ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
Revision: 1.215
Committed: Fri Mar 25 15:51:15 2022 UTC (2 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.214: +39 -51 lines
Log Message:
do not use ecb_cosnt on inline, do not declare inline functions, use ecb_const on const ecb_function_s

File Contents

# User Rev Content
1 root 1.1 /*
2 root 1.17 * libecb - http://software.schmorp.de/pkg/libecb
3 root 1.1 *
4 root 1.189 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 root 1.7 * Copyright (©) 2011 Emanuele Giaquinta
6 root 1.1 * All rights reserved.
7     *
8     * Redistribution and use in source and binary forms, with or without modifica-
9     * tion, are permitted provided that the following conditions are met:
10     *
11     * 1. Redistributions of source code must retain the above copyright notice,
12     * this list of conditions and the following disclaimer.
13     *
14     * 2. Redistributions in binary form must reproduce the above copyright
15     * notice, this list of conditions and the following disclaimer in the
16     * documentation and/or other materials provided with the distribution.
17     *
18     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
20     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
21     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
22     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27     * OF THE POSSIBILITY OF SUCH DAMAGE.
28 root 1.133 *
29     * Alternatively, the contents of this file may be used under the terms of
30     * the GNU General Public License ("GPL") version 2 or any later version,
31     * in which case the provisions of the GPL are applicable instead of
32     * the above. If you wish to allow the use of your version of this file
33     * only under the terms of the GPL and not to allow others to use your
34     * version of this file under the BSD license, indicate your decision
35     * by deleting the provisions above and replace them with the notice
36     * and other provisions required by the GPL. If you do not delete the
37     * provisions above, a recipient may use your version of this file under
38     * either the BSD or the GPL.
39 root 1.1 */
40    
41     #ifndef ECB_H
42     #define ECB_H
43    
44 root 1.87 /* 16 bits major, 16 bits minor */
45 root 1.204 #define ECB_VERSION 0x0001000c
46 root 1.87
47 root 1.184 #include <string.h> /* for memcpy */
48    
49 root 1.187 #if defined (_WIN32) && !defined (__MINGW32__)
50 root 1.44 typedef signed char int8_t;
51     typedef unsigned char uint8_t;
52 root 1.180 typedef signed char int_fast8_t;
53     typedef unsigned char uint_fast8_t;
54 root 1.44 typedef signed short int16_t;
55     typedef unsigned short uint16_t;
56 root 1.180 typedef signed int int_fast16_t;
57     typedef unsigned int uint_fast16_t;
58 root 1.44 typedef signed int int32_t;
59     typedef unsigned int uint32_t;
60 root 1.180 typedef signed int int_fast32_t;
61     typedef unsigned int uint_fast32_t;
62 root 1.44 #if __GNUC__
63     typedef signed long long int64_t;
64     typedef unsigned long long uint64_t;
65 root 1.51 #else /* _MSC_VER || __BORLANDC__ */
66 root 1.44 typedef signed __int64 int64_t;
67     typedef unsigned __int64 uint64_t;
68     #endif
69 root 1.180 typedef int64_t int_fast64_t;
70     typedef uint64_t uint_fast64_t;
71 root 1.87 #ifdef _WIN64
72     #define ECB_PTRSIZE 8
73     typedef uint64_t uintptr_t;
74     typedef int64_t intptr_t;
75     #else
76     #define ECB_PTRSIZE 4
77     typedef uint32_t uintptr_t;
78     typedef int32_t intptr_t;
79     #endif
80 root 1.44 #else
81     #include <inttypes.h>
82 root 1.173 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
83 root 1.87 #define ECB_PTRSIZE 8
84     #else
85     #define ECB_PTRSIZE 4
86     #endif
87 root 1.44 #endif
88 root 1.6
89 sf-exg 1.159 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90     #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91    
92 root 1.179 #ifndef ECB_OPTIMIZE_SIZE
93     #if __OPTIMIZE_SIZE__
94     #define ECB_OPTIMIZE_SIZE 1
95     #else
96     #define ECB_OPTIMIZE_SIZE 0
97     #endif
98     #endif
99    
100 root 1.114 /* work around x32 idiocy by defining proper macros */
101 sf-exg 1.159 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
102 root 1.119 #if _ILP32
103 root 1.115 #define ECB_AMD64_X32 1
104 root 1.114 #else
105 root 1.115 #define ECB_AMD64 1
106 root 1.114 #endif
107     #endif
108    
109 root 1.189 #if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110     #define ECB_64BIT_NATIVE 1
111     #else
112     #define ECB_64BIT_NATIVE 0
113     #endif
114    
115 root 1.12 /* many compilers define _GNUC_ to some versions but then only implement
116     * what their idiot authors think are the "more important" extensions,
117 sf-exg 1.59 * causing enormous grief in return for some better fake benchmark numbers.
118 root 1.18 * or so.
119 root 1.12 * we try to detect these and simply assume they are not gcc - if they have
120     * an issue with that they should have done it right in the first place.
121     */
122 root 1.137 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
123     #define ECB_GCC_VERSION(major,minor) 0
124     #else
125     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
126 root 1.12 #endif
127 root 1.1
128 sf-exg 1.138 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
129    
130 root 1.147 #if __clang__ && defined __has_builtin
131     #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
132 sf-exg 1.138 #else
133     #define ECB_CLANG_BUILTIN(x) 0
134     #endif
135    
136 root 1.147 #if __clang__ && defined __has_extension
137     #define ECB_CLANG_EXTENSION(x) __has_extension (x)
138 sf-exg 1.140 #else
139     #define ECB_CLANG_EXTENSION(x) 0
140     #endif
141    
142 root 1.91 #define ECB_CPP (__cplusplus+0)
143     #define ECB_CPP11 (__cplusplus >= 201103L)
144 root 1.177 #define ECB_CPP14 (__cplusplus >= 201402L)
145     #define ECB_CPP17 (__cplusplus >= 201703L)
146 root 1.90
147 root 1.102 #if ECB_CPP
148 root 1.127 #define ECB_C 0
149     #define ECB_STDC_VERSION 0
150     #else
151     #define ECB_C 1
152     #define ECB_STDC_VERSION __STDC_VERSION__
153     #endif
154    
155     #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
156     #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157 root 1.177 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
158 root 1.127
159     #if ECB_CPP
160 root 1.102 #define ECB_EXTERN_C extern "C"
161     #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
162     #define ECB_EXTERN_C_END }
163     #else
164     #define ECB_EXTERN_C extern
165     #define ECB_EXTERN_C_BEG
166     #define ECB_EXTERN_C_END
167     #endif
168    
169 root 1.52 /*****************************************************************************/
170    
171 root 1.58 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
172     /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
173    
174 root 1.79 #if ECB_NO_THREADS
175 root 1.95 #define ECB_NO_SMP 1
176 root 1.79 #endif
177    
178 root 1.93 #if ECB_NO_SMP
179 root 1.64 #define ECB_MEMORY_FENCE do { } while (0)
180 root 1.58 #endif
181    
182 sf-exg 1.165 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183     #if __xlC__ && ECB_CPP
184     #include <builtins.h>
185     #endif
186    
187 root 1.171 #if 1400 <= _MSC_VER
188     #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189     #endif
190    
191 root 1.52 #ifndef ECB_MEMORY_FENCE
192 root 1.85 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 root 1.178 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
194 root 1.73 #if __i386 || __i386__
195 root 1.54 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
196 root 1.94 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
197 root 1.176 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
198 sf-exg 1.159 #elif ECB_GCC_AMD64
199 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
200     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
201 root 1.176 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
202 root 1.63 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
203 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 root 1.175 #elif defined __ARM_ARCH_2__ \
205     || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206     || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207     || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208     || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209     || defined __ARM_ARCH_5TEJ__
210     /* should not need any, unless running old code on newer cpu - arm doesn't support that */
211 root 1.85 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
212 root 1.175 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213     || defined __ARM_ARCH_6T2__
214 root 1.84 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
215 root 1.85 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
216 root 1.175 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
217 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
218 root 1.129 #elif __aarch64__
219     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
220 root 1.166 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
221 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
222     #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
223     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
224 root 1.85 #elif defined __s390__ || defined __s390x__
225 root 1.77 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
226 root 1.85 #elif defined __mips__
227 root 1.118 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
228 root 1.116 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
229     #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
230 root 1.86 #elif defined __alpha__
231 root 1.94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
232     #elif defined __hppa__
233     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
234     #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
235     #elif defined __ia64__
236     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
237 root 1.117 #elif defined __m68k__
238     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
239     #elif defined __m88k__
240     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
241     #elif defined __sh__
242     #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
243 root 1.52 #endif
244     #endif
245     #endif
246    
247     #ifndef ECB_MEMORY_FENCE
248 root 1.93 #if ECB_GCC_VERSION(4,7)
249 root 1.97 /* see comment below (stdatomic.h) about the C11 memory model. */
250 root 1.93 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
251 root 1.128 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
252     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 root 1.190 #undef ECB_MEMORY_FENCE_RELAXED
254 root 1.178 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
255 root 1.110
256 sf-exg 1.140 #elif ECB_CLANG_EXTENSION(c_atomic)
257     /* see comment below (stdatomic.h) about the C11 memory model. */
258     #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
259     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
260     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 root 1.190 #undef ECB_MEMORY_FENCE_RELAXED
262 root 1.178 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
263 root 1.110
264 root 1.93 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
265 root 1.52 #define ECB_MEMORY_FENCE __sync_synchronize ()
266 root 1.126 #elif _MSC_VER >= 1500 /* VC++ 2008 */
267     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
268     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
269     #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
270     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
271     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
272 root 1.57 #elif _MSC_VER >= 1400 /* VC++ 2005 */
273     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
274     #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
275     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
276     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
277 root 1.85 #elif defined _WIN32
278 root 1.55 #include <WinNT.h>
279 root 1.57 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
280 root 1.72 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
281     #include <mbarrier.h>
282 root 1.178 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
283     #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
284     #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285     #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
286 root 1.82 #elif __xlC__
287 root 1.83 #define ECB_MEMORY_FENCE __sync ()
288 root 1.52 #endif
289     #endif
290    
291 root 1.53 #ifndef ECB_MEMORY_FENCE
292 root 1.94 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
293     /* we assume that these memory fences work on all variables/all memory accesses, */
294     /* not just C11 atomics and atomic accesses */
295     #include <stdatomic.h>
296     #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 root 1.178 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298     #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
299 root 1.94 #endif
300     #endif
301    
302     #ifndef ECB_MEMORY_FENCE
303 root 1.62 #if !ECB_AVOID_PTHREADS
304     /*
305     * if you get undefined symbol references to pthread_mutex_lock,
306     * or failure to find pthread.h, then you should implement
307     * the ECB_MEMORY_FENCE operations for your cpu/compiler
308     * OR provide pthread.h and link against the posix thread library
309     * of your system.
310     */
311     #include <pthread.h>
312     #define ECB_NEEDS_PTHREADS 1
313     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
314 root 1.52
315 root 1.62 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
316     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
317     #endif
318     #endif
319    
320 root 1.85 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
321 root 1.52 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
322 root 1.62 #endif
323    
324 root 1.85 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
325 root 1.52 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
326     #endif
327    
328 root 1.178 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329     #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330     #endif
331    
332 root 1.52 /*****************************************************************************/
333    
334 root 1.149 #if ECB_CPP
335 root 1.46 #define ecb_inline static inline
336 root 1.38 #elif ECB_GCC_VERSION(2,5)
337 root 1.46 #define ecb_inline static __inline__
338 root 1.39 #elif ECB_C99
339 root 1.46 #define ecb_inline static inline
340 root 1.29 #else
341 root 1.46 #define ecb_inline static
342 root 1.38 #endif
343    
344     #if ECB_GCC_VERSION(3,3)
345     #define ecb_restrict __restrict__
346 root 1.39 #elif ECB_C99
347 root 1.38 #define ecb_restrict restrict
348     #else
349     #define ecb_restrict
350 root 1.4 #endif
351    
352 root 1.38 typedef int ecb_bool;
353    
354 root 1.8 #define ECB_CONCAT_(a, b) a ## b
355     #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
356     #define ECB_STRINGIFY_(a) # a
357     #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358 root 1.155 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
359 root 1.8
360 root 1.210 /* This marks larger functions that do not neccessarily need to be inlined */
361 root 1.211 /* The idea is to possibly compile the header twice, */
362     /* once exposing only the declarations, another time to define external functions */
363 root 1.212 /* TODO: possibly static would be best for these at the moment? */
364 root 1.46 #define ecb_function_ ecb_inline
365 root 1.3
366 sf-exg 1.138 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
367 root 1.142 #define ecb_attribute(attrlist) __attribute__ (attrlist)
368 root 1.37 #else
369     #define ecb_attribute(attrlist)
370 sf-exg 1.138 #endif
371 root 1.127
372 sf-exg 1.138 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
373     #define ecb_is_constant(expr) __builtin_constant_p (expr)
374     #else
375 root 1.127 /* possible C11 impl for integral types
376     typedef struct ecb_is_constant_struct ecb_is_constant_struct;
377     #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
378    
379 root 1.37 #define ecb_is_constant(expr) 0
380 sf-exg 1.138 #endif
381    
382     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
383     #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
384     #else
385 root 1.37 #define ecb_expect(expr,value) (expr)
386 sf-exg 1.138 #endif
387    
388     #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
389     #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
390     #else
391 root 1.37 #define ecb_prefetch(addr,rw,locality)
392 root 1.1 #endif
393    
394 root 1.2 /* no emulation for ecb_decltype */
395 root 1.143 #if ECB_CPP11
396 root 1.144 // older implementations might have problems with decltype(x)::type, work around it
397 root 1.146 template<class T> struct ecb_decltype_t { typedef T type; };
398     #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
399 root 1.143 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
400     #define ecb_decltype(x) __typeof__ (x)
401 root 1.1 #endif
402    
403 root 1.135 #if _MSC_VER >= 1300
404 root 1.149 #define ecb_deprecated __declspec (deprecated)
405 root 1.135 #else
406     #define ecb_deprecated ecb_attribute ((__deprecated__))
407     #endif
408    
409 sf-exg 1.162 #if _MSC_VER >= 1500
410 root 1.154 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
411     #elif ECB_GCC_VERSION(4,5)
412     #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
413     #else
414     #define ecb_deprecated_message(msg) ecb_deprecated
415     #endif
416    
417     #if _MSC_VER >= 1400
418     #define ecb_noinline __declspec (noinline)
419     #else
420     #define ecb_noinline ecb_attribute ((__noinline__))
421     #endif
422    
423 root 1.24 #define ecb_unused ecb_attribute ((__unused__))
424     #define ecb_const ecb_attribute ((__const__))
425     #define ecb_pure ecb_attribute ((__pure__))
426 root 1.35
427 root 1.145 #if ECB_C11 || __IBMC_NORETURN
428 sf-exg 1.165 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
429 root 1.90 #define ecb_noreturn _Noreturn
430 root 1.153 #elif ECB_CPP11
431     #define ecb_noreturn [[noreturn]]
432     #elif _MSC_VER >= 1200
433 sf-exg 1.156 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
434 root 1.153 #define ecb_noreturn __declspec (noreturn)
435 root 1.90 #else
436     #define ecb_noreturn ecb_attribute ((__noreturn__))
437     #endif
438    
439 root 1.35 #if ECB_GCC_VERSION(4,3)
440 root 1.39 #define ecb_artificial ecb_attribute ((__artificial__))
441     #define ecb_hot ecb_attribute ((__hot__))
442     #define ecb_cold ecb_attribute ((__cold__))
443 root 1.35 #else
444     #define ecb_artificial
445     #define ecb_hot
446     #define ecb_cold
447     #endif
448 root 1.1
449 root 1.39 /* put around conditional expressions if you are very sure that the */
450     /* expression is mostly true or mostly false. note that these return */
451     /* booleans, not the expression. */
452 root 1.33 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
453     #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
454 root 1.36 /* for compatibility to the rest of the world */
455 root 1.33 #define ecb_likely(expr) ecb_expect_true (expr)
456     #define ecb_unlikely(expr) ecb_expect_false (expr)
457 root 1.1
458 root 1.3 /* count trailing zero bits and count # of one bits */
459 root 1.139 #if ECB_GCC_VERSION(3,4) \
460     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
461     && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
462     && ECB_CLANG_BUILTIN(__builtin_popcount))
463 root 1.206 #define ecb_ctz32(x) __builtin_ctz (x)
464     #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x))
465     #define ecb_clz32(x) __builtin_clz (x)
466     #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x))
467     #define ecb_ld32(x) (ecb_clz32 (x) ^ 31)
468     #define ecb_ld64(x) (ecb_clz64 (x) ^ 63)
469 root 1.35 #define ecb_popcount32(x) __builtin_popcount (x)
470 root 1.206 /* ecb_popcount64 is more difficult, see below */
471 root 1.1 #else
472 root 1.151 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
473 root 1.213 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x)
474 root 1.35 {
475 root 1.171 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
476 root 1.172 unsigned long r;
477 root 1.171 _BitScanForward (&r, x);
478     return (int)r;
479     #else
480 root 1.208 int r;
481 root 1.35
482 root 1.208 x &= ~x + 1; /* this isolates the lowest bit */
483 root 1.205
484 root 1.208 #if 1
485     /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */
486     /* This happens to return 32 for x == 0, but the API does not support this */
487 root 1.35
488 root 1.208 /* -0 marks unused entries */
489     static unsigned char table[64] =
490     {
491     32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14,
492     10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15,
493     31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26,
494     30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0
495     };
496    
497     /* magic constant results in 33 unique values in the upper 6 bits */
498     x *= 0x0450fbafU; /* == 17 * 65 * 65535 */
499    
500     r = table [x >> 26];
501     #elif 0 /* branchless on i386, typically */
502     r = 0;
503 root 1.50 r += !!(x & 0xaaaaaaaa) << 0;
504     r += !!(x & 0xcccccccc) << 1;
505     r += !!(x & 0xf0f0f0f0) << 2;
506     r += !!(x & 0xff00ff00) << 3;
507     r += !!(x & 0xffff0000) << 4;
508 root 1.208 #else /* branchless on modern compilers, typically */
509     r = 0;
510 root 1.35 if (x & 0xaaaaaaaa) r += 1;
511     if (x & 0xcccccccc) r += 2;
512     if (x & 0xf0f0f0f0) r += 4;
513     if (x & 0xff00ff00) r += 8;
514     if (x & 0xffff0000) r += 16;
515 root 1.50 #endif
516 root 1.35
517     return r;
518 root 1.171 #endif
519 root 1.35 }
520    
521 root 1.151 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
522 root 1.213 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x)
523 root 1.49 {
524 root 1.171 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
525 root 1.172 unsigned long r;
526 root 1.171 _BitScanForward64 (&r, x);
527     return (int)r;
528     #else
529 root 1.168 int shift = x & 0xffffffff ? 0 : 32;
530 root 1.50 return ecb_ctz32 (x >> shift) + shift;
531 root 1.171 #endif
532 root 1.49 }
533    
534 root 1.208 ecb_function_ ecb_const int ecb_clz32 (uint32_t x);
535 root 1.213 ecb_function_ ecb_const int ecb_clz32 (uint32_t x)
536 root 1.208 {
537     #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
538     unsigned long r;
539     _BitScanReverse (&r, x);
540     return (int)r;
541     #else
542    
543     /* Robert Harley's algorithm from comp.arch 1996-12-07 */
544     /* This happens to return 32 for x == 0, but the API does not support this */
545    
546     /* -0 marks unused table elements */
547     static unsigned char table[64] =
548     {
549     32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0,
550     -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0,
551     17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18,
552     5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0
553     };
554    
555     /* propagate leftmost 1 bit to the right */
556     x |= x >> 1;
557     x |= x >> 2;
558     x |= x >> 4;
559     x |= x >> 8;
560     x |= x >> 16;
561    
562     /* magic constant results in 33 unique values in the upper 6 bits */
563     x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */
564    
565     return table [x >> 26];
566     #endif
567     }
568    
569     ecb_function_ ecb_const int ecb_clz64 (uint64_t x);
570 root 1.213 ecb_function_ ecb_const int ecb_clz64 (uint64_t x)
571 root 1.208 {
572     #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
573     unsigned long r;
574     _BitScanReverse64 (&r, x);
575     return (int)r;
576     #else
577     uint32_t l = x >> 32;
578     int shift = l ? 0 : 32;
579     return ecb_clz32 (l ? l : x) + shift;
580     #endif
581     }
582    
583 root 1.151 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
584 root 1.215 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x)
585 root 1.35 {
586     x -= (x >> 1) & 0x55555555;
587     x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
588     x = ((x >> 4) + x) & 0x0f0f0f0f;
589     x *= 0x01010101;
590 root 1.1
591 root 1.35 return x >> 24;
592     }
593 root 1.49
594 root 1.151 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
595     ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
596 root 1.49 {
597 root 1.171 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
598 root 1.172 unsigned long r;
599 root 1.171 _BitScanReverse (&r, x);
600     return (int)r;
601     #else
602 root 1.50 int r = 0;
603 root 1.49
604 root 1.50 if (x >> 16) { x >>= 16; r += 16; }
605     if (x >> 8) { x >>= 8; r += 8; }
606     if (x >> 4) { x >>= 4; r += 4; }
607     if (x >> 2) { x >>= 2; r += 2; }
608     if (x >> 1) { r += 1; }
609 root 1.49
610     return r;
611 root 1.171 #endif
612 root 1.49 }
613    
614 root 1.151 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
615     ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
616 root 1.49 {
617 root 1.171 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
618 root 1.172 unsigned long r;
619 root 1.171 _BitScanReverse64 (&r, x);
620     return (int)r;
621     #else
622 root 1.50 int r = 0;
623 root 1.49
624 root 1.50 if (x >> 32) { x >>= 32; r += 32; }
625 root 1.49
626 root 1.50 return r + ecb_ld32 (x);
627 root 1.171 #endif
628 root 1.49 }
629 root 1.1 #endif
630    
631 root 1.151 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
632     ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
633     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
634     ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
635 root 1.88
636 root 1.151 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
637     ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
638 root 1.70 {
639     return ( (x * 0x0802U & 0x22110U)
640 root 1.151 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
641 root 1.70 }
642    
643 root 1.151 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
644     ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
645 root 1.70 {
646     x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
647     x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
648     x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
649     x = ( x >> 8 ) | ( x << 8);
650    
651     return x;
652     }
653    
654 root 1.151 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
655     ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
656 root 1.70 {
657     x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
658     x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
659     x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
660     x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
661     x = ( x >> 16 ) | ( x << 16);
662    
663     return x;
664     }
665    
666 root 1.151 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
667 root 1.213 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x)
668 root 1.49 {
669 root 1.205 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
670     /* also, gcc/clang make this surprisingly difficult to use */
671 root 1.207 #if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
672 root 1.205 return __builtin_popcountl (x);
673     #else
674 root 1.49 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
675 root 1.205 #endif
676 root 1.49 }
677    
678 root 1.215 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
679     ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
680     ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
681     ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
682     ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
683     ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
684     ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
685     ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
686 root 1.50
687 root 1.182 #if ECB_CPP
688    
689     inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
690     inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
691     inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
692     inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
693    
694     inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
695     inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
696     inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
697     inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
698    
699     inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
700     inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
701     inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
702     inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
703    
704     inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
705     inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
706     inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
707     inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
708    
709     inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
710     inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
711     inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
712    
713 root 1.183 inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
714     inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
715     inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
716     inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
717    
718     inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
719     inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
720     inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
721     inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
722 root 1.182
723     #endif
724    
725 sf-exg 1.138 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
726 root 1.164 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
727     #define ecb_bswap16(x) __builtin_bswap16 (x)
728     #else
729 root 1.49 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
730 root 1.164 #endif
731 root 1.49 #define ecb_bswap32(x) __builtin_bswap32 (x)
732     #define ecb_bswap64(x) __builtin_bswap64 (x)
733 root 1.164 #elif _MSC_VER
734     #include <stdlib.h>
735     #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
736     #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
737     #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
738 root 1.13 #else
739 root 1.151 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
740 root 1.213 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x)
741 root 1.49 {
742 root 1.50 return ecb_rotl16 (x, 8);
743 root 1.49 }
744    
745 root 1.151 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
746 root 1.213 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x)
747 root 1.35 {
748 root 1.50 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
749 root 1.35 }
750    
751 root 1.151 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
752 root 1.213 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x)
753 root 1.35 {
754 root 1.50 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
755 root 1.35 }
756 root 1.13 #endif
757    
758 sf-exg 1.138 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
759 root 1.35 #define ecb_unreachable() __builtin_unreachable ()
760 root 1.13 #else
761 root 1.35 /* this seems to work fine, but gcc always emits a warning for it :/ */
762 root 1.151 ecb_inline ecb_noreturn void ecb_unreachable (void);
763     ecb_inline ecb_noreturn void ecb_unreachable (void) { }
764 root 1.13 #endif
765    
766 root 1.41 /* try to tell the compiler that some condition is definitely true */
767 root 1.100 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
768 root 1.41
769 root 1.215 ecb_inline uint32_t ecb_byteorder_helper (void);
770     ecb_inline uint32_t ecb_byteorder_helper (void)
771 root 1.3 {
772 root 1.98 /* the union code still generates code under pressure in gcc, */
773 sf-exg 1.111 /* but less than using pointers, and always seems to */
774 root 1.98 /* successfully return a constant. */
775     /* the reason why we have this horrible preprocessor mess */
776 root 1.99 /* is to avoid it in all cases, at least on common architectures */
777 sf-exg 1.111 /* or when using a recent enough gcc version (>= 4.6) */
778 root 1.174 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
779     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
780     #define ECB_LITTLE_ENDIAN 1
781     return 0x44332211;
782     #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
783     || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
784     #define ECB_BIG_ENDIAN 1
785     return 0x11223344;
786 root 1.98 #else
787     union
788     {
789 root 1.174 uint8_t c[4];
790     uint32_t u;
791     } u = { 0x11, 0x22, 0x33, 0x44 };
792     return u.u;
793 root 1.98 #endif
794 root 1.3 }
795    
796 root 1.174 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
797     ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
798 root 1.3
799 root 1.180 /*****************************************************************************/
800     /* unaligned load/store */
801    
802     ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
803     ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
804     ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
805    
806     ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
807     ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
808     ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
809    
810     ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
811     ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
812     ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
813    
814     ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
815     ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
816     ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
817    
818     ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
819     ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
820     ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
821    
822     ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
823     ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
824     ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
825    
826     ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
827     ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
828     ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
829    
830     ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
831     ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
832     ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
833    
834     ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
835     ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
836     ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
837 sf-exg 1.196
838 root 1.180 ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
839     ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
840     ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
841    
842 root 1.186 #if ECB_CPP
843 root 1.180
844     inline uint8_t ecb_bswap (uint8_t v) { return v; }
845     inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
846     inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
847     inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
848    
849     template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
850     template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
851     template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
852     template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
853     template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
854 root 1.184 template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
855 root 1.180 template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
856     template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
857    
858     template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
859     template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
860     template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
861     template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
862     template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
863 root 1.184 template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
864 root 1.180 template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
865     template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
866    
867     #endif
868    
869     /*****************************************************************************/
870 root 1.199 /* pointer/integer hashing */
871    
872     /* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
873 root 1.215 ecb_function_ ecb_const uint32_t ecb_mix32 (uint32_t v);
874     ecb_function_ ecb_const uint32_t ecb_mix32 (uint32_t v)
875 root 1.199 {
876     v ^= v >> 16; v *= 0x7feb352dU;
877     v ^= v >> 15; v *= 0x846ca68bU;
878     v ^= v >> 16;
879     return v;
880     }
881    
882 root 1.215 ecb_function_ ecb_const uint32_t ecb_unmix32 (uint32_t v);
883     ecb_function_ ecb_const uint32_t ecb_unmix32 (uint32_t v)
884 root 1.199 {
885     v ^= v >> 16 ; v *= 0x43021123U;
886     v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
887     v ^= v >> 16 ;
888     return v;
889     }
890    
891     /* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
892 root 1.215 ecb_function_ ecb_const uint64_t ecb_mix64 (uint64_t v);
893     ecb_function_ ecb_const uint64_t ecb_mix64 (uint64_t v)
894 root 1.199 {
895     v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
896     v ^= v >> 27; v *= 0x94d049bb133111ebU;
897     v ^= v >> 31;
898     return v;
899     }
900    
901 root 1.215 ecb_function_ ecb_const uint64_t ecb_unmix64 (uint64_t v);
902     ecb_function_ ecb_const uint64_t ecb_unmix64 (uint64_t v)
903 root 1.199 {
904     v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
905     v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
906     v ^= v >> 30 ^ v >> 60;
907     return v;
908     }
909    
910 root 1.215 ecb_function_ ecb_const uintptr_t ecb_ptrmix (void *p);
911     ecb_function_ ecb_const uintptr_t ecb_ptrmix (void *p)
912 root 1.199 {
913     #if ECB_PTRSIZE <= 4
914     return ecb_mix32 ((uint32_t)p);
915     #else
916     return ecb_mix64 ((uint64_t)p);
917     #endif
918     }
919    
920 root 1.215 ecb_function_ ecb_const void *ecb_ptrunmix (uintptr_t v);
921     ecb_function_ ecb_const void *ecb_ptrunmix (uintptr_t v)
922 root 1.199 {
923     #if ECB_PTRSIZE <= 4
924     return (void *)ecb_unmix32 (v);
925     #else
926     return (void *)ecb_unmix64 (v);
927     #endif
928     }
929    
930     #if ECB_CPP
931    
932     template<typename T>
933     inline uintptr_t ecb_ptrmix (T *p)
934     {
935     return ecb_ptrmix (static_cast<void *>(p));
936     }
937    
938     template<typename T>
939     inline T *ecb_ptrunmix (uintptr_t v)
940     {
941     return static_cast<T *>(ecb_ptrunmix (v));
942     }
943    
944     #endif
945    
946     /*****************************************************************************/
947 root 1.202 /* gray code */
948    
949 root 1.210 ecb_inline uint_fast8_t ecb_gray_encode8 (uint_fast8_t b) { return b ^ (b >> 1); }
950     ecb_inline uint_fast16_t ecb_gray_encode16 (uint_fast16_t b) { return b ^ (b >> 1); }
951     ecb_inline uint_fast32_t ecb_gray_encode32 (uint_fast32_t b) { return b ^ (b >> 1); }
952     ecb_inline uint_fast64_t ecb_gray_encode64 (uint_fast64_t b) { return b ^ (b >> 1); }
953 root 1.202
954 root 1.215 ecb_function_ ecb_const uint8_t ecb_gray_decode8 (uint8_t g);
955     ecb_function_ ecb_const uint8_t ecb_gray_decode8 (uint8_t g)
956 root 1.202 {
957 root 1.203 g ^= g >> 1;
958     g ^= g >> 2;
959     g ^= g >> 4;
960    
961 root 1.202 return g;
962     }
963    
964 root 1.215 ecb_function_ ecb_const uint16_t ecb_gray_decode16 (uint16_t g);
965     ecb_function_ ecb_const uint16_t ecb_gray_decode16 (uint16_t g)
966 root 1.202 {
967 root 1.203 g ^= g >> 1;
968     g ^= g >> 2;
969     g ^= g >> 4;
970     g ^= g >> 8;
971    
972 root 1.202 return g;
973     }
974    
975 root 1.215 ecb_function_ ecb_const uint32_t ecb_gray_decode32 (uint32_t g);
976     ecb_function_ ecb_const uint32_t ecb_gray_decode32 (uint32_t g)
977 root 1.202 {
978 root 1.203 g ^= g >> 1;
979     g ^= g >> 2;
980     g ^= g >> 4;
981     g ^= g >> 8;
982     g ^= g >> 16;
983    
984 root 1.202 return g;
985     }
986    
987 root 1.215 ecb_function_ ecb_const uint64_t ecb_gray_decode64 (uint64_t g);
988     ecb_function_ ecb_const uint64_t ecb_gray_decode64 (uint64_t g)
989 root 1.202 {
990 root 1.203 g ^= g >> 1;
991     g ^= g >> 2;
992     g ^= g >> 4;
993     g ^= g >> 8;
994     g ^= g >> 16;
995     g ^= g >> 32;
996    
997 root 1.202 return g;
998     }
999    
1000     #if ECB_CPP
1001    
1002 root 1.210 ecb_inline uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray_encode8 (b); }
1003     ecb_inline uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray_encode16 (b); }
1004     ecb_inline uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray_encode32 (b); }
1005     ecb_inline uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray_encode64 (b); }
1006    
1007     ecb_inline uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray_decode8 (g); }
1008     ecb_inline uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray_decode16 (g); }
1009     ecb_inline uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray_decode32 (g); }
1010     ecb_inline uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray_decode64 (g); }
1011 root 1.202
1012     #endif
1013    
1014     /*****************************************************************************/
1015 root 1.204 /* 2d hilbert curves */
1016    
1017     /* algorithm from the book Hacker's Delight, modified to not */
1018     /* run into undefined behaviour for n==16 */
1019 root 1.215 ecb_function_ ecb_const uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s);
1020     ecb_function_ ecb_const uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
1021 root 1.204 {
1022     uint32_t comp, swap, cs, t, sr;
1023    
1024     /* pad s on the left (unused) bits with 01 (no change groups) */
1025     s |= 0x55555555U << n << n;
1026     /* "s shift right" */
1027     sr = (s >> 1) & 0x55555555U;
1028     /* compute complement and swap info in two-bit groups */
1029     cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
1030    
1031     /* parallel prefix xor op to propagate both complement
1032     * and swap info together from left to right (there is
1033     * no step "cs ^= cs >> 1", so in effect it computes
1034     * two independent parallel prefix operations on two
1035     * interleaved sets of sixteen bits).
1036     */
1037     cs ^= cs >> 2;
1038     cs ^= cs >> 4;
1039     cs ^= cs >> 8;
1040     cs ^= cs >> 16;
1041    
1042     /* separate swap and complement bits */
1043     swap = cs & 0x55555555U;
1044     comp = (cs >> 1) & 0x55555555U;
1045    
1046     /* calculate coordinates in odd and even bit positions */
1047     t = (s & swap) ^ comp;
1048     s = s ^ sr ^ t ^ (t << 1);
1049    
1050     /* unpad/clear out any junk on the left */
1051     s = s & ((1 << n << n) - 1);
1052    
1053     /* Now "unshuffle" to separate the x and y bits. */
1054     t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
1055     t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1056     t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1057     t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1058    
1059     /* now s contains two 16-bit coordinates */
1060     return s;
1061     }
1062    
1063     /* 64 bit, a straightforward extension to the 32 bit case */
1064 root 1.215 ecb_function_ ecb_const uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s);
1065     ecb_function_ ecb_const uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1066 root 1.204 {
1067     uint64_t comp, swap, cs, t, sr;
1068    
1069     /* pad s on the left (unused) bits with 01 (no change groups) */
1070     s |= 0x5555555555555555U << n << n;
1071     /* "s shift right" */
1072     sr = (s >> 1) & 0x5555555555555555U;
1073     /* compute complement and swap info in two-bit groups */
1074     cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1075    
1076     /* parallel prefix xor op to propagate both complement
1077     * and swap info together from left to right (there is
1078     * no step "cs ^= cs >> 1", so in effect it computes
1079     * two independent parallel prefix operations on two
1080     * interleaved sets of thirty-two bits).
1081     */
1082     cs ^= cs >> 2;
1083     cs ^= cs >> 4;
1084     cs ^= cs >> 8;
1085     cs ^= cs >> 16;
1086     cs ^= cs >> 32;
1087    
1088     /* separate swap and complement bits */
1089     swap = cs & 0x5555555555555555U;
1090     comp = (cs >> 1) & 0x5555555555555555U;
1091    
1092     /* calculate coordinates in odd and even bit positions */
1093     t = (s & swap) ^ comp;
1094     s = s ^ sr ^ t ^ (t << 1);
1095    
1096     /* unpad/clear out any junk on the left */
1097     s = s & ((1 << n << n) - 1);
1098    
1099     /* Now "unshuffle" to separate the x and y bits. */
1100     t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1101     t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1102     t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1103     t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1104     t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1105    
1106     /* now s contains two 32-bit coordinates */
1107     return s;
1108     }
1109    
1110     /* algorithm from the book Hacker's Delight, but a similar algorithm*/
1111     /* is given in https://doi.org/10.1002/spe.4380160103 */
1112     /* this has been slightly improved over the original version */
1113 root 1.215 ecb_function_ ecb_const uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy);
1114     ecb_function_ ecb_const uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1115 root 1.204 {
1116     uint32_t row;
1117     uint32_t state = 0;
1118     uint32_t s = 0;
1119    
1120     do
1121     {
1122     --n;
1123    
1124     row = 4 * state
1125     | (2 & (xy >> n >> 15))
1126     | (1 & (xy >> n ));
1127    
1128     /* these funky constants are lookup tables for two-bit values */
1129     s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1130     state = (0x8fe65831U >> 2 * row) & 3;
1131     }
1132     while (n > 0);
1133    
1134     return s;
1135     }
1136    
1137     /* 64 bit, essentially the same as 32 bit */
1138 root 1.215 ecb_function_ ecb_const uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy);
1139     ecb_function_ ecb_const uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1140 root 1.204 {
1141     uint32_t row;
1142     uint32_t state = 0;
1143     uint64_t s = 0;
1144    
1145     do
1146     {
1147     --n;
1148    
1149     row = 4 * state
1150     | (2 & (xy >> n >> 31))
1151     | (1 & (xy >> n ));
1152    
1153     /* these funky constants are lookup tables for two-bit values */
1154     s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1155     state = (0x8fe65831U >> 2 * row) & 3;
1156     }
1157     while (n > 0);
1158    
1159     return s;
1160     }
1161    
1162     /*****************************************************************************/
1163 root 1.188 /* division */
1164 root 1.180
1165 root 1.39 #if ECB_GCC_VERSION(3,0) || ECB_C99
1166 root 1.188 /* C99 tightened the definition of %, so we can use a more efficient version */
1167 root 1.35 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168 root 1.31 #else
1169 root 1.35 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170 root 1.31 #endif
1171 root 1.21
1172 root 1.149 #if ECB_CPP
1173 sf-exg 1.68 template<typename T>
1174     static inline T ecb_div_rd (T val, T div)
1175     {
1176     return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177     }
1178     template<typename T>
1179     static inline T ecb_div_ru (T val, T div)
1180     {
1181     return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182     }
1183     #else
1184     #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185     #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186     #endif
1187 sf-exg 1.67
1188 root 1.188 /*****************************************************************************/
1189     /* array length */
1190    
1191 root 1.5 #if ecb_cplusplus_does_not_suck
1192 root 1.40 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1193 root 1.35 template<typename T, int N>
1194     static inline int ecb_array_length (const T (&arr)[N])
1195     {
1196     return N;
1197     }
1198 root 1.5 #else
1199 root 1.35 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1200 root 1.5 #endif
1201    
1202 root 1.180 /*****************************************************************************/
1203 root 1.188 /* IEEE 754-2008 half float conversions */
1204 root 1.180
1205 root 1.170 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1206 root 1.213 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x)
1207 root 1.167 {
1208     unsigned int s = (x & 0x8000) << (31 - 15);
1209     int e = (x >> 10) & 0x001f;
1210     unsigned int m = x & 0x03ff;
1211    
1212     if (ecb_expect_false (e == 31))
1213     /* infinity or NaN */
1214     e = 255 - (127 - 15);
1215     else if (ecb_expect_false (!e))
1216     {
1217     if (ecb_expect_true (!m))
1218     /* zero, handled by code below by forcing e to 0 */
1219     e = 0 - (127 - 15);
1220     else
1221     {
1222     /* subnormal, renormalise */
1223     unsigned int s = 10 - ecb_ld32 (m);
1224    
1225     m = (m << s) & 0x3ff; /* mask implicit bit */
1226     e -= s - 1;
1227     }
1228     }
1229    
1230     /* e and m now are normalised, or zero, (or inf or nan) */
1231     e += 127 - 15;
1232    
1233     return s | (e << 23) | (m << (23 - 10));
1234     }
1235    
1236     ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1237 root 1.213 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x)
1238 root 1.167 {
1239     unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1240 root 1.188 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1241 root 1.167 unsigned int m = x & 0x007fffff;
1242    
1243     x &= 0x7fffffff;
1244    
1245     /* if it's within range of binary16 normals, use fast path */
1246     if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1247     {
1248     /* mantissa round-to-even */
1249     m += 0x00000fff + ((m >> (23 - 10)) & 1);
1250    
1251     /* handle overflow */
1252     if (ecb_expect_false (m >= 0x00800000))
1253     {
1254     m >>= 1;
1255     e += 1;
1256     }
1257    
1258     return s | (e << 10) | (m >> (23 - 10));
1259     }
1260    
1261     /* handle large numbers and infinity */
1262     if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1263     return s | 0x7c00;
1264    
1265 root 1.169 /* handle zero, subnormals and small numbers */
1266 root 1.167 if (ecb_expect_true (x < 0x38800000))
1267     {
1268     /* zero */
1269     if (ecb_expect_true (!x))
1270     return s;
1271    
1272     /* handle subnormals */
1273    
1274 root 1.169 /* too small, will be zero */
1275     if (e < (14 - 24)) /* might not be sharp, but is good enough */
1276     return s;
1277    
1278 root 1.167 m |= 0x00800000; /* make implicit bit explicit */
1279    
1280     /* very tricky - we need to round to the nearest e (+10) bit value */
1281     {
1282     unsigned int bits = 14 - e;
1283     unsigned int half = (1 << (bits - 1)) - 1;
1284     unsigned int even = (m >> bits) & 1;
1285    
1286     /* if this overflows, we will end up with a normalised number */
1287     m = (m + half + even) >> bits;
1288     }
1289    
1290     return s | m;
1291     }
1292    
1293     /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1294     m >>= 13;
1295    
1296     return s | 0x7c00 | m | !m;
1297     }
1298    
1299 root 1.104 /*******************************************************************************/
1300 root 1.191 /* fast integer to ascii */
1301    
1302 root 1.195 /*
1303     * This code is pretty complicated because it is general. The idea behind it,
1304     * however, is pretty simple: first, the number is multiplied with a scaling
1305 root 1.197 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1306 root 1.195 * number with the first digit in the upper bits.
1307     * Then this digit is converted to text and masked out. The resulting number
1308     * is then multiplied by 10, by multiplying the fixed point representation
1309     * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1310     * format becomes 5.27, 6.26 and so on.
1311     * The rest involves only advancing the pointer if we already generated a
1312     * non-zero digit, so leading zeroes are overwritten.
1313     */
1314    
1315 root 1.201 /* simply return a mask with "bits" bits set */
1316 root 1.191 #define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1317    
1318 root 1.200 /* oputput a single digit. maskvalue is 10**digitidx */
1319 root 1.191 #define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1320     if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1321     { \
1322     char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1323     *ptr = digit + '0'; /* output it */ \
1324     nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1325     ptr += nz; /* output digit only if non-zero digit seen */ \
1326     x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1327     }
1328    
1329 root 1.200 /* convert integer to fixed point format and multiply out digits, highest first */
1330     /* requires magic constants: max. digits and number of bits after the decimal point */
1331 root 1.191 #define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1332     ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1333     { \
1334     char nz = lz; /* non-zero digit seen? */ \
1335     /* convert to x.bits fixed-point */ \
1336     type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1337     /* output up to 10 digits */ \
1338     ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1339     ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1340     ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1341     ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1342     ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1343     ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1344     ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1345     ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1346     ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1347     ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1348     return ptr; \
1349     }
1350    
1351 root 1.200 /* predefined versions of the above, for various digits */
1352     /* ecb_i2a_xN = almost N digits, limit defined by macro */
1353     /* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1354     /* ecb_i2a_0N = exactly N digits, including leading zeroes */
1355    
1356     /* non-leading-zero versions, limited range */
1357     #define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1358     #define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1359 root 1.191 ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1360     ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1361    
1362 root 1.200 /* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1363 root 1.194 ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1364     ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1365     ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1366     ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1367     ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1368     ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1369     ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1370     ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1371 root 1.191
1372 root 1.200 /* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1373 root 1.194 ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1374     ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1375     ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1376     ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1377     ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1378     ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1379     ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1380     ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1381 root 1.191
1382 root 1.192 #define ECB_I2A_I32_DIGITS 11
1383     #define ECB_I2A_U32_DIGITS 10
1384     #define ECB_I2A_I64_DIGITS 20
1385 root 1.194 #define ECB_I2A_U64_DIGITS 21
1386 root 1.193 #define ECB_I2A_MAX_DIGITS 21
1387 root 1.192
1388 root 1.214 ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u);
1389 root 1.213 ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u)
1390 root 1.191 {
1391     #if ECB_64BIT_NATIVE
1392     if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1393     ptr = ecb_i2a_x10 (ptr, u);
1394 root 1.200 else /* x10 almost, but not fully, covers 32 bit */
1395 root 1.191 {
1396     uint32_t u1 = u % 1000000000;
1397     uint32_t u2 = u / 1000000000;
1398    
1399     *ptr++ = u2 + '0';
1400     ptr = ecb_i2a_09 (ptr, u1);
1401     }
1402     #else
1403     if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1404     ecb_i2a_x5 (ptr, u);
1405     else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1406     {
1407     uint32_t u1 = u % 10000;
1408     uint32_t u2 = u / 10000;
1409    
1410     ptr = ecb_i2a_x5 (ptr, u2);
1411     ptr = ecb_i2a_04 (ptr, u1);
1412     }
1413     else
1414     {
1415     uint32_t u1 = u % 10000;
1416     uint32_t ua = u / 10000;
1417     uint32_t u2 = ua % 10000;
1418     uint32_t u3 = ua / 10000;
1419    
1420     ptr = ecb_i2a_2 (ptr, u3);
1421     ptr = ecb_i2a_04 (ptr, u2);
1422     ptr = ecb_i2a_04 (ptr, u1);
1423     }
1424     #endif
1425    
1426     return ptr;
1427     }
1428    
1429 root 1.213 ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v);
1430     ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v)
1431 root 1.191 {
1432     *ptr = '-'; ptr += v < 0;
1433     uint32_t u = v < 0 ? -(uint32_t)v : v;
1434    
1435     #if ECB_64BIT_NATIVE
1436 root 1.200 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1437 root 1.191 #else
1438     ptr = ecb_i2a_u32 (ptr, u);
1439     #endif
1440    
1441     return ptr;
1442     }
1443    
1444 root 1.213 ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u);
1445     ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u)
1446 root 1.191 {
1447     #if ECB_64BIT_NATIVE
1448     if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1449     ptr = ecb_i2a_x10 (ptr, u);
1450     else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1451     {
1452     uint64_t u1 = u % 1000000000;
1453     uint64_t u2 = u / 1000000000;
1454    
1455     ptr = ecb_i2a_x10 (ptr, u2);
1456     ptr = ecb_i2a_09 (ptr, u1);
1457     }
1458     else
1459     {
1460     uint64_t u1 = u % 1000000000;
1461     uint64_t ua = u / 1000000000;
1462     uint64_t u2 = ua % 1000000000;
1463     uint64_t u3 = ua / 1000000000;
1464    
1465     ptr = ecb_i2a_2 (ptr, u3);
1466     ptr = ecb_i2a_09 (ptr, u2);
1467     ptr = ecb_i2a_09 (ptr, u1);
1468     }
1469     #else
1470     if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1471     ptr = ecb_i2a_x5 (ptr, u);
1472     else
1473     {
1474     uint64_t u1 = u % 10000;
1475     uint64_t u2 = u / 10000;
1476    
1477     ptr = ecb_i2a_u64 (ptr, u2);
1478     ptr = ecb_i2a_04 (ptr, u1);
1479     }
1480     #endif
1481    
1482     return ptr;
1483     }
1484    
1485 root 1.214 ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v);
1486 root 1.213 ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v)
1487 root 1.191 {
1488     *ptr = '-'; ptr += v < 0;
1489     uint64_t u = v < 0 ? -(uint64_t)v : v;
1490    
1491     #if ECB_64BIT_NATIVE
1492     if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1493     ptr = ecb_i2a_x10 (ptr, u);
1494     else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1495     {
1496     uint64_t u1 = u % 1000000000;
1497     uint64_t u2 = u / 1000000000;
1498    
1499     ptr = ecb_i2a_x10 (ptr, u2);
1500     ptr = ecb_i2a_09 (ptr, u1);
1501     }
1502     else
1503     {
1504     uint64_t u1 = u % 1000000000;
1505     uint64_t ua = u / 1000000000;
1506     uint64_t u2 = ua % 1000000000;
1507     uint64_t u3 = ua / 1000000000;
1508    
1509 root 1.200 /* 2**31 is 19 digits, so the top is exactly one digit */
1510 root 1.191 *ptr++ = u3 + '0';
1511     ptr = ecb_i2a_09 (ptr, u2);
1512     ptr = ecb_i2a_09 (ptr, u1);
1513     }
1514     #else
1515     ptr = ecb_i2a_u64 (ptr, u);
1516     #endif
1517    
1518     return ptr;
1519     }
1520    
1521     /*******************************************************************************/
1522 root 1.104 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1523    
1524     /* basically, everything uses "ieee pure-endian" floating point numbers */
1525     /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1526     #if 0 \
1527     || __i386 || __i386__ \
1528 sf-exg 1.159 || ECB_GCC_AMD64 \
1529 root 1.104 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1530     || defined __s390__ || defined __s390x__ \
1531     || defined __mips__ \
1532     || defined __alpha__ \
1533     || defined __hppa__ \
1534     || defined __ia64__ \
1535 root 1.117 || defined __m68k__ \
1536     || defined __m88k__ \
1537     || defined __sh__ \
1538 sf-exg 1.159 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1539 root 1.131 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1540 root 1.132 || defined __aarch64__
1541 root 1.104 #define ECB_STDFP 1
1542 root 1.102 #else
1543 root 1.104 #define ECB_STDFP 0
1544 root 1.102 #endif
1545    
1546 root 1.104 #ifndef ECB_NO_LIBM
1547 root 1.103
1548 root 1.121 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1549    
1550 root 1.122 /* only the oldest of old doesn't have this one. solaris. */
1551     #ifdef INFINITY
1552     #define ECB_INFINITY INFINITY
1553     #else
1554     #define ECB_INFINITY HUGE_VAL
1555     #endif
1556    
1557     #ifdef NAN
1558 root 1.121 #define ECB_NAN NAN
1559     #else
1560 root 1.122 #define ECB_NAN ECB_INFINITY
1561 root 1.121 #endif
1562 root 1.120
1563 root 1.148 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1564 root 1.150 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1565 sf-exg 1.163 #define ecb_frexpf(x,e) frexpf ((x), (e))
1566 root 1.148 #else
1567 sf-exg 1.161 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1568 sf-exg 1.163 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1569 root 1.148 #endif
1570    
1571 root 1.104 /* convert a float to ieee single/binary32 */
1572 root 1.151 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1573 root 1.213 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x)
1574 root 1.103 {
1575     uint32_t r;
1576    
1577     #if ECB_STDFP
1578 root 1.104 memcpy (&r, &x, 4);
1579 root 1.103 #else
1580 root 1.105 /* slow emulation, works for anything but -0 */
1581 root 1.103 uint32_t m;
1582     int e;
1583    
1584 root 1.108 if (x == 0e0f ) return 0x00000000U;
1585 root 1.103 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1586     if (x < -3.40282346638528860e+38f) return 0xff800000U;
1587 root 1.105 if (x != x ) return 0x7fbfffffU;
1588 root 1.103
1589 sf-exg 1.163 m = ecb_frexpf (x, &e) * 0x1000000U;
1590 root 1.103
1591     r = m & 0x80000000U;
1592    
1593     if (r)
1594     m = -m;
1595    
1596 root 1.108 if (e <= -126)
1597 root 1.103 {
1598     m &= 0xffffffU;
1599     m >>= (-125 - e);
1600     e = -126;
1601     }
1602    
1603     r |= (e + 126) << 23;
1604     r |= m & 0x7fffffU;
1605     #endif
1606    
1607     return r;
1608     }
1609    
1610 root 1.104 /* converts an ieee single/binary32 to a float */
1611 root 1.151 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1612 root 1.213 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x)
1613 root 1.103 {
1614     float r;
1615    
1616     #if ECB_STDFP
1617 root 1.104 memcpy (&r, &x, 4);
1618 root 1.103 #else
1619     /* emulation, only works for normals and subnormals and +0 */
1620     int neg = x >> 31;
1621     int e = (x >> 23) & 0xffU;
1622    
1623     x &= 0x7fffffU;
1624    
1625     if (e)
1626     x |= 0x800000U;
1627 root 1.104 else
1628     e = 1;
1629 root 1.103
1630     /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1631 root 1.148 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1632 root 1.103
1633     r = neg ? -r : r;
1634     #endif
1635    
1636     return r;
1637     }
1638    
1639 root 1.104 /* convert a double to ieee double/binary64 */
1640 root 1.151 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1641 root 1.213 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x)
1642 root 1.103 {
1643 root 1.104 uint64_t r;
1644    
1645     #if ECB_STDFP
1646     memcpy (&r, &x, 8);
1647     #else
1648 root 1.105 /* slow emulation, works for anything but -0 */
1649 root 1.104 uint64_t m;
1650     int e;
1651    
1652 root 1.108 if (x == 0e0 ) return 0x0000000000000000U;
1653 root 1.104 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1654     if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1655 root 1.105 if (x != x ) return 0X7ff7ffffffffffffU;
1656 root 1.104
1657     m = frexp (x, &e) * 0x20000000000000U;
1658    
1659     r = m & 0x8000000000000000;;
1660    
1661     if (r)
1662     m = -m;
1663    
1664 root 1.108 if (e <= -1022)
1665 root 1.104 {
1666     m &= 0x1fffffffffffffU;
1667     m >>= (-1021 - e);
1668     e = -1022;
1669     }
1670    
1671     r |= ((uint64_t)(e + 1022)) << 52;
1672     r |= m & 0xfffffffffffffU;
1673     #endif
1674    
1675     return r;
1676     }
1677    
1678     /* converts an ieee double/binary64 to a double */
1679 root 1.151 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1680 root 1.213 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x)
1681 root 1.104 {
1682     double r;
1683    
1684     #if ECB_STDFP
1685     memcpy (&r, &x, 8);
1686     #else
1687     /* emulation, only works for normals and subnormals and +0 */
1688     int neg = x >> 63;
1689     int e = (x >> 52) & 0x7ffU;
1690    
1691     x &= 0xfffffffffffffU;
1692    
1693     if (e)
1694     x |= 0x10000000000000U;
1695     else
1696     e = 1;
1697    
1698 root 1.107 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1699 root 1.108 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1700 root 1.104
1701     r = neg ? -r : r;
1702     #endif
1703    
1704     return r;
1705 root 1.103 }
1706    
1707 root 1.167 /* convert a float to ieee half/binary16 */
1708     ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1709 root 1.213 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x)
1710 root 1.167 {
1711     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1712     }
1713    
1714     /* convert an ieee half/binary16 to float */
1715     ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1716 root 1.213 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x)
1717 root 1.167 {
1718     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1719     }
1720    
1721 root 1.103 #endif
1722 root 1.102
1723 root 1.1 #endif
1724