ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
Revision: 1.205
Committed: Fri Mar 25 14:21:14 2022 UTC (2 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.204: +8 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 /*
2 root 1.17 * libecb - http://software.schmorp.de/pkg/libecb
3 root 1.1 *
4 root 1.189 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 root 1.7 * Copyright (©) 2011 Emanuele Giaquinta
6 root 1.1 * All rights reserved.
7     *
8     * Redistribution and use in source and binary forms, with or without modifica-
9     * tion, are permitted provided that the following conditions are met:
10     *
11     * 1. Redistributions of source code must retain the above copyright notice,
12     * this list of conditions and the following disclaimer.
13     *
14     * 2. Redistributions in binary form must reproduce the above copyright
15     * notice, this list of conditions and the following disclaimer in the
16     * documentation and/or other materials provided with the distribution.
17     *
18     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
20     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
21     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
22     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27     * OF THE POSSIBILITY OF SUCH DAMAGE.
28 root 1.133 *
29     * Alternatively, the contents of this file may be used under the terms of
30     * the GNU General Public License ("GPL") version 2 or any later version,
31     * in which case the provisions of the GPL are applicable instead of
32     * the above. If you wish to allow the use of your version of this file
33     * only under the terms of the GPL and not to allow others to use your
34     * version of this file under the BSD license, indicate your decision
35     * by deleting the provisions above and replace them with the notice
36     * and other provisions required by the GPL. If you do not delete the
37     * provisions above, a recipient may use your version of this file under
38     * either the BSD or the GPL.
39 root 1.1 */
40    
41     #ifndef ECB_H
42     #define ECB_H
43    
44 root 1.87 /* 16 bits major, 16 bits minor */
45 root 1.204 #define ECB_VERSION 0x0001000c
46 root 1.87
47 root 1.184 #include <string.h> /* for memcpy */
48    
49 root 1.187 #if defined (_WIN32) && !defined (__MINGW32__)
50 root 1.44 typedef signed char int8_t;
51     typedef unsigned char uint8_t;
52 root 1.180 typedef signed char int_fast8_t;
53     typedef unsigned char uint_fast8_t;
54 root 1.44 typedef signed short int16_t;
55     typedef unsigned short uint16_t;
56 root 1.180 typedef signed int int_fast16_t;
57     typedef unsigned int uint_fast16_t;
58 root 1.44 typedef signed int int32_t;
59     typedef unsigned int uint32_t;
60 root 1.180 typedef signed int int_fast32_t;
61     typedef unsigned int uint_fast32_t;
62 root 1.44 #if __GNUC__
63     typedef signed long long int64_t;
64     typedef unsigned long long uint64_t;
65 root 1.51 #else /* _MSC_VER || __BORLANDC__ */
66 root 1.44 typedef signed __int64 int64_t;
67     typedef unsigned __int64 uint64_t;
68     #endif
69 root 1.180 typedef int64_t int_fast64_t;
70     typedef uint64_t uint_fast64_t;
71 root 1.87 #ifdef _WIN64
72     #define ECB_PTRSIZE 8
73     typedef uint64_t uintptr_t;
74     typedef int64_t intptr_t;
75     #else
76     #define ECB_PTRSIZE 4
77     typedef uint32_t uintptr_t;
78     typedef int32_t intptr_t;
79     #endif
80 root 1.44 #else
81     #include <inttypes.h>
82 root 1.173 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
83 root 1.87 #define ECB_PTRSIZE 8
84     #else
85     #define ECB_PTRSIZE 4
86     #endif
87 root 1.44 #endif
88 root 1.6
89 sf-exg 1.159 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91    
92 root 1.179 #ifndef ECB_OPTIMIZE_SIZE
93     #if __OPTIMIZE_SIZE__
94     #define ECB_OPTIMIZE_SIZE 1
95     #else
96     #define ECB_OPTIMIZE_SIZE 0
97     #endif
98     #endif
99    
100 root 1.114 /* work around x32 idiocy by defining proper macros */
101 sf-exg 1.159 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
102 root 1.119 #if _ILP32
103 root 1.115 #define ECB_AMD64_X32 1
104 root 1.114 #else
105 root 1.115 #define ECB_AMD64 1
106 root 1.114 #endif
107     #endif
108    
109 root 1.189 #if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110     #define ECB_64BIT_NATIVE 1
111     #else
112     #define ECB_64BIT_NATIVE 0
113     #endif
114    
115 root 1.12 /* many compilers define _GNUC_ to some versions but then only implement
116     * what their idiot authors think are the "more important" extensions,
117 sf-exg 1.59 * causing enormous grief in return for some better fake benchmark numbers.
118 root 1.18 * or so.
119 root 1.12 * we try to detect these and simply assume they are not gcc - if they have
120     * an issue with that they should have done it right in the first place.
121     */
122 root 1.137 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
123     #define ECB_GCC_VERSION(major,minor) 0
124     #else
125     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
126 root 1.12 #endif
127 root 1.1
128 sf-exg 1.138 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
129    
130 root 1.147 #if __clang__ && defined __has_builtin
131     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
132 sf-exg 1.138 #else
133     #define ECB_CLANG_BUILTIN(x) 0
134     #endif
135    
136 root 1.147 #if __clang__ && defined __has_extension
137     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
138 sf-exg 1.140 #else
139     #define ECB_CLANG_EXTENSION(x) 0
140     #endif
141    
142 root 1.91 #define ECB_CPP (__cplusplus+0)
143     #define ECB_CPP11 (__cplusplus >= 201103L)
144 root 1.177 #define ECB_CPP14 (__cplusplus >= 201402L)
145     #define ECB_CPP17 (__cplusplus >= 201703L)
146 root 1.90
147 root 1.102 #if ECB_CPP
148 root 1.127 #define ECB_C 0
149     #define ECB_STDC_VERSION 0
150     #else
151     #define ECB_C 1
152     #define ECB_STDC_VERSION __STDC_VERSION__
153     #endif
154    
155     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
156     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157 root 1.177 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
158 root 1.127
159     #if ECB_CPP
160 root 1.102 #define ECB_EXTERN_C extern "C"
161     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
162     #define ECB_EXTERN_C_END }
163     #else
164     #define ECB_EXTERN_C extern
165     #define ECB_EXTERN_C_BEG
166     #define ECB_EXTERN_C_END
167     #endif
168    
169 root 1.52 /*****************************************************************************/
170    
171 root 1.58 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
172     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
173    
174 root 1.79 #if ECB_NO_THREADS
175 root 1.95 #define ECB_NO_SMP 1
176 root 1.79 #endif
177    
178 root 1.93 #if ECB_NO_SMP
179 root 1.64 #define ECB_MEMORY_FENCE do { } while (0)
180 root 1.58 #endif
181    
182 sf-exg 1.165 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183     #if __xlC__ && ECB_CPP
184     #include <builtins.h>
185     #endif
186    
187 root 1.171 #if 1400 <= _MSC_VER
188     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189     #endif
190    
191 root 1.52 #ifndef ECB_MEMORY_FENCE
192 root 1.85 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 root 1.178 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
194 root 1.73 #if __i386 || __i386__
195 root 1.54 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
196 root 1.94 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
197 root 1.176 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
198 sf-exg 1.159 #elif ECB_GCC_AMD64
199 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
200     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
201 root 1.176 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
202 root 1.63 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
203 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 root 1.175 #elif defined __ARM_ARCH_2__ \
205     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209     || defined __ARM_ARCH_5TEJ__
210     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
211 root 1.85 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
212 root 1.175 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213     || defined __ARM_ARCH_6T2__
214 root 1.84 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
215 root 1.85 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
216 root 1.175 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
217 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
218 root 1.129 #elif __aarch64__
219     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
220 root 1.166 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
221 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
222     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
223     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
224 root 1.85 #elif defined __s390__ || defined __s390x__
225 root 1.77 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
226 root 1.85 #elif defined __mips__
227 root 1.118 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
228 root 1.116 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
229     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
230 root 1.86 #elif defined __alpha__
231 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
232     #elif defined __hppa__
233     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
234     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
235     #elif defined __ia64__
236     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
237 root 1.117 #elif defined __m68k__
238     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
239     #elif defined __m88k__
240     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
241     #elif defined __sh__
242     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
243 root 1.52 #endif
244     #endif
245     #endif
246    
247     #ifndef ECB_MEMORY_FENCE
248 root 1.93 #if ECB_GCC_VERSION(4,7)
249 root 1.97 /* see comment below (stdatomic.h) about the C11 memory model. */
250 root 1.93 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
251 root 1.128 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
252     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 root 1.190 #undef ECB_MEMORY_FENCE_RELAXED
254 root 1.178 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
255 root 1.110
256 sf-exg 1.140 #elif ECB_CLANG_EXTENSION(c_atomic)
257     /* see comment below (stdatomic.h) about the C11 memory model. */
258     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
259     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
260     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 root 1.190 #undef ECB_MEMORY_FENCE_RELAXED
262 root 1.178 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
263 root 1.110
264 root 1.93 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
265 root 1.52 #define ECB_MEMORY_FENCE __sync_synchronize ()
266 root 1.126 #elif _MSC_VER >= 1500 /* VC++ 2008 */
267     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
268     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
269     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
270     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
271     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
272 root 1.57 #elif _MSC_VER >= 1400 /* VC++ 2005 */
273     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
274     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
275     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
276     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
277 root 1.85 #elif defined _WIN32
278 root 1.55 #include <WinNT.h>
279 root 1.57 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
280 root 1.72 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
281     #include <mbarrier.h>
282 root 1.178 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
283     #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
284     #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285     #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
286 root 1.82 #elif __xlC__
287 root 1.83 #define ECB_MEMORY_FENCE __sync ()
288 root 1.52 #endif
289     #endif
290    
291 root 1.53 #ifndef ECB_MEMORY_FENCE
292 root 1.94 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
293     /* we assume that these memory fences work on all variables/all memory accesses, */
294     /* not just C11 atomics and atomic accesses */
295     #include <stdatomic.h>
296     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 root 1.178 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298     #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
299 root 1.94 #endif
300     #endif
301    
302     #ifndef ECB_MEMORY_FENCE
303 root 1.62 #if !ECB_AVOID_PTHREADS
304     /*
305     * if you get undefined symbol references to pthread_mutex_lock,
306     * or failure to find pthread.h, then you should implement
307     * the ECB_MEMORY_FENCE operations for your cpu/compiler
308     * OR provide pthread.h and link against the posix thread library
309     * of your system.
310     */
311     #include <pthread.h>
312     #define ECB_NEEDS_PTHREADS 1
313     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
314 root 1.52
315 root 1.62 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
316     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
317     #endif
318     #endif
319    
320 root 1.85 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
321 root 1.52 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
322 root 1.62 #endif
323    
324 root 1.85 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
325 root 1.52 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
326     #endif
327    
328 root 1.178 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329     #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330     #endif
331    
332 root 1.52 /*****************************************************************************/
333    
334 root 1.149 #if ECB_CPP
335 root 1.46 #define ecb_inline static inline
336 root 1.38 #elif ECB_GCC_VERSION(2,5)
337 root 1.46 #define ecb_inline static __inline__
338 root 1.39 #elif ECB_C99
339 root 1.46 #define ecb_inline static inline
340 root 1.29 #else
341 root 1.46 #define ecb_inline static
342 root 1.38 #endif
343    
344     #if ECB_GCC_VERSION(3,3)
345     #define ecb_restrict __restrict__
346 root 1.39 #elif ECB_C99
347 root 1.38 #define ecb_restrict restrict
348     #else
349     #define ecb_restrict
350 root 1.4 #endif
351    
352 root 1.38 typedef int ecb_bool;
353    
354 root 1.8 #define ECB_CONCAT_(a, b) a ## b
355     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
356     #define ECB_STRINGIFY_(a) # a
357     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358 root 1.155 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
359 root 1.8
360 root 1.46 #define ecb_function_ ecb_inline
361 root 1.3
362 sf-exg 1.138 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
363 root 1.142 #define ecb_attribute(attrlist) __attribute__ (attrlist)
364 root 1.37 #else
365     #define ecb_attribute(attrlist)
366 sf-exg 1.138 #endif
367 root 1.127
368 sf-exg 1.138 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
369     #define ecb_is_constant(expr) __builtin_constant_p (expr)
370     #else
371 root 1.127 /* possible C11 impl for integral types
372     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
373     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
374    
375 root 1.37 #define ecb_is_constant(expr) 0
376 sf-exg 1.138 #endif
377    
378     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
379     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
380     #else
381 root 1.37 #define ecb_expect(expr,value) (expr)
382 sf-exg 1.138 #endif
383    
384     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
385     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
386     #else
387 root 1.37 #define ecb_prefetch(addr,rw,locality)
388 root 1.1 #endif
389    
390 root 1.2 /* no emulation for ecb_decltype */
391 root 1.143 #if ECB_CPP11
392 root 1.144 // older implementations might have problems with decltype(x)::type, work around it
393 root 1.146 template<class T> struct ecb_decltype_t { typedef T type; };
394     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
395 root 1.143 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
396     #define ecb_decltype(x) __typeof__ (x)
397 root 1.1 #endif
398    
399 root 1.135 #if _MSC_VER >= 1300
400 root 1.149 #define ecb_deprecated __declspec (deprecated)
401 root 1.135 #else
402     #define ecb_deprecated ecb_attribute ((__deprecated__))
403     #endif
404    
405 sf-exg 1.162 #if _MSC_VER >= 1500
406 root 1.154 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
407     #elif ECB_GCC_VERSION(4,5)
408     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
409     #else
410     #define ecb_deprecated_message(msg) ecb_deprecated
411     #endif
412    
413     #if _MSC_VER >= 1400
414     #define ecb_noinline __declspec (noinline)
415     #else
416     #define ecb_noinline ecb_attribute ((__noinline__))
417     #endif
418    
419 root 1.24 #define ecb_unused ecb_attribute ((__unused__))
420     #define ecb_const ecb_attribute ((__const__))
421     #define ecb_pure ecb_attribute ((__pure__))
422 root 1.35
423 root 1.145 #if ECB_C11 || __IBMC_NORETURN
424 sf-exg 1.165 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
425 root 1.90 #define ecb_noreturn _Noreturn
426 root 1.153 #elif ECB_CPP11
427     #define ecb_noreturn [[noreturn]]
428     #elif _MSC_VER >= 1200
429 sf-exg 1.156 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
430 root 1.153 #define ecb_noreturn __declspec (noreturn)
431 root 1.90 #else
432     #define ecb_noreturn ecb_attribute ((__noreturn__))
433     #endif
434    
435 root 1.35 #if ECB_GCC_VERSION(4,3)
436 root 1.39 #define ecb_artificial ecb_attribute ((__artificial__))
437     #define ecb_hot ecb_attribute ((__hot__))
438     #define ecb_cold ecb_attribute ((__cold__))
439 root 1.35 #else
440     #define ecb_artificial
441     #define ecb_hot
442     #define ecb_cold
443     #endif
444 root 1.1
445 root 1.39 /* put around conditional expressions if you are very sure that the */
446     /* expression is mostly true or mostly false. note that these return */
447     /* booleans, not the expression. */
448 root 1.33 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
449     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
450 root 1.36 /* for compatibility to the rest of the world */
451 root 1.33 #define ecb_likely(expr) ecb_expect_true (expr)
452     #define ecb_unlikely(expr) ecb_expect_false (expr)
453 root 1.1
454 root 1.3 /* count trailing zero bits and count # of one bits */
455 root 1.139 #if ECB_GCC_VERSION(3,4) \
456     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
457     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
458     && ECB_CLANG_BUILTIN(__builtin_popcount))
459 root 1.49 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
460     #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
461     #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
462 root 1.35 #define ecb_ctz32(x) __builtin_ctz (x)
463 root 1.49 #define ecb_ctz64(x) __builtin_ctzll (x)
464 root 1.35 #define ecb_popcount32(x) __builtin_popcount (x)
465 root 1.49 /* no popcountll */
466 root 1.1 #else
467 root 1.151 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
468     ecb_function_ ecb_const int
469 root 1.35 ecb_ctz32 (uint32_t x)
470     {
471 root 1.171 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
472 root 1.172 unsigned long r;
473 root 1.171 _BitScanForward (&r, x);
474     return (int)r;
475     #else
476 root 1.35 int r = 0;
477    
478 root 1.205 /* todo: use david seal's algorithm */
479    
480 root 1.48 x &= ~x + 1; /* this isolates the lowest bit */
481 root 1.35
482 root 1.50 #if ECB_branchless_on_i386
483     r += !!(x & 0xaaaaaaaa) << 0;
484     r += !!(x & 0xcccccccc) << 1;
485     r += !!(x & 0xf0f0f0f0) << 2;
486     r += !!(x & 0xff00ff00) << 3;
487     r += !!(x & 0xffff0000) << 4;
488     #else
489 root 1.35 if (x & 0xaaaaaaaa) r += 1;
490     if (x & 0xcccccccc) r += 2;
491     if (x & 0xf0f0f0f0) r += 4;
492     if (x & 0xff00ff00) r += 8;
493     if (x & 0xffff0000) r += 16;
494 root 1.50 #endif
495 root 1.35
496     return r;
497 root 1.171 #endif
498 root 1.35 }
499    
500 root 1.151 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
501     ecb_function_ ecb_const int
502 root 1.49 ecb_ctz64 (uint64_t x)
503     {
504 root 1.171 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
505 root 1.172 unsigned long r;
506 root 1.171 _BitScanForward64 (&r, x);
507     return (int)r;
508     #else
509 root 1.168 int shift = x & 0xffffffff ? 0 : 32;
510 root 1.50 return ecb_ctz32 (x >> shift) + shift;
511 root 1.171 #endif
512 root 1.49 }
513    
514 root 1.151 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
515     ecb_function_ ecb_const int
516 root 1.35 ecb_popcount32 (uint32_t x)
517     {
518     x -= (x >> 1) & 0x55555555;
519     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
520     x = ((x >> 4) + x) & 0x0f0f0f0f;
521     x *= 0x01010101;
522 root 1.1
523 root 1.35 return x >> 24;
524     }
525 root 1.49
526 root 1.151 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
527     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
528 root 1.49 {
529 root 1.171 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
530 root 1.172 unsigned long r;
531 root 1.171 _BitScanReverse (&r, x);
532     return (int)r;
533     #else
534 root 1.50 int r = 0;
535 root 1.49
536 root 1.50 if (x >> 16) { x >>= 16; r += 16; }
537     if (x >> 8) { x >>= 8; r += 8; }
538     if (x >> 4) { x >>= 4; r += 4; }
539     if (x >> 2) { x >>= 2; r += 2; }
540     if (x >> 1) { r += 1; }
541 root 1.49
542     return r;
543 root 1.171 #endif
544 root 1.49 }
545    
546 root 1.151 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
547     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
548 root 1.49 {
549 root 1.171 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
550 root 1.172 unsigned long r;
551 root 1.171 _BitScanReverse64 (&r, x);
552     return (int)r;
553     #else
554 root 1.50 int r = 0;
555 root 1.49
556 root 1.50 if (x >> 32) { x >>= 32; r += 32; }
557 root 1.49
558 root 1.50 return r + ecb_ld32 (x);
559 root 1.171 #endif
560 root 1.49 }
561 root 1.1 #endif
562    
563 root 1.151 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
564     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
565     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
566     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
567 root 1.88
568 root 1.151 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
569     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
570 root 1.70 {
571     return ( (x * 0x0802U & 0x22110U)
572 root 1.151 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
573 root 1.70 }
574    
575 root 1.151 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
576     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
577 root 1.70 {
578     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
579     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
580     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
581     x = ( x >> 8 ) | ( x << 8);
582    
583     return x;
584     }
585    
586 root 1.151 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
587     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
588 root 1.70 {
589     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
590     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
591     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
592     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
593     x = ( x >> 16 ) | ( x << 16);
594    
595     return x;
596     }
597    
598 root 1.151 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
599     ecb_function_ ecb_const int
600 root 1.49 ecb_popcount64 (uint64_t x)
601     {
602 root 1.205 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
603     /* also, gcc/clang make this surprisingly difficult to use */
604     #if __LP64__ && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
605     return __builtin_popcountl (x);
606     #else
607 root 1.49 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
608 root 1.205 #endif
609 root 1.49 }
610    
611 root 1.151 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
612     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
613     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
614     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
615     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
616     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
617     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
618     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
619    
620 root 1.198 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
621     ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
622     ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
623     ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
624     ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
625     ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
626     ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
627     ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
628 root 1.50
629 root 1.182 #if ECB_CPP
630    
631     inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
632     inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
633     inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
634     inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
635    
636     inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
637     inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
638     inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
639     inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
640    
641     inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
642     inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
643     inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
644     inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
645    
646     inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
647     inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
648     inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
649     inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
650    
651     inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
652     inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
653     inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
654    
655 root 1.183 inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
656     inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
657     inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
658     inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
659    
660     inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
661     inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
662     inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
663     inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
664 root 1.182
665     #endif
666    
667 sf-exg 1.138 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
668 root 1.164 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
669     #define ecb_bswap16(x) __builtin_bswap16 (x)
670     #else
671 root 1.49 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
672 root 1.164 #endif
673 root 1.49 #define ecb_bswap32(x) __builtin_bswap32 (x)
674     #define ecb_bswap64(x) __builtin_bswap64 (x)
675 root 1.164 #elif _MSC_VER
676     #include <stdlib.h>
677     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
678     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
679     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
680 root 1.13 #else
681 root 1.151 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
682     ecb_function_ ecb_const uint16_t
683 root 1.50 ecb_bswap16 (uint16_t x)
684 root 1.49 {
685 root 1.50 return ecb_rotl16 (x, 8);
686 root 1.49 }
687    
688 root 1.151 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
689     ecb_function_ ecb_const uint32_t
690 root 1.35 ecb_bswap32 (uint32_t x)
691     {
692 root 1.50 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
693 root 1.35 }
694    
695 root 1.151 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
696     ecb_function_ ecb_const uint64_t
697 root 1.49 ecb_bswap64 (uint64_t x)
698 root 1.35 {
699 root 1.50 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
700 root 1.35 }
701 root 1.13 #endif
702    
703 sf-exg 1.138 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
704 root 1.35 #define ecb_unreachable() __builtin_unreachable ()
705 root 1.13 #else
706 root 1.35 /* this seems to work fine, but gcc always emits a warning for it :/ */
707 root 1.151 ecb_inline ecb_noreturn void ecb_unreachable (void);
708     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
709 root 1.13 #endif
710    
711 root 1.41 /* try to tell the compiler that some condition is definitely true */
712 root 1.100 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
713 root 1.41
714 root 1.174 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
715     ecb_inline ecb_const uint32_t
716 root 1.23 ecb_byteorder_helper (void)
717 root 1.3 {
718 root 1.98 /* the union code still generates code under pressure in gcc, */
719 sf-exg 1.111 /* but less than using pointers, and always seems to */
720 root 1.98 /* successfully return a constant. */
721     /* the reason why we have this horrible preprocessor mess */
722 root 1.99 /* is to avoid it in all cases, at least on common architectures */
723 sf-exg 1.111 /* or when using a recent enough gcc version (>= 4.6) */
724 root 1.174 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
725     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
726     #define ECB_LITTLE_ENDIAN 1
727     return 0x44332211;
728     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
729     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
730     #define ECB_BIG_ENDIAN 1
731     return 0x11223344;
732 root 1.98 #else
733     union
734     {
735 root 1.174 uint8_t c[4];
736     uint32_t u;
737     } u = { 0x11, 0x22, 0x33, 0x44 };
738     return u.u;
739 root 1.98 #endif
740 root 1.3 }
741    
742 root 1.151 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
743 root 1.174 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
744 root 1.151 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
745 root 1.174 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
746 root 1.3
747 root 1.180 /*****************************************************************************/
748     /* unaligned load/store */
749    
750     ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
751     ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
752     ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
753    
754     ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
755     ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
756     ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
757    
758     ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
759     ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
760     ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
761    
762     ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
763     ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
764     ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
765    
766     ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
767     ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
768     ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
769    
770     ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
771     ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
772     ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
773    
774     ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
775     ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
776     ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
777    
778     ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
779     ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
780     ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
781    
782     ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
783     ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
784     ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
785 sf-exg 1.196
786 root 1.180 ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
787     ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
788     ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
789    
790 root 1.186 #if ECB_CPP
791 root 1.180
792     inline uint8_t ecb_bswap (uint8_t v) { return v; }
793     inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
794     inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
795     inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
796    
797     template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
798     template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
799     template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
800     template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
801     template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
802 root 1.184 template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
803 root 1.180 template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
804     template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
805    
806     template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
807     template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
808     template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
809     template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
810     template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
811 root 1.184 template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
812 root 1.180 template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
813     template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
814    
815     #endif
816    
817     /*****************************************************************************/
818 root 1.199 /* pointer/integer hashing */
819    
820     /* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
821     ecb_function_ uint32_t ecb_mix32 (uint32_t v);
822     ecb_function_ uint32_t ecb_mix32 (uint32_t v)
823     {
824     v ^= v >> 16; v *= 0x7feb352dU;
825     v ^= v >> 15; v *= 0x846ca68bU;
826     v ^= v >> 16;
827     return v;
828     }
829    
830     ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
831     ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
832     {
833     v ^= v >> 16 ; v *= 0x43021123U;
834     v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
835     v ^= v >> 16 ;
836     return v;
837     }
838    
839     /* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
840     ecb_function_ uint64_t ecb_mix64 (uint64_t v);
841     ecb_function_ uint64_t ecb_mix64 (uint64_t v)
842     {
843     v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
844     v ^= v >> 27; v *= 0x94d049bb133111ebU;
845     v ^= v >> 31;
846     return v;
847     }
848    
849     ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
850     ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
851     {
852     v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
853     v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
854     v ^= v >> 30 ^ v >> 60;
855     return v;
856     }
857    
858     ecb_function_ uintptr_t ecb_ptrmix (void *p);
859     ecb_function_ uintptr_t ecb_ptrmix (void *p)
860     {
861     #if ECB_PTRSIZE <= 4
862     return ecb_mix32 ((uint32_t)p);
863     #else
864     return ecb_mix64 ((uint64_t)p);
865     #endif
866     }
867    
868     ecb_function_ void *ecb_ptrunmix (uintptr_t v);
869     ecb_function_ void *ecb_ptrunmix (uintptr_t v)
870     {
871     #if ECB_PTRSIZE <= 4
872     return (void *)ecb_unmix32 (v);
873     #else
874     return (void *)ecb_unmix64 (v);
875     #endif
876     }
877    
878     #if ECB_CPP
879    
880     template<typename T>
881     inline uintptr_t ecb_ptrmix (T *p)
882     {
883     return ecb_ptrmix (static_cast<void *>(p));
884     }
885    
886     template<typename T>
887     inline T *ecb_ptrunmix (uintptr_t v)
888     {
889     return static_cast<T *>(ecb_ptrunmix (v));
890     }
891    
892     #endif
893    
894     /*****************************************************************************/
895 root 1.202 /* gray code */
896    
897     ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); }
898     ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); }
899     ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); }
900     ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); }
901    
902     ecb_function_ uint8_t ecb_gray8_decode (uint8_t g)
903     {
904 root 1.203 g ^= g >> 1;
905     g ^= g >> 2;
906     g ^= g >> 4;
907    
908 root 1.202 return g;
909     }
910    
911     ecb_function_ uint16_t ecb_gray16_decode (uint16_t g)
912     {
913 root 1.203 g ^= g >> 1;
914     g ^= g >> 2;
915     g ^= g >> 4;
916     g ^= g >> 8;
917    
918 root 1.202 return g;
919     }
920    
921     ecb_function_ uint32_t ecb_gray32_decode (uint32_t g)
922     {
923 root 1.203 g ^= g >> 1;
924     g ^= g >> 2;
925     g ^= g >> 4;
926     g ^= g >> 8;
927     g ^= g >> 16;
928    
929 root 1.202 return g;
930     }
931    
932     ecb_function_ uint64_t ecb_gray64_decode (uint64_t g)
933     {
934 root 1.203 g ^= g >> 1;
935     g ^= g >> 2;
936     g ^= g >> 4;
937     g ^= g >> 8;
938     g ^= g >> 16;
939     g ^= g >> 32;
940    
941 root 1.202 return g;
942     }
943    
944     #if ECB_CPP
945    
946     ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); }
947     ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); }
948     ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); }
949     ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); }
950    
951     ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); }
952     ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); }
953     ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); }
954     ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); }
955    
956     #endif
957    
958     /*****************************************************************************/
959 root 1.204 /* 2d hilbert curves */
960    
961     /* algorithm from the book Hacker's Delight, modified to not */
962     /* run into undefined behaviour for n==16 */
963     static uint32_t
964     ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
965     {
966     uint32_t comp, swap, cs, t, sr;
967    
968     /* pad s on the left (unused) bits with 01 (no change groups) */
969     s |= 0x55555555U << n << n;
970     /* "s shift right" */
971     sr = (s >> 1) & 0x55555555U;
972     /* compute complement and swap info in two-bit groups */
973     cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
974    
975     /* parallel prefix xor op to propagate both complement
976     * and swap info together from left to right (there is
977     * no step "cs ^= cs >> 1", so in effect it computes
978     * two independent parallel prefix operations on two
979     * interleaved sets of sixteen bits).
980     */
981     cs ^= cs >> 2;
982     cs ^= cs >> 4;
983     cs ^= cs >> 8;
984     cs ^= cs >> 16;
985    
986     /* separate swap and complement bits */
987     swap = cs & 0x55555555U;
988     comp = (cs >> 1) & 0x55555555U;
989    
990     /* calculate coordinates in odd and even bit positions */
991     t = (s & swap) ^ comp;
992     s = s ^ sr ^ t ^ (t << 1);
993    
994     /* unpad/clear out any junk on the left */
995     s = s & ((1 << n << n) - 1);
996    
997     /* Now "unshuffle" to separate the x and y bits. */
998     t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
999     t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1000     t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1001     t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1002    
1003     /* now s contains two 16-bit coordinates */
1004     return s;
1005     }
1006    
1007     /* 64 bit, a straightforward extension to the 32 bit case */
1008     static uint64_t
1009     ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1010     {
1011     uint64_t comp, swap, cs, t, sr;
1012    
1013     /* pad s on the left (unused) bits with 01 (no change groups) */
1014     s |= 0x5555555555555555U << n << n;
1015     /* "s shift right" */
1016     sr = (s >> 1) & 0x5555555555555555U;
1017     /* compute complement and swap info in two-bit groups */
1018     cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1019    
1020     /* parallel prefix xor op to propagate both complement
1021     * and swap info together from left to right (there is
1022     * no step "cs ^= cs >> 1", so in effect it computes
1023     * two independent parallel prefix operations on two
1024     * interleaved sets of thirty-two bits).
1025     */
1026     cs ^= cs >> 2;
1027     cs ^= cs >> 4;
1028     cs ^= cs >> 8;
1029     cs ^= cs >> 16;
1030     cs ^= cs >> 32;
1031    
1032     /* separate swap and complement bits */
1033     swap = cs & 0x5555555555555555U;
1034     comp = (cs >> 1) & 0x5555555555555555U;
1035    
1036     /* calculate coordinates in odd and even bit positions */
1037     t = (s & swap) ^ comp;
1038     s = s ^ sr ^ t ^ (t << 1);
1039    
1040     /* unpad/clear out any junk on the left */
1041     s = s & ((1 << n << n) - 1);
1042    
1043     /* Now "unshuffle" to separate the x and y bits. */
1044     t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1045     t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1046     t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1047     t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1048     t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1049    
1050     /* now s contains two 32-bit coordinates */
1051     return s;
1052     }
1053    
1054     /* algorithm from the book Hacker's Delight, but a similar algorithm*/
1055     /* is given in https://doi.org/10.1002/spe.4380160103 */
1056     /* this has been slightly improved over the original version */
1057     ecb_function_ uint32_t
1058     ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1059     {
1060     uint32_t row;
1061     uint32_t state = 0;
1062     uint32_t s = 0;
1063    
1064     do
1065     {
1066     --n;
1067    
1068     row = 4 * state
1069     | (2 & (xy >> n >> 15))
1070     | (1 & (xy >> n ));
1071    
1072     /* these funky constants are lookup tables for two-bit values */
1073     s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1074     state = (0x8fe65831U >> 2 * row) & 3;
1075     }
1076     while (n > 0);
1077    
1078     return s;
1079     }
1080    
1081     /* 64 bit, essentially the same as 32 bit */
1082     ecb_function_ uint64_t
1083     ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1084     {
1085     uint32_t row;
1086     uint32_t state = 0;
1087     uint64_t s = 0;
1088    
1089     do
1090     {
1091     --n;
1092    
1093     row = 4 * state
1094     | (2 & (xy >> n >> 31))
1095     | (1 & (xy >> n ));
1096    
1097     /* these funky constants are lookup tables for two-bit values */
1098     s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1099     state = (0x8fe65831U >> 2 * row) & 3;
1100     }
1101     while (n > 0);
1102    
1103     return s;
1104     }
1105    
1106     /*****************************************************************************/
1107 root 1.188 /* division */
1108 root 1.180
1109 root 1.39 #if ECB_GCC_VERSION(3,0) || ECB_C99
1110 root 1.188 /* C99 tightened the definition of %, so we can use a more efficient version */
1111 root 1.35 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1112 root 1.31 #else
1113 root 1.35 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1114 root 1.31 #endif
1115 root 1.21
1116 root 1.149 #if ECB_CPP
1117 sf-exg 1.68 template<typename T>
1118     static inline T ecb_div_rd (T val, T div)
1119     {
1120     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1121     }
1122     template<typename T>
1123     static inline T ecb_div_ru (T val, T div)
1124     {
1125     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1126     }
1127     #else
1128     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1129     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1130     #endif
1131 sf-exg 1.67
1132 root 1.188 /*****************************************************************************/
1133     /* array length */
1134    
1135 root 1.5 #if ecb_cplusplus_does_not_suck
1136 root 1.40 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1137 root 1.35 template<typename T, int N>
1138     static inline int ecb_array_length (const T (&arr)[N])
1139     {
1140     return N;
1141     }
1142 root 1.5 #else
1143 root 1.35 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1144 root 1.5 #endif
1145    
1146 root 1.180 /*****************************************************************************/
1147 root 1.188 /* IEEE 754-2008 half float conversions */
1148 root 1.180
1149 root 1.170 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1150 root 1.167 ecb_function_ ecb_const uint32_t
1151 root 1.170 ecb_binary16_to_binary32 (uint32_t x)
1152 root 1.167 {
1153     unsigned int s = (x & 0x8000) << (31 - 15);
1154     int e = (x >> 10) & 0x001f;
1155     unsigned int m = x & 0x03ff;
1156    
1157     if (ecb_expect_false (e == 31))
1158     /* infinity or NaN */
1159     e = 255 - (127 - 15);
1160     else if (ecb_expect_false (!e))
1161     {
1162     if (ecb_expect_true (!m))
1163     /* zero, handled by code below by forcing e to 0 */
1164     e = 0 - (127 - 15);
1165     else
1166     {
1167     /* subnormal, renormalise */
1168     unsigned int s = 10 - ecb_ld32 (m);
1169    
1170     m = (m << s) & 0x3ff; /* mask implicit bit */
1171     e -= s - 1;
1172     }
1173     }
1174    
1175     /* e and m now are normalised, or zero, (or inf or nan) */
1176     e += 127 - 15;
1177    
1178     return s | (e << 23) | (m << (23 - 10));
1179     }
1180    
1181     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1182     ecb_function_ ecb_const uint16_t
1183     ecb_binary32_to_binary16 (uint32_t x)
1184     {
1185     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1186 root 1.188 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1187 root 1.167 unsigned int m = x & 0x007fffff;
1188    
1189     x &= 0x7fffffff;
1190    
1191     /* if it's within range of binary16 normals, use fast path */
1192     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1193     {
1194     /* mantissa round-to-even */
1195     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1196    
1197     /* handle overflow */
1198     if (ecb_expect_false (m >= 0x00800000))
1199     {
1200     m >>= 1;
1201     e += 1;
1202     }
1203    
1204     return s | (e << 10) | (m >> (23 - 10));
1205     }
1206    
1207     /* handle large numbers and infinity */
1208     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1209     return s | 0x7c00;
1210    
1211 root 1.169 /* handle zero, subnormals and small numbers */
1212 root 1.167 if (ecb_expect_true (x < 0x38800000))
1213     {
1214     /* zero */
1215     if (ecb_expect_true (!x))
1216     return s;
1217    
1218     /* handle subnormals */
1219    
1220 root 1.169 /* too small, will be zero */
1221     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1222     return s;
1223    
1224 root 1.167 m |= 0x00800000; /* make implicit bit explicit */
1225    
1226     /* very tricky - we need to round to the nearest e (+10) bit value */
1227     {
1228     unsigned int bits = 14 - e;
1229     unsigned int half = (1 << (bits - 1)) - 1;
1230     unsigned int even = (m >> bits) & 1;
1231    
1232     /* if this overflows, we will end up with a normalised number */
1233     m = (m + half + even) >> bits;
1234     }
1235    
1236     return s | m;
1237     }
1238    
1239     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1240     m >>= 13;
1241    
1242     return s | 0x7c00 | m | !m;
1243     }
1244    
1245 root 1.104 /*******************************************************************************/
1246 root 1.191 /* fast integer to ascii */
1247    
1248 root 1.195 /*
1249     * This code is pretty complicated because it is general. The idea behind it,
1250     * however, is pretty simple: first, the number is multiplied with a scaling
1251 root 1.197 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1252 root 1.195 * number with the first digit in the upper bits.
1253     * Then this digit is converted to text and masked out. The resulting number
1254     * is then multiplied by 10, by multiplying the fixed point representation
1255     * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1256     * format becomes 5.27, 6.26 and so on.
1257     * The rest involves only advancing the pointer if we already generated a
1258     * non-zero digit, so leading zeroes are overwritten.
1259     */
1260    
1261 root 1.201 /* simply return a mask with "bits" bits set */
1262 root 1.191 #define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1263    
1264 root 1.200 /* oputput a single digit. maskvalue is 10**digitidx */
1265 root 1.191 #define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1266     if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1267     { \
1268     char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1269     *ptr = digit + '0'; /* output it */ \
1270     nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1271     ptr += nz; /* output digit only if non-zero digit seen */ \
1272     x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1273     }
1274    
1275 root 1.200 /* convert integer to fixed point format and multiply out digits, highest first */
1276     /* requires magic constants: max. digits and number of bits after the decimal point */
1277 root 1.191 #define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1278     ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1279     { \
1280     char nz = lz; /* non-zero digit seen? */ \
1281     /* convert to x.bits fixed-point */ \
1282     type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1283     /* output up to 10 digits */ \
1284     ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1285     ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1286     ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1287     ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1288     ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1289     ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1290     ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1291     ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1292     ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1293     ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1294     return ptr; \
1295     }
1296    
1297 root 1.200 /* predefined versions of the above, for various digits */
1298     /* ecb_i2a_xN = almost N digits, limit defined by macro */
1299     /* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1300     /* ecb_i2a_0N = exactly N digits, including leading zeroes */
1301    
1302     /* non-leading-zero versions, limited range */
1303     #define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1304     #define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1305 root 1.191 ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1306     ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1307    
1308 root 1.200 /* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1309 root 1.194 ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1310     ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1311     ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1312     ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1313     ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1314     ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1315     ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1316     ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1317 root 1.191
1318 root 1.200 /* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1319 root 1.194 ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1320     ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1321     ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1322     ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1323     ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1324     ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1325     ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1326     ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1327 root 1.191
1328 root 1.192 #define ECB_I2A_I32_DIGITS 11
1329     #define ECB_I2A_U32_DIGITS 10
1330     #define ECB_I2A_I64_DIGITS 20
1331 root 1.194 #define ECB_I2A_U64_DIGITS 21
1332 root 1.193 #define ECB_I2A_MAX_DIGITS 21
1333 root 1.192
1334 root 1.191 ecb_inline char *
1335     ecb_i2a_u32 (char *ptr, uint32_t u)
1336     {
1337     #if ECB_64BIT_NATIVE
1338     if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1339     ptr = ecb_i2a_x10 (ptr, u);
1340 root 1.200 else /* x10 almost, but not fully, covers 32 bit */
1341 root 1.191 {
1342     uint32_t u1 = u % 1000000000;
1343     uint32_t u2 = u / 1000000000;
1344    
1345     *ptr++ = u2 + '0';
1346     ptr = ecb_i2a_09 (ptr, u1);
1347     }
1348     #else
1349     if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1350     ecb_i2a_x5 (ptr, u);
1351     else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1352     {
1353     uint32_t u1 = u % 10000;
1354     uint32_t u2 = u / 10000;
1355    
1356     ptr = ecb_i2a_x5 (ptr, u2);
1357     ptr = ecb_i2a_04 (ptr, u1);
1358     }
1359     else
1360     {
1361     uint32_t u1 = u % 10000;
1362     uint32_t ua = u / 10000;
1363     uint32_t u2 = ua % 10000;
1364     uint32_t u3 = ua / 10000;
1365    
1366     ptr = ecb_i2a_2 (ptr, u3);
1367     ptr = ecb_i2a_04 (ptr, u2);
1368     ptr = ecb_i2a_04 (ptr, u1);
1369     }
1370     #endif
1371    
1372     return ptr;
1373     }
1374    
1375     ecb_inline char *
1376     ecb_i2a_i32 (char *ptr, int32_t v)
1377     {
1378     *ptr = '-'; ptr += v < 0;
1379     uint32_t u = v < 0 ? -(uint32_t)v : v;
1380    
1381     #if ECB_64BIT_NATIVE
1382 root 1.200 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1383 root 1.191 #else
1384     ptr = ecb_i2a_u32 (ptr, u);
1385     #endif
1386    
1387     return ptr;
1388     }
1389    
1390     ecb_inline char *
1391     ecb_i2a_u64 (char *ptr, uint64_t u)
1392     {
1393     #if ECB_64BIT_NATIVE
1394     if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1395     ptr = ecb_i2a_x10 (ptr, u);
1396     else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1397     {
1398     uint64_t u1 = u % 1000000000;
1399     uint64_t u2 = u / 1000000000;
1400    
1401     ptr = ecb_i2a_x10 (ptr, u2);
1402     ptr = ecb_i2a_09 (ptr, u1);
1403     }
1404     else
1405     {
1406     uint64_t u1 = u % 1000000000;
1407     uint64_t ua = u / 1000000000;
1408     uint64_t u2 = ua % 1000000000;
1409     uint64_t u3 = ua / 1000000000;
1410    
1411     ptr = ecb_i2a_2 (ptr, u3);
1412     ptr = ecb_i2a_09 (ptr, u2);
1413     ptr = ecb_i2a_09 (ptr, u1);
1414     }
1415     #else
1416     if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1417     ptr = ecb_i2a_x5 (ptr, u);
1418     else
1419     {
1420     uint64_t u1 = u % 10000;
1421     uint64_t u2 = u / 10000;
1422    
1423     ptr = ecb_i2a_u64 (ptr, u2);
1424     ptr = ecb_i2a_04 (ptr, u1);
1425     }
1426     #endif
1427    
1428     return ptr;
1429     }
1430    
1431     ecb_inline char *
1432     ecb_i2a_i64 (char *ptr, int64_t v)
1433     {
1434     *ptr = '-'; ptr += v < 0;
1435     uint64_t u = v < 0 ? -(uint64_t)v : v;
1436    
1437     #if ECB_64BIT_NATIVE
1438     if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1439     ptr = ecb_i2a_x10 (ptr, u);
1440     else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1441     {
1442     uint64_t u1 = u % 1000000000;
1443     uint64_t u2 = u / 1000000000;
1444    
1445     ptr = ecb_i2a_x10 (ptr, u2);
1446     ptr = ecb_i2a_09 (ptr, u1);
1447     }
1448     else
1449     {
1450     uint64_t u1 = u % 1000000000;
1451     uint64_t ua = u / 1000000000;
1452     uint64_t u2 = ua % 1000000000;
1453     uint64_t u3 = ua / 1000000000;
1454    
1455 root 1.200 /* 2**31 is 19 digits, so the top is exactly one digit */
1456 root 1.191 *ptr++ = u3 + '0';
1457     ptr = ecb_i2a_09 (ptr, u2);
1458     ptr = ecb_i2a_09 (ptr, u1);
1459     }
1460     #else
1461     ptr = ecb_i2a_u64 (ptr, u);
1462     #endif
1463    
1464     return ptr;
1465     }
1466    
1467     /*******************************************************************************/
1468 root 1.104 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1469    
1470     /* basically, everything uses "ieee pure-endian" floating point numbers */
1471     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1472     #if 0 \
1473     || __i386 || __i386__ \
1474 sf-exg 1.159 || ECB_GCC_AMD64 \
1475 root 1.104 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1476     || defined __s390__ || defined __s390x__ \
1477     || defined __mips__ \
1478     || defined __alpha__ \
1479     || defined __hppa__ \
1480     || defined __ia64__ \
1481 root 1.117 || defined __m68k__ \
1482     || defined __m88k__ \
1483     || defined __sh__ \
1484 sf-exg 1.159 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1485 root 1.131 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1486 root 1.132 || defined __aarch64__
1487 root 1.104 #define ECB_STDFP 1
1488 root 1.102 #else
1489 root 1.104 #define ECB_STDFP 0
1490 root 1.102 #endif
1491    
1492 root 1.104 #ifndef ECB_NO_LIBM
1493 root 1.103
1494 root 1.121 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1495    
1496 root 1.122 /* only the oldest of old doesn't have this one. solaris. */
1497     #ifdef INFINITY
1498     #define ECB_INFINITY INFINITY
1499     #else
1500     #define ECB_INFINITY HUGE_VAL
1501     #endif
1502    
1503     #ifdef NAN
1504 root 1.121 #define ECB_NAN NAN
1505     #else
1506 root 1.122 #define ECB_NAN ECB_INFINITY
1507 root 1.121 #endif
1508 root 1.120
1509 root 1.148 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1510 root 1.150 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1511 sf-exg 1.163 #define ecb_frexpf(x,e) frexpf ((x), (e))
1512 root 1.148 #else
1513 sf-exg 1.161 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1514 sf-exg 1.163 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1515 root 1.148 #endif
1516    
1517 root 1.104 /* convert a float to ieee single/binary32 */
1518 root 1.151 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1519     ecb_function_ ecb_const uint32_t
1520 root 1.103 ecb_float_to_binary32 (float x)
1521     {
1522     uint32_t r;
1523    
1524     #if ECB_STDFP
1525 root 1.104 memcpy (&r, &x, 4);
1526 root 1.103 #else
1527 root 1.105 /* slow emulation, works for anything but -0 */
1528 root 1.103 uint32_t m;
1529     int e;
1530    
1531 root 1.108 if (x == 0e0f ) return 0x00000000U;
1532 root 1.103 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1533     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1534 root 1.105 if (x != x ) return 0x7fbfffffU;
1535 root 1.103
1536 sf-exg 1.163 m = ecb_frexpf (x, &e) * 0x1000000U;
1537 root 1.103
1538     r = m & 0x80000000U;
1539    
1540     if (r)
1541     m = -m;
1542    
1543 root 1.108 if (e <= -126)
1544 root 1.103 {
1545     m &= 0xffffffU;
1546     m >>= (-125 - e);
1547     e = -126;
1548     }
1549    
1550     r |= (e + 126) << 23;
1551     r |= m & 0x7fffffU;
1552     #endif
1553    
1554     return r;
1555     }
1556    
1557 root 1.104 /* converts an ieee single/binary32 to a float */
1558 root 1.151 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1559     ecb_function_ ecb_const float
1560 root 1.103 ecb_binary32_to_float (uint32_t x)
1561     {
1562     float r;
1563    
1564     #if ECB_STDFP
1565 root 1.104 memcpy (&r, &x, 4);
1566 root 1.103 #else
1567     /* emulation, only works for normals and subnormals and +0 */
1568     int neg = x >> 31;
1569     int e = (x >> 23) & 0xffU;
1570    
1571     x &= 0x7fffffU;
1572    
1573     if (e)
1574     x |= 0x800000U;
1575 root 1.104 else
1576     e = 1;
1577 root 1.103
1578     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1579 root 1.148 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1580 root 1.103
1581     r = neg ? -r : r;
1582     #endif
1583    
1584     return r;
1585     }
1586    
1587 root 1.104 /* convert a double to ieee double/binary64 */
1588 root 1.151 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1589     ecb_function_ ecb_const uint64_t
1590 root 1.103 ecb_double_to_binary64 (double x)
1591     {
1592 root 1.104 uint64_t r;
1593    
1594     #if ECB_STDFP
1595     memcpy (&r, &x, 8);
1596     #else
1597 root 1.105 /* slow emulation, works for anything but -0 */
1598 root 1.104 uint64_t m;
1599     int e;
1600    
1601 root 1.108 if (x == 0e0 ) return 0x0000000000000000U;
1602 root 1.104 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1603     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1604 root 1.105 if (x != x ) return 0X7ff7ffffffffffffU;
1605 root 1.104
1606     m = frexp (x, &e) * 0x20000000000000U;
1607    
1608     r = m & 0x8000000000000000;;
1609    
1610     if (r)
1611     m = -m;
1612    
1613 root 1.108 if (e <= -1022)
1614 root 1.104 {
1615     m &= 0x1fffffffffffffU;
1616     m >>= (-1021 - e);
1617     e = -1022;
1618     }
1619    
1620     r |= ((uint64_t)(e + 1022)) << 52;
1621     r |= m & 0xfffffffffffffU;
1622     #endif
1623    
1624     return r;
1625     }
1626    
1627     /* converts an ieee double/binary64 to a double */
1628 root 1.151 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1629     ecb_function_ ecb_const double
1630 root 1.104 ecb_binary64_to_double (uint64_t x)
1631     {
1632     double r;
1633    
1634     #if ECB_STDFP
1635     memcpy (&r, &x, 8);
1636     #else
1637     /* emulation, only works for normals and subnormals and +0 */
1638     int neg = x >> 63;
1639     int e = (x >> 52) & 0x7ffU;
1640    
1641     x &= 0xfffffffffffffU;
1642    
1643     if (e)
1644     x |= 0x10000000000000U;
1645     else
1646     e = 1;
1647    
1648 root 1.107 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1649 root 1.108 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1650 root 1.104
1651     r = neg ? -r : r;
1652     #endif
1653    
1654     return r;
1655 root 1.103 }
1656    
1657 root 1.167 /* convert a float to ieee half/binary16 */
1658     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1659     ecb_function_ ecb_const uint16_t
1660     ecb_float_to_binary16 (float x)
1661     {
1662     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1663     }
1664    
1665     /* convert an ieee half/binary16 to float */
1666     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1667     ecb_function_ ecb_const float
1668     ecb_binary16_to_float (uint16_t x)
1669     {
1670     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1671     }
1672    
1673 root 1.103 #endif
1674 root 1.102
1675 root 1.1 #endif
1676