0]);
115     output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
116     ((limb) ((s32) in2[3])) * ((s32) in[2]) +
117     ((limb) ((s32) in2[1])) * ((s32) in[4]) +
118     ((limb) ((s32) in2[4])) * ((s32) in[1]) +
119     ((limb) ((s32) in2[0])) * ((s32) in[5]) +
120     ((limb) ((s32) in2[5])) * ((s32) in[0]);
121     output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
122     ((limb) ((s32) in2[1])) * ((s32) in[5]) +
123     ((limb) ((s32) in2[5])) * ((s32) in[1])) +
124     ((limb) ((s32) in2[2])) * ((s32) in[4]) +
125     ((limb) ((s32) in2[4])) * ((s32) in[2]) +
126     ((limb) ((s32) in2[0])) * ((s32) in[6]) +
127     ((limb) ((s32) in2[6])) * ((s32) in[0]);
128     output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
129     ((limb) ((s32) in2[4])) * ((s32) in[3]) +
130     ((limb) ((s32) in2[2])) * ((s32) in[5]) +
131     ((limb) ((s32) in2[5])) * ((s32) in[2]) +
132     ((limb) ((s32) in2[1])) * ((s32) in[6]) +
133     ((limb) ((s32) in2[6])) * ((s32) in[1]) +
134     ((limb) ((s32) in2[0])) * ((s32) in[7]) +
135     ((limb) ((s32) in2[7])) * ((s32) in[0]);
136     output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
137     2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
138     ((limb) ((s32) in2[5])) * ((s32) in[3]) +
139     ((limb) ((s32) in2[1])) * ((s32) in[7]) +
140     ((limb) ((s32) in2[7])) * ((s32) in[1])) +
141     ((limb) ((s32) in2[2])) * ((s32) in[6]) +
142     ((limb) ((s32) in2[6])) * ((s32) in[2]) +
143     ((limb) ((s32) in2[0])) * ((s32) in[8]) +
144     ((limb) ((s32) in2[8])) * ((s32) in[0]);
145     output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
146     ((limb) ((s32) in2[5])) * ((s32) in[4]) +
147     ((limb) ((s32) in2[3])) * ((s32) in[6]) +
148     ((limb) ((s32) in2[6])) * ((s32) in[3]) +
149     ((limb) ((s32) in2[2])) * ((s32) in[7]) +
150     ((limb) ((s32) in2[7])) * ((s32) in[2]) +
151     ((limb) ((s32) in2[1])) * ((s32) in[8]) +
152     ((limb) ((s32) in2[8])) * ((s32) in[1]) +
153     ((limb) ((s32) in2[0])) * ((s32) in[9]) +
154     ((limb) ((s32) in2[9])) * ((s32) in[0]);
155     output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
156     ((limb) ((s32) in2[3])) * ((s32) in[7]) +
157     ((limb) ((s32) in2[7])) * ((s32) in[3]) +
158     ((limb) ((s32) in2[1])) * ((s32) in[9]) +
159     ((limb) ((s32) in2[9])) * ((s32) in[1])) +
160     ((limb) ((s32) in2[4])) * ((s32) in[6]) +
161     ((limb) ((s32) in2[6])) * ((s32) in[4]) +
162     ((limb) ((s32) in2[2])) * ((s32) in[8]) +
163     ((limb) ((s32) in2[8])) * ((s32) in[2]);
164     output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
165     ((limb) ((s32) in2[6])) * ((s32) in[5]) +
166     ((limb) ((s32) in2[4])) * ((s32) in[7]) +
167     ((limb) ((s32) in2[7])) * ((s32) in[4]) +
168     ((limb) ((s32) in2[3])) * ((s32) in[8]) +
169     ((limb) ((s32) in2[8])) * ((s32) in[3]) +
170     ((limb) ((s32) in2[2])) * ((s32) in[9]) +
171     ((limb) ((s32) in2[9])) * ((s32) in[2]);
172     output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
173     2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
174     ((limb) ((s32) in2[7])) * ((s32) in[5]) +
175     ((limb) ((s32) in2[3])) * ((s32) in[9]) +
176     ((limb) ((s32) in2[9])) * ((s32) in[3])) +
177     ((limb) ((s32) in2[4])) * ((s32) in[8]) +
178     ((limb) ((s32) in2[8])) * ((s32) in[4]);
179     output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
180     ((limb) ((s32) in2[7])) * ((s32) in[6]) +
181     ((limb) ((s32) in2[5])) * ((s32) in[8]) +
182     ((limb) ((s32) in2[8])) * ((s32) in[5]) +
183     ((limb) ((s32) in2[4])) * ((s32) in[9]) +
184     ((limb) ((s32) in2[9])) * ((s32) in[4]);
185     output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
186     ((limb) ((s32) in2[5])) * ((s32) in[9]) +
187     ((limb) ((s32) in2[9])) * ((s32) in[5])) +
188     ((limb) ((s32) in2[6])) * ((s32) in[8]) +
189     ((limb) ((s32) in2[8])) * ((s32) in[6]);
190     output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
191     ((limb) ((s32) in2[8])) * ((s32) in[7]) +
192     ((limb) ((s32) in2[6])) * ((s32) in[9]) +
193     ((limb) ((s32) in2[9])) * ((s32) in[6]);
194     output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
195     2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
196     ((limb) ((s32) in2[9])) * ((s32) in[7]));
197     output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
198     ((limb) ((s32) in2[9])) * ((s32) in[8]);
199     output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
200     }
201    
202 root 1.2 /* Reduce a long form to a short form by taking the input mod 2^255 - 19.
203     *
204     * On entry: |output[i]| < 14*2^54
205     * On exit: |output[0..8]| < 280*2^54 */
206 root 1.1 static void freduce_degree(limb *output) {
207 root 1.2 /* Each of these shifts and adds ends up multiplying the value by 19.
208     *
209     * For output[0..8], the absolute entry value is < 14*2^54 and we add, at
210     * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
211 root 1.1 output[8] += output[18] << 4;
212     output[8] += output[18] << 1;
213     output[8] += output[18];
214     output[7] += output[17] << 4;
215     output[7] += output[17] << 1;
216     output[7] += output[17];
217     output[6] += output[16] << 4;
218     output[6] += output[16] << 1;
219     output[6] += output[16];
220     output[5] += output[15] << 4;
221     output[5] += output[15] << 1;
222     output[5] += output[15];
223     output[4] += output[14] << 4;
224     output[4] += output[14] << 1;
225     output[4] += output[14];
226     output[3] += output[13] << 4;
227     output[3] += output[13] << 1;
228     output[3] += output[13];
229     output[2] += output[12] << 4;
230     output[2] += output[12] << 1;
231     output[2] += output[12];
232     output[1] += output[11] << 4;
233     output[1] += output[11] << 1;
234     output[1] += output[11];
235     output[0] += output[10] << 4;
236     output[0] += output[10] << 1;
237     output[0] += output[10];
238     }
239    
240     #if (-1 & 3) != 3
241     #error "This code only works on a two's complement system"
242     #endif
243    
244 root 1.2 /* return v / 2^26, using only shifts and adds.
245     *
246     * On entry: v can take any value. */
247 root 1.1 static inline limb
248     div_by_2_26(const limb v)
249     {
250 root 1.2 /* High word of v; no shift needed. */
251 root 1.1 const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
252     /* Set to all 1s if v was negative; else set to 0s. */
253     const int32_t sign = ((int32_t) highword) >> 31;
254     /* Set to 0x3ffffff if v was negative; else set to 0. */
255     const int32_t roundoff = ((uint32_t) sign) >> 6;
256     /* Should return v / (1<<26) */
257     return (v + roundoff) >> 26;
258     }
259    
260 root 1.2 /* return v / (2^25), using only shifts and adds.
261     *
262     * On entry: v can take any value. */
263 root 1.1 static inline limb
264     div_by_2_25(const limb v)
265     {
266     /* High word of v; no shift needed*/
267     const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
268     /* Set to all 1s if v was negative; else set to 0s. */
269     const int32_t sign = ((int32_t) highword) >> 31;
270     /* Set to 0x1ffffff if v was negative; else set to 0. */
271     const int32_t roundoff = ((uint32_t) sign) >> 7;
272     /* Should return v / (1<<25) */
273     return (v + roundoff) >> 25;
274     }
275    
276     /* Reduce all coefficients of the short form input so that |x| < 2^26.
277     *
278 root 1.2 * On entry: |output[i]| < 280*2^54 */
279 root 1.1 static void freduce_coefficients(limb *output) {
280     unsigned i;
281    
282     output[10] = 0;
283    
284     for (i = 0; i < 10; i += 2) {
285     limb over = div_by_2_26(output[i]);
286 root 1.2 /* The entry condition (that |output[i]| < 280*2^54) means that over is, at
287     * most, 280*2^28 in the first iteration of this loop. This is added to the
288     * next limb and we can approximate the resulting bound of that limb by
289     * 281*2^54. */
290 root 1.1 output[i] -= over << 26;
291     output[i+1] += over;
292    
293 root 1.2 /* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
294     * 281*2^29. When this is added to the next limb, the resulting bound can
295     * be approximated as 281*2^54.
296     *
297     * For subsequent iterations of the loop, 281*2^54 remains a conservative
298     * bound and no overflow occurs. */
299 root 1.1 over = div_by_2_25(output[i+1]);
300     output[i+1] -= over << 25;
301     output[i+2] += over;
302     }
303 root 1.2 /* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
304 root 1.1 output[0] += output[10] << 4;
305     output[0] += output[10] << 1;
306     output[0] += output[10];
307    
308     output[10] = 0;
309    
310 root 1.2 /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
311     * So |over| will be no more than 2^16. */
312 root 1.1 {
313     limb over = div_by_2_26(output[0]);
314     output[0] -= over << 26;
315     output[1] += over;
316     }
317    
318 root 1.2 /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
319     * bound on |output[1]| is sufficient to meet our needs. */
320 root 1.1 }
321    
322     /* A helpful wrapper around fproduct: output = in * in2.
323     *
324 root 1.2 * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
325     *
326     * output must be distinct to both inputs. The output is reduced degree
327     * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */
328 root 1.1 static void
329     fmul(limb *output, const limb *in, const limb *in2) {
330     limb t[19];
331     fproduct(t, in, in2);
332 root 1.2 /* |t[i]| < 14*2^54 */
333 root 1.1 freduce_degree(t);
334     freduce_coefficients(t);
335 root 1.2 /* |t[i]| < 2^26 */
336 root 1.1 memcpy(output, t, sizeof(limb) * 10);
337     }
338    
339 root 1.2 /* Square a number: output = in**2
340     *
341     * output must be distinct from the input. The inputs are reduced coefficient
342     * form, the output is not.
343     *
344     * output[x] <= 14 * the largest product of the input limbs. */
345 root 1.1 static void fsquare_inner(limb *output, const limb *in) {
346     output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
347     output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
348     output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
349     ((limb) ((s32) in[0])) * ((s32) in[2]));
350     output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
351     ((limb) ((s32) in[0])) * ((s32) in[3]));
352     output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
353     4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
354     2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
355     output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
356     ((limb) ((s32) in[1])) * ((s32) in[4]) +
357     ((limb) ((s32) in[0])) * ((s32) in[5]));
358     output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
359     ((limb) ((s32) in[2])) * ((s32) in[4]) +
360     ((limb) ((s32) in[0])) * ((s32) in[6]) +
361     2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
362     output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
363     ((limb) ((s32) in[2])) * ((s32) in[5]) +
364     ((limb) ((s32) in[1])) * ((s32) in[6]) +
365     ((limb) ((s32) in[0])) * ((s32) in[7]));
366     output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
367     2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
368     ((limb) ((s32) in[0])) * ((s32) in[8]) +
369     2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
370     ((limb) ((s32) in[3])) * ((s32) in[5])));
371     output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
372     ((limb) ((s32) in[3])) * ((s32) in[6]) +
373     ((limb) ((s32) in[2])) * ((s32) in[7]) +
374     ((limb) ((s32) in[1])) * ((s32) in[8]) +
375     ((limb) ((s32) in[0])) * ((s32) in[9]));
376     output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
377     ((limb) ((s32) in[4])) * ((s32) in[6]) +
378     ((limb) ((s32) in[2])) * ((s32) in[8]) +
379     2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
380     ((limb) ((s32) in[1])) * ((s32) in[9])));
381     output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
382     ((limb) ((s32) in[4])) * ((s32) in[7]) +
383     ((limb) ((s32) in[3])) * ((s32) in[8]) +
384     ((limb) ((s32) in[2])) * ((s32) in[9]));
385     output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
386     2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
387     2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
388     ((limb) ((s32) in[3])) * ((s32) in[9])));
389     output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
390     ((limb) ((s32) in[5])) * ((s32) in[8]) +
391     ((limb) ((s32) in[4])) * ((s32) in[9]));
392     output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
393     ((limb) ((s32) in[6])) * ((s32) in[8]) +
394     2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
395     output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
396     ((limb) ((s32) in[6])) * ((s32) in[9]));
397     output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
398     4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
399     output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
400     output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
401     }
402    
403 root 1.2 /* fsquare sets output = in^2.
404     *
405     * On entry: The |in| argument is in reduced coefficients form and |in[i]| <
406     * 2^27.
407     *
408     * On exit: The |output| argument is in reduced coefficients form (indeed, one
409     * need only provide storage for 10 limbs) and |out[i]| < 2^26. */
410 root 1.1 static void
411     fsquare(limb *output, const limb *in) {
412     limb t[19];
413     fsquare_inner(t, in);
414 root 1.2 /* |t[i]| < 14*2^54 because the largest product of two limbs will be <
415     * 2^(27+27) and fsquare_inner adds together, at most, 14 of those
416     * products. */
417 root 1.1 freduce_degree(t);
418     freduce_coefficients(t);
419 root 1.2 /* |t[i]| < 2^26 */
420 root 1.1 memcpy(output, t, sizeof(limb) * 10);
421     }
422    
423     /* Take a little-endian, 32-byte number and expand it into polynomial form */
424     static void
425     fexpand(limb *output, const u8 *input) {
426     #define F(n,start,shift,mask) \
427     output[n] = ((((limb) input[start + 0]) | \
428     ((limb) input[start + 1]) << 8 | \
429     ((limb) input[start + 2]) << 16 | \
430     ((limb) input[start + 3]) << 24) >> shift) & mask;
431     F(0, 0, 0, 0x3ffffff);
432     F(1, 3, 2, 0x1ffffff);
433     F(2, 6, 3, 0x3ffffff);
434     F(3, 9, 5, 0x1ffffff);
435     F(4, 12, 6, 0x3ffffff);
436     F(5, 16, 0, 0x1ffffff);
437     F(6, 19, 1, 0x3ffffff);
438     F(7, 22, 3, 0x1ffffff);
439     F(8, 25, 4, 0x3ffffff);
440     F(9, 28, 6, 0x1ffffff);
441     #undef F
442     }
443    
444     #if (-32 >> 1) != -16
445     #error "This code only works when >> does sign-extension on negative numbers"
446     #endif
447    
448 root 1.2 /* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
449     static s32 s32_eq(s32 a, s32 b) {
450     a = ~(a ^ b);
451     a &= a << 16;
452     a &= a << 8;
453     a &= a << 4;
454     a &= a << 2;
455     a &= a << 1;
456     return a >> 31;
457     }
458    
459     /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
460     * both non-negative. */
461     static s32 s32_gte(s32 a, s32 b) {
462     a -= b;
463     /* a >= 0 iff a >= b. */
464     return ~(a >> 31);
465     }
466    
467 root 1.1 /* Take a fully reduced polynomial form number and contract it into a
468 root 1.2 * little-endian, 32-byte array.
469     *
470     * On entry: |input_limbs[i]| < 2^26 */
471 root 1.1 static void
472 root 1.2 fcontract(u8 *output, limb *input_limbs) {
473 root 1.1 int i;
474     int j;
475 root 1.2 s32 input[10];
476     s32 mask;
477    
478     /* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
479     for (i = 0; i < 10; i++) {
480     input[i] = input_limbs[i];
481     }
482 root 1.1
483     for (j = 0; j < 2; ++j) {
484     for (i = 0; i < 9; ++i) {
485     if ((i & 1) == 1) {
486 root 1.2 /* This calculation is a time-invariant way to make input[i]
487     * non-negative by borrowing from the next-larger limb. */
488     const s32 mask = input[i] >> 31;
489     const s32 carry = -((input[i] & mask) >> 25);
490     input[i] = input[i] + (carry << 25);
491     input[i+1] = input[i+1] - carry;
492 root 1.1 } else {
493 root 1.2 const s32 mask = input[i] >> 31;
494     const s32 carry = -((input[i] & mask) >> 26);
495     input[i] = input[i] + (carry << 26);
496     input[i+1] = input[i+1] - carry;
497 root 1.1 }
498     }
499 root 1.2
500     /* There's no greater limb for input[9] to borrow from, but we can multiply
501     * by 19 and borrow from input[0], which is valid mod 2^255-19. */
502 root 1.1 {
503 root 1.2 const s32 mask = input[9] >> 31;
504     const s32 carry = -((input[9] & mask) >> 25);
505     input[9] = input[9] + (carry << 25);
506     input[0] = input[0] - (carry * 19);
507 root 1.1 }
508 root 1.2
509     /* After the first iteration, input[1..9] are non-negative and fit within
510     * 25 or 26 bits, depending on position. However, input[0] may be
511     * negative. */
512 root 1.1 }
513    
514     /* The first borrow-propagation pass above ended with every limb
515     except (possibly) input[0] non-negative.
516    
517 root 1.2 If input[0] was negative after the first pass, then it was because of a
518     carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
519     one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
520    
521     In the second pass, each limb is decreased by at most one. Thus the second
522     borrow-propagation pass could only have wrapped around to decrease
523     input[0] again if the first pass left input[0] negative *and* input[1]
524     through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
525     and this last borrow-propagation step will leave input[1] non-negative. */
526 root 1.1 {
527 root 1.2 const s32 mask = input[0] >> 31;
528     const s32 carry = -((input[0] & mask) >> 26);
529     input[0] = input[0] + (carry << 26);
530     input[1] = input[1] - carry;
531     }
532    
533     /* All input[i] are now non-negative. However, there might be values between
534     * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
535     for (j = 0; j < 2; j++) {
536     for (i = 0; i < 9; i++) {
537     if ((i & 1) == 1) {
538     const s32 carry = input[i] >> 25;
539     input[i] &= 0x1ffffff;
540     input[i+1] += carry;
541     } else {
542     const s32 carry = input[i] >> 26;
543     input[i] &= 0x3ffffff;
544     input[i+1] += carry;
545     }
546     }
547    
548     {
549     const s32 carry = input[9] >> 25;
550     input[9] &= 0x1ffffff;
551     input[0] += 19*carry;
552     }
553     }
554    
555     /* If the first carry-chain pass, just above, ended up with a carry from
556     * input[9], and that caused input[0] to be out-of-bounds, then input[0] was
557     * < 2^26 + 2*19, because the carry was, at most, two.
558     *
559     * If the second pass carried from input[9] again then input[0] is < 2*19 and
560     * the input[9] -> input[0] carry didn't push input[0] out of bounds. */
561    
562     /* It still remains the case that input might be between 2^255-19 and 2^255.
563     * In this case, input[1..9] must take their maximum value and input[0] must
564     * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
565     mask = s32_gte(input[0], 0x3ffffed);
566     for (i = 1; i < 10; i++) {
567     if ((i & 1) == 1) {
568     mask &= s32_eq(input[i], 0x1ffffff);
569     } else {
570     mask &= s32_eq(input[i], 0x3ffffff);
571     }
572 root 1.1 }
573    
574 root 1.2 /* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
575     * this conditionally subtracts 2^255-19. */
576     input[0] -= mask & 0x3ffffed;
577    
578     for (i = 1; i < 10; i++) {
579     if ((i & 1) == 1) {
580     input[i] -= mask & 0x1ffffff;
581     } else {
582     input[i] -= mask & 0x3ffffff;
583     }
584     }
585 root 1.1
586     input[1] <<= 2;
587     input[2] <<= 3;
588     input[3] <<= 5;
589     input[4] <<= 6;
590     input[6] <<= 1;
591     input[7] <<= 3;
592     input[8] <<= 4;
593     input[9] <<= 6;
594     #define F(i, s) \
595     output[s+0] |= input[i] & 0xff; \
596     output[s+1] = (input[i] >> 8) & 0xff; \
597     output[s+2] = (input[i] >> 16) & 0xff; \
598     output[s+3] = (input[i] >> 24) & 0xff;
599     output[0] = 0;
600     output[16] = 0;
601     F(0,0);
602     F(1,3);
603     F(2,6);
604     F(3,9);
605     F(4,12);
606     F(5,16);
607     F(6,19);
608     F(7,22);
609     F(8,25);
610     F(9,28);
611     #undef F
612     }
613    
614     /* Input: Q, Q', Q-Q'
615     * Output: 2Q, Q+Q'
616     *
617     * x2 z3: long form
618     * x3 z3: long form
619     * x z: short form, destroyed
620     * xprime zprime: short form, destroyed
621     * qmqp: short form, preserved
622 root 1.2 *
623     * On entry and exit, the absolute value of the limbs of all inputs and outputs
624     * are < 2^26. */
625 root 1.1 static void fmonty(limb *x2, limb *z2, /* output 2Q */
626     limb *x3, limb *z3, /* output Q + Q' */
627     limb *x, limb *z, /* input Q */
628     limb *xprime, limb *zprime, /* input Q' */
629     const limb *qmqp /* input Q - Q' */) {
630     limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
631     zzprime[19], zzzprime[19], xxxprime[19];
632    
633     memcpy(origx, x, 10 * sizeof(limb));
634     fsum(x, z);
635 root 1.2 /* |x[i]| < 2^27 */
636     fdifference(z, origx); /* does x - z */
637     /* |z[i]| < 2^27 */
638 root 1.1
639     memcpy(origxprime, xprime, sizeof(limb) * 10);
640     fsum(xprime, zprime);
641 root 1.2 /* |xprime[i]| < 2^27 */
642 root 1.1 fdifference(zprime, origxprime);
643 root 1.2 /* |zprime[i]| < 2^27 */
644 root 1.1 fproduct(xxprime, xprime, z);
645 root 1.2 /* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
646     * 2^(27+27) and fproduct adds together, at most, 14 of those products.
647     * (Approximating that to 2^58 doesn't work out.) */
648 root 1.1 fproduct(zzprime, x, zprime);
649 root 1.2 /* |zzprime[i]| < 14*2^54 */
650 root 1.1 freduce_degree(xxprime);
651     freduce_coefficients(xxprime);
652 root 1.2 /* |xxprime[i]| < 2^26 */
653 root 1.1 freduce_degree(zzprime);
654     freduce_coefficients(zzprime);
655 root 1.2 /* |zzprime[i]| < 2^26 */
656 root 1.1 memcpy(origxprime, xxprime, sizeof(limb) * 10);
657     fsum(xxprime, zzprime);
658 root 1.2 /* |xxprime[i]| < 2^27 */
659 root 1.1 fdifference(zzprime, origxprime);
660 root 1.2 /* |zzprime[i]| < 2^27 */
661 root 1.1 fsquare(xxxprime, xxprime);
662 root 1.2 /* |xxxprime[i]| < 2^26 */
663 root 1.1 fsquare(zzzprime, zzprime);
664 root 1.2 /* |zzzprime[i]| < 2^26 */
665 root 1.1 fproduct(zzprime, zzzprime, qmqp);
666 root 1.2 /* |zzprime[i]| < 14*2^52 */
667 root 1.1 freduce_degree(zzprime);
668     freduce_coefficients(zzprime);
669 root 1.2 /* |zzprime[i]| < 2^26 */
670 root 1.1 memcpy(x3, xxxprime, sizeof(limb) * 10);
671     memcpy(z3, zzprime, sizeof(limb) * 10);
672    
673     fsquare(xx, x);
674 root 1.2 /* |xx[i]| < 2^26 */
675 root 1.1 fsquare(zz, z);
676 root 1.2 /* |zz[i]| < 2^26 */
677 root 1.1 fproduct(x2, xx, zz);
678 root 1.2 /* |x2[i]| < 14*2^52 */
679 root 1.1 freduce_degree(x2);
680     freduce_coefficients(x2);
681 root 1.2 /* |x2[i]| < 2^26 */
682 root 1.1 fdifference(zz, xx); // does zz = xx - zz
683 root 1.2 /* |zz[i]| < 2^27 */
684 root 1.1 memset(zzz + 10, 0, sizeof(limb) * 9);
685     fscalar_product(zzz, zz, 121665);
686 root 1.2 /* |zzz[i]| < 2^(27+17) */
687 root 1.1 /* No need to call freduce_degree here:
688     fscalar_product doesn't increase the degree of its input. */
689     freduce_coefficients(zzz);
690 root 1.2 /* |zzz[i]| < 2^26 */
691 root 1.1 fsum(zzz, xx);
692 root 1.2 /* |zzz[i]| < 2^27 */
693 root 1.1 fproduct(z2, zz, zzz);
694 root 1.2 /* |z2[i]| < 14*2^(26+27) */
695 root 1.1 freduce_degree(z2);
696     freduce_coefficients(z2);
697 root 1.2 /* |z2|i| < 2^26 */
698 root 1.1 }
699    
700     /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
701     * them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
702     * side-channel attacks.
703     *
704     * NOTE that this function requires that 'iswap' be 1 or 0; other values give
705     * wrong results. Also, the two limb arrays must be in reduced-coefficient,
706     * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
707     * and all all values in a[0..9],b[0..9] must have magnitude less than
708 root 1.2 * INT32_MAX. */
709 root 1.1 static void
710     swap_conditional(limb a[19], limb b[19], limb iswap) {
711     unsigned i;
712     const s32 swap = (s32) -iswap;
713    
714     for (i = 0; i < 10; ++i) {
715     const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
716     a[i] = ((s32)a[i]) ^ x;
717     b[i] = ((s32)b[i]) ^ x;
718     }
719     }
720    
721     /* Calculates nQ where Q is the x-coordinate of a point on the curve
722     *
723     * resultx/resultz: the x coordinate of the resulting curve point (short form)
724     * n: a little endian, 32-byte number
725 root 1.2 * q: a point of the curve (short form) */
726 root 1.1 static void
727     cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
728     limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
729     limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
730     limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
731     limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
732    
733     unsigned i, j;
734    
735     memcpy(nqpqx, q, sizeof(limb) * 10);
736    
737     for (i = 0; i < 32; ++i) {
738     u8 byte = n[31 - i];
739     for (j = 0; j < 8; ++j) {
740     const limb bit = byte >> 7;
741    
742     swap_conditional(nqx, nqpqx, bit);
743     swap_conditional(nqz, nqpqz, bit);
744     fmonty(nqx2, nqz2,
745     nqpqx2, nqpqz2,
746     nqx, nqz,
747     nqpqx, nqpqz,
748     q);
749     swap_conditional(nqx2, nqpqx2, bit);
750     swap_conditional(nqz2, nqpqz2, bit);
751    
752     t = nqx;
753     nqx = nqx2;
754     nqx2 = t;
755     t = nqz;
756     nqz = nqz2;
757     nqz2 = t;
758     t = nqpqx;
759     nqpqx = nqpqx2;
760     nqpqx2 = t;
761     t = nqpqz;
762     nqpqz = nqpqz2;
763     nqpqz2 = t;
764    
765     byte <<= 1;
766     }
767     }
768    
769     memcpy(resultx, nqx, sizeof(limb) * 10);
770     memcpy(resultz, nqz, sizeof(limb) * 10);
771     }
772    
773     // -----------------------------------------------------------------------------
774     // Shamelessly copied from djb's code
775     // -----------------------------------------------------------------------------
776     static void
777     crecip(limb *out, const limb *z) {
778     limb z2[10];
779     limb z9[10];
780     limb z11[10];
781     limb z2_5_0[10];
782     limb z2_10_0[10];
783     limb z2_20_0[10];
784     limb z2_50_0[10];
785     limb z2_100_0[10];
786     limb t0[10];
787     limb t1[10];
788     int i;
789    
790     /* 2 */ fsquare(z2,z);
791     /* 4 */ fsquare(t1,z2);
792     /* 8 */ fsquare(t0,t1);
793     /* 9 */ fmul(z9,t0,z);
794     /* 11 */ fmul(z11,z9,z2);
795     /* 22 */ fsquare(t0,z11);
796     /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
797    
798     /* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
799     /* 2^7 - 2^2 */ fsquare(t1,t0);
800     /* 2^8 - 2^3 */ fsquare(t0,t1);
801     /* 2^9 - 2^4 */ fsquare(t1,t0);
802     /* 2^10 - 2^5 */ fsquare(t0,t1);
803     /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
804    
805     /* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
806     /* 2^12 - 2^2 */ fsquare(t1,t0);
807     /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
808     /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
809    
810     /* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
811     /* 2^22 - 2^2 */ fsquare(t1,t0);
812     /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
813     /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
814    
815     /* 2^41 - 2^1 */ fsquare(t1,t0);
816     /* 2^42 - 2^2 */ fsquare(t0,t1);
817     /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
818     /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
819    
820     /* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
821     /* 2^52 - 2^2 */ fsquare(t1,t0);
822     /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
823     /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
824    
825     /* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
826     /* 2^102 - 2^2 */ fsquare(t0,t1);
827     /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
828     /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
829    
830     /* 2^201 - 2^1 */ fsquare(t0,t1);
831     /* 2^202 - 2^2 */ fsquare(t1,t0);
832     /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
833     /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
834    
835     /* 2^251 - 2^1 */ fsquare(t1,t0);
836     /* 2^252 - 2^2 */ fsquare(t0,t1);
837     /* 2^253 - 2^3 */ fsquare(t1,t0);
838     /* 2^254 - 2^4 */ fsquare(t0,t1);
839     /* 2^255 - 2^5 */ fsquare(t1,t0);
840     /* 2^255 - 21 */ fmul(out,t1,z11);
841     }
842    
843     int
844     curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
845     limb bp[10], x[10], z[11], zmone[10];
846     uint8_t e[32];
847     int i;
848    
849     for (i = 0; i < 32; ++i) e[i] = secret[i];
850     e[0] &= 248;
851     e[31] &= 127;
852     e[31] |= 64;
853    
854     fexpand(bp, basepoint);
855     cmult(x, z, e, bp);
856     crecip(zmone, z);
857     fmul(z, x, zmone);
858     fcontract(mypublic, z);
859     return 0;
860     }