ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.pod
Revision: 1.93
Committed: Sat Jul 31 14:39:16 2021 UTC (2 years, 11 months ago) by root
Branch: MAIN
Changes since 1.92: +5 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.14 =head1 LIBECB - e-C-Builtins
2 root 1.3
3 root 1.14 =head2 ABOUT LIBECB
4    
5     Libecb is currently a simple header file that doesn't require any
6     configuration to use or include in your project.
7    
8 sf-exg 1.16 It's part of the e-suite of libraries, other members of which include
9 root 1.14 libev and libeio.
10    
11     Its homepage can be found here:
12    
13     http://software.schmorp.de/pkg/libecb
14    
15 root 1.85 It mainly provides a number of wrappers around many compiler built-ins,
16     together with replacement functions for other compilers. In addition
17     to this, it provides a number of other lowlevel C utilities, such as
18     endianness detection, byte swapping or bit rotations.
19    
20     Or in other words, things that should be built into any standard C
21     system, but aren't, implemented as efficient as possible with GCC (clang,
22     msvc...), and still correct with other compilers.
23 root 1.17
24 root 1.14 More might come.
25 root 1.3
26     =head2 ABOUT THE HEADER
27    
28 root 1.14 At the moment, all you have to do is copy F<ecb.h> somewhere where your
29     compiler can find it and include it:
30    
31     #include <ecb.h>
32    
33     The header should work fine for both C and C++ compilation, and gives you
34     all of F<inttypes.h> in addition to the ECB symbols.
35    
36 sf-exg 1.16 There are currently no object files to link to - future versions might
37 root 1.14 come with an (optional) object code library to link against, to reduce
38     code size or gain access to additional features.
39    
40     It also currently includes everything from F<inttypes.h>.
41    
42     =head2 ABOUT THIS MANUAL / CONVENTIONS
43    
44     This manual mainly describes each (public) function available after
45     including the F<ecb.h> header. The header might define other symbols than
46     these, but these are not part of the public API, and not supported in any
47     way.
48    
49     When the manual mentions a "function" then this could be defined either as
50     as inline function, a macro, or an external symbol.
51    
52     When functions use a concrete standard type, such as C<int> or
53     C<uint32_t>, then the corresponding function works only with that type. If
54     only a generic name is used (C<expr>, C<cond>, C<value> and so on), then
55     the corresponding function relies on C to implement the correct types, and
56     is usually implemented as a macro. Specifically, a "bool" in this manual
57     refers to any kind of boolean value, not a specific type.
58 root 1.1
59 root 1.40 =head2 TYPES / TYPE SUPPORT
60    
61     ecb.h makes sure that the following types are defined (in the expected way):
62    
63 root 1.76 int8_t uint8_
64     int16_t uint16_t
65     int32_t uint32_
66     int64_t uint64_t
67     int_fast8_t uint_fast8_t
68     int_fast16_t uint_fast16_t
69     int_fast32_t uint_fast32_t
70     int_fast64_t uint_fast64_t
71     intptr_t uintptr_t
72 root 1.40
73     The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
74 root 1.45 platform (currently C<4> or C<8>) and can be used in preprocessor
75     expressions.
76 root 1.40
77 root 1.74 For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
78 root 1.49
79 root 1.62 =head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
80 root 1.43
81 sf-exg 1.46 All the following symbols expand to an expression that can be tested in
82 root 1.44 preprocessor instructions as well as treated as a boolean (use C<!!> to
83     ensure it's either C<0> or C<1> if you need that).
84    
85 root 1.88 =over
86 root 1.43
87 root 1.44 =item ECB_C
88    
89     True if the implementation defines the C<__STDC__> macro to a true value,
90 root 1.82 while not claiming to be C++, i..e C, but not C++.
91 root 1.44
92 root 1.43 =item ECB_C99
93    
94 root 1.47 True if the implementation claims to be compliant to C99 (ISO/IEC
95 root 1.55 9899:1999) or any later version, while not claiming to be C++.
96 root 1.47
97     Note that later versions (ECB_C11) remove core features again (for
98     example, variable length arrays).
99 root 1.43
100 root 1.74 =item ECB_C11, ECB_C17
101 root 1.43
102 root 1.74 True if the implementation claims to be compliant to C11/C17 (ISO/IEC
103     9899:2011, :20187) or any later version, while not claiming to be C++.
104 root 1.44
105     =item ECB_CPP
106    
107     True if the implementation defines the C<__cplusplus__> macro to a true
108     value, which is typically true for C++ compilers.
109    
110 root 1.74 =item ECB_CPP11, ECB_CPP14, ECB_CPP17
111 root 1.44
112 root 1.74 True if the implementation claims to be compliant to C++11/C++14/C++17
113     (ISO/IEC 14882:2011, :2014, :2017) or any later version.
114 root 1.43
115 root 1.83 Note that many C++20 features will likely have their own feature test
116     macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117    
118 root 1.81 =item ECB_OPTIMIZE_SIZE
119    
120     Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121     can also be defined before including F<ecb.h>, in which case it will be
122     unchanged.
123    
124 root 1.57 =item ECB_GCC_VERSION (major, minor)
125 root 1.43
126 root 1.84 Expands to a true value (suitable for testing by the preprocessor) if the
127     compiler used is GNU C and the version is the given version, or higher.
128 root 1.43
129     This macro tries to return false on compilers that claim to be GCC
130     compatible but aren't.
131    
132 root 1.50 =item ECB_EXTERN_C
133    
134     Expands to C<extern "C"> in C++, and a simple C<extern> in C.
135    
136     This can be used to declare a single external C function:
137    
138     ECB_EXTERN_C int printf (const char *format, ...);
139    
140     =item ECB_EXTERN_C_BEG / ECB_EXTERN_C_END
141    
142     These two macros can be used to wrap multiple C<extern "C"> definitions -
143     they expand to nothing in C.
144    
145     They are most useful in header files:
146    
147     ECB_EXTERN_C_BEG
148    
149     int mycfun1 (int x);
150     int mycfun2 (int x);
151    
152     ECB_EXTERN_C_END
153    
154     =item ECB_STDFP
155    
156 root 1.84 If this evaluates to a true value (suitable for testing by the
157 root 1.50 preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
158     and double/binary64 representations internally I<and> the endianness of
159     both types match the endianness of C<uint32_t> and C<uint64_t>.
160    
161     This means you can just copy the bits of a C<float> (or C<double>) to an
162     C<uint32_t> (or C<uint64_t>) and get the raw IEEE 754 bit representation
163     without having to think about format or endianness.
164    
165     This is true for basically all modern platforms, although F<ecb.h> might
166     not be able to deduce this correctly everywhere and might err on the safe
167     side.
168    
169 root 1.87 =item ECB_64BIT_NATIVE
170    
171     Evaluates to a true value (suitable for both preprocessor and C code
172     testing) if 64 bit integer types on this architecture are evaluated
173 sf-exg 1.92 "natively", that is, with similar speeds as 32 bit integers. While 64 bit
174     integer support is very common (and in fact required by libecb), 32 bit
175 root 1.87 cpus have to emulate operations on them, so you might want to avoid them.
176    
177 root 1.54 =item ECB_AMD64, ECB_AMD64_X32
178    
179     These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32
180     ABI, respectively, and undefined elsewhere.
181    
182     The designers of the new X32 ABI for some inexplicable reason decided to
183     make it look exactly like amd64, even though it's completely incompatible
184     to that ABI, breaking about every piece of software that assumed that
185     C<__x86_64> stands for, well, the x86-64 ABI, making these macros
186     necessary.
187    
188 root 1.43 =back
189    
190 root 1.62 =head2 MACRO TRICKERY
191    
192 root 1.88 =over
193 root 1.62
194     =item ECB_CONCAT (a, b)
195    
196     Expands any macros in C<a> and C<b>, then concatenates the result to form
197     a single token. This is mainly useful to form identifiers from components,
198     e.g.:
199    
200     #define S1 str
201     #define S2 cpy
202    
203     ECB_CONCAT (S1, S2)(dst, src); // == strcpy (dst, src);
204    
205     =item ECB_STRINGIFY (arg)
206    
207     Expands any macros in C<arg> and returns the stringified version of
208     it. This is mainly useful to get the contents of a macro in string form,
209     e.g.:
210    
211     #define SQL_LIMIT 100
212     sql_exec ("select * from table limit " ECB_STRINGIFY (SQL_LIMIT));
213    
214 root 1.64 =item ECB_STRINGIFY_EXPR (expr)
215    
216     Like C<ECB_STRINGIFY>, but additionally evaluates C<expr> to make sure it
217     is a valid expression. This is useful to catch typos or cases where the
218     macro isn't available:
219    
220     #include <errno.h>
221    
222     ECB_STRINGIFY (EDOM); // "33" (on my system at least)
223     ECB_STRINGIFY_EXPR (EDOM); // "33"
224    
225     // now imagine we had a typo:
226    
227     ECB_STRINGIFY (EDAM); // "EDAM"
228     ECB_STRINGIFY_EXPR (EDAM); // error: EDAM undefined
229    
230 root 1.62 =back
231    
232 sf-exg 1.60 =head2 ATTRIBUTES
233 root 1.1
234 sf-exg 1.60 A major part of libecb deals with additional attributes that can be
235     assigned to functions, variables and sometimes even types - much like
236     C<const> or C<volatile> in C. They are implemented using either GCC
237     attributes or other compiler/language specific features. Attributes
238     declarations must be put before the whole declaration:
239 root 1.20
240     ecb_const int mysqrt (int a);
241     ecb_unused int i;
242    
243 root 1.88 =over
244 root 1.1
245 root 1.3 =item ecb_unused
246    
247     Marks a function or a variable as "unused", which simply suppresses a
248 root 1.85 warning by the compiler when it detects it as unused. This is useful when
249     you e.g. declare a variable but do not always use it:
250 root 1.3
251 root 1.15 {
252 sf-exg 1.61 ecb_unused int var;
253 root 1.3
254 root 1.15 #ifdef SOMECONDITION
255     var = ...;
256     return var;
257     #else
258     return 0;
259     #endif
260     }
261 root 1.3
262 root 1.56 =item ecb_deprecated
263    
264     Similar to C<ecb_unused>, but marks a function, variable or type as
265     deprecated. This makes some compilers warn when the type is used.
266    
267 root 1.62 =item ecb_deprecated_message (message)
268    
269 root 1.67 Same as C<ecb_deprecated>, but if possible, the specified diagnostic is
270 root 1.62 used instead of a generic depreciation message when the object is being
271     used.
272    
273 root 1.31 =item ecb_inline
274 root 1.29
275 root 1.73 Expands either to (a compiler-specific equivalent of) C<static inline> or
276     to just C<static>, if inline isn't supported. It should be used to declare
277     functions that should be inlined, for code size or speed reasons.
278 root 1.29
279     Example: inline this function, it surely will reduce codesize.
280    
281 root 1.31 ecb_inline int
282 root 1.29 negmul (int a, int b)
283     {
284     return - (a * b);
285     }
286    
287 root 1.2 =item ecb_noinline
288    
289 sf-exg 1.66 Prevents a function from being inlined - it might be optimised away, but
290 root 1.3 not inlined into other functions. This is useful if you know your function
291     is rarely called and large enough for inlining not to be helpful.
292    
293 root 1.2 =item ecb_noreturn
294    
295 root 1.17 Marks a function as "not returning, ever". Some typical functions that
296     don't return are C<exit> or C<abort> (which really works hard to not
297     return), and now you can make your own:
298    
299     ecb_noreturn void
300     my_abort (const char *errline)
301     {
302     puts (errline);
303     abort ();
304     }
305    
306 sf-exg 1.19 In this case, the compiler would probably be smart enough to deduce it on
307     its own, so this is mainly useful for declarations.
308 root 1.17
309 root 1.53 =item ecb_restrict
310    
311     Expands to the C<restrict> keyword or equivalent on compilers that support
312     them, and to nothing on others. Must be specified on a pointer type or
313     an array index to indicate that the memory doesn't alias with any other
314     restricted pointer in the same scope.
315    
316     Example: multiply a vector, and allow the compiler to parallelise the
317     loop, because it knows it doesn't overwrite input values.
318    
319     void
320 sf-exg 1.61 multiply (ecb_restrict float *src,
321     ecb_restrict float *dst,
322 root 1.53 int len, float factor)
323     {
324     int i;
325    
326     for (i = 0; i < len; ++i)
327     dst [i] = src [i] * factor;
328     }
329    
330 root 1.2 =item ecb_const
331    
332 sf-exg 1.19 Declares that the function only depends on the values of its arguments,
333 root 1.17 much like a mathematical function. It specifically does not read or write
334     any memory any arguments might point to, global variables, or call any
335     non-const functions. It also must not have any side effects.
336    
337     Such a function can be optimised much more aggressively by the compiler -
338     for example, multiple calls with the same arguments can be optimised into
339     a single call, which wouldn't be possible if the compiler would have to
340     expect any side effects.
341    
342     It is best suited for functions in the sense of mathematical functions,
343 sf-exg 1.19 such as a function returning the square root of its input argument.
344 root 1.17
345     Not suited would be a function that calculates the hash of some memory
346     area you pass in, prints some messages or looks at a global variable to
347     decide on rounding.
348    
349     See C<ecb_pure> for a slightly less restrictive class of functions.
350    
351 root 1.2 =item ecb_pure
352    
353 root 1.17 Similar to C<ecb_const>, declares a function that has no side
354     effects. Unlike C<ecb_const>, the function is allowed to examine global
355     variables and any other memory areas (such as the ones passed to it via
356     pointers).
357    
358     While these functions cannot be optimised as aggressively as C<ecb_const>
359     functions, they can still be optimised away in many occasions, and the
360     compiler has more freedom in moving calls to them around.
361    
362     Typical examples for such functions would be C<strlen> or C<memcmp>. A
363     function that calculates the MD5 sum of some input and updates some MD5
364     state passed as argument would I<NOT> be pure, however, as it would modify
365     some memory area that is not the return value.
366    
367 root 1.2 =item ecb_hot
368    
369 root 1.17 This declares a function as "hot" with regards to the cache - the function
370     is used so often, that it is very beneficial to keep it in the cache if
371     possible.
372    
373     The compiler reacts by trying to place hot functions near to each other in
374     memory.
375    
376 sf-exg 1.19 Whether a function is hot or not often depends on the whole program,
377 root 1.17 and less on the function itself. C<ecb_cold> is likely more useful in
378     practise.
379    
380 root 1.2 =item ecb_cold
381    
382 root 1.17 The opposite of C<ecb_hot> - declares a function as "cold" with regards to
383     the cache, or in other words, this function is not called often, or not at
384     speed-critical times, and keeping it in the cache might be a waste of said
385     cache.
386    
387     In addition to placing cold functions together (or at least away from hot
388     functions), this knowledge can be used in other ways, for example, the
389     function will be optimised for size, as opposed to speed, and codepaths
390     leading to calls to those functions can automatically be marked as if
391 root 1.27 C<ecb_expect_false> had been used to reach them.
392 root 1.17
393     Good examples for such functions would be error reporting functions, or
394     functions only called in exceptional or rare cases.
395    
396 root 1.2 =item ecb_artificial
397    
398 root 1.17 Declares the function as "artificial", in this case meaning that this
399 root 1.52 function is not really meant to be a function, but more like an accessor
400 root 1.17 - many methods in C++ classes are mere accessor functions, and having a
401     crash reported in such a method, or single-stepping through them, is not
402     usually so helpful, especially when it's inlined to just a few instructions.
403    
404     Marking them as artificial will instruct the debugger about just this,
405     leading to happier debugging and thus happier lives.
406    
407     Example: in some kind of smart-pointer class, mark the pointer accessor as
408     artificial, so that the whole class acts more like a pointer and less like
409     some C++ abstraction monster.
410    
411     template<typename T>
412     struct my_smart_ptr
413     {
414     T *value;
415    
416     ecb_artificial
417     operator T *()
418     {
419     return value;
420     }
421     };
422    
423 root 1.2 =back
424 root 1.1
425     =head2 OPTIMISATION HINTS
426    
427 root 1.88 =over
428 root 1.1
429 root 1.58 =item bool ecb_is_constant (expr)
430 root 1.1
431 root 1.3 Returns true iff the expression can be deduced to be a compile-time
432     constant, and false otherwise.
433    
434     For example, when you have a C<rndm16> function that returns a 16 bit
435     random number, and you have a function that maps this to a range from
436 root 1.5 0..n-1, then you could use this inline function in a header file:
437 root 1.3
438     ecb_inline uint32_t
439     rndm (uint32_t n)
440     {
441 root 1.6 return (n * (uint32_t)rndm16 ()) >> 16;
442 root 1.3 }
443    
444     However, for powers of two, you could use a normal mask, but that is only
445     worth it if, at compile time, you can detect this case. This is the case
446     when the passed number is a constant and also a power of two (C<n & (n -
447     1) == 0>):
448    
449     ecb_inline uint32_t
450     rndm (uint32_t n)
451     {
452     return is_constant (n) && !(n & (n - 1))
453     ? rndm16 () & (num - 1)
454 root 1.6 : (n * (uint32_t)rndm16 ()) >> 16;
455 root 1.3 }
456    
457 root 1.62 =item ecb_expect (expr, value)
458 root 1.1
459 root 1.7 Evaluates C<expr> and returns it. In addition, it tells the compiler that
460     the C<expr> evaluates to C<value> a lot, which can be used for static
461     branch optimisations.
462 root 1.1
463 root 1.27 Usually, you want to use the more intuitive C<ecb_expect_true> and
464     C<ecb_expect_false> functions instead.
465 root 1.1
466 root 1.27 =item bool ecb_expect_true (cond)
467 root 1.1
468 root 1.27 =item bool ecb_expect_false (cond)
469 root 1.1
470 root 1.7 These two functions expect a expression that is true or false and return
471     C<1> or C<0>, respectively, so when used in the condition of an C<if> or
472     other conditional statement, it will not change the program:
473    
474     /* these two do the same thing */
475     if (some_condition) ...;
476 root 1.27 if (ecb_expect_true (some_condition)) ...;
477 root 1.7
478 root 1.27 However, by using C<ecb_expect_true>, you tell the compiler that the
479     condition is likely to be true (and for C<ecb_expect_false>, that it is
480     unlikely to be true).
481 root 1.7
482 root 1.9 For example, when you check for a null pointer and expect this to be a
483 root 1.27 rare, exceptional, case, then use C<ecb_expect_false>:
484 root 1.7
485     void my_free (void *ptr)
486     {
487 root 1.27 if (ecb_expect_false (ptr == 0))
488 root 1.7 return;
489     }
490    
491     Consequent use of these functions to mark away exceptional cases or to
492     tell the compiler what the hot path through a function is can increase
493     performance considerably.
494    
495 root 1.27 You might know these functions under the name C<likely> and C<unlikely>
496     - while these are common aliases, we find that the expect name is easier
497     to understand when quickly skimming code. If you wish, you can use
498     C<ecb_likely> instead of C<ecb_expect_true> and C<ecb_unlikely> instead of
499     C<ecb_expect_false> - these are simply aliases.
500    
501 root 1.7 A very good example is in a function that reserves more space for some
502     memory block (for example, inside an implementation of a string stream) -
503 root 1.9 each time something is added, you have to check for a buffer overrun, but
504 root 1.7 you expect that most checks will turn out to be false:
505    
506     /* make sure we have "size" extra room in our buffer */
507     ecb_inline void
508     reserve (int size)
509     {
510 root 1.27 if (ecb_expect_false (current + size > end))
511 root 1.7 real_reserve_method (size); /* presumably noinline */
512     }
513    
514 root 1.62 =item ecb_assume (cond)
515 root 1.7
516 sf-exg 1.66 Tries to tell the compiler that some condition is true, even if it's not
517 root 1.65 obvious. This is not a function, but a statement: it cannot be used in
518     another expression.
519 root 1.7
520     This can be used to teach the compiler about invariants or other
521     conditions that might improve code generation, but which are impossible to
522     deduce form the code itself.
523    
524 root 1.27 For example, the example reservation function from the C<ecb_expect_false>
525 root 1.7 description could be written thus (only C<ecb_assume> was added):
526    
527     ecb_inline void
528     reserve (int size)
529     {
530 root 1.27 if (ecb_expect_false (current + size > end))
531 root 1.7 real_reserve_method (size); /* presumably noinline */
532    
533     ecb_assume (current + size <= end);
534     }
535    
536     If you then call this function twice, like this:
537    
538     reserve (10);
539     reserve (1);
540    
541     Then the compiler I<might> be able to optimise out the second call
542     completely, as it knows that C<< current + 1 > end >> is false and the
543     call will never be executed.
544    
545 root 1.62 =item ecb_unreachable ()
546 root 1.7
547     This function does nothing itself, except tell the compiler that it will
548 root 1.9 never be executed. Apart from suppressing a warning in some cases, this
549 root 1.65 function can be used to implement C<ecb_assume> or similar functionality.
550 root 1.7
551 root 1.62 =item ecb_prefetch (addr, rw, locality)
552 root 1.7
553     Tells the compiler to try to prefetch memory at the given C<addr>ess
554 root 1.10 for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of
555 root 1.7 C<0> means that there will only be one access later, C<3> means that
556     the data will likely be accessed very often, and values in between mean
557     something... in between. The memory pointed to by the address does not
558     need to be accessible (it could be a null pointer for example), but C<rw>
559     and C<locality> must be compile-time constants.
560    
561 root 1.65 This is a statement, not a function: you cannot use it as part of an
562     expression.
563    
564 root 1.7 An obvious way to use this is to prefetch some data far away, in a big
565 root 1.9 array you loop over. This prefetches memory some 128 array elements later,
566 root 1.7 in the hope that it will be ready when the CPU arrives at that location.
567    
568     int sum = 0;
569    
570     for (i = 0; i < N; ++i)
571     {
572     sum += arr [i]
573     ecb_prefetch (arr + i + 128, 0, 0);
574     }
575    
576     It's hard to predict how far to prefetch, and most CPUs that can prefetch
577     are often good enough to predict this kind of behaviour themselves. It
578     gets more interesting with linked lists, especially when you do some fair
579     processing on each list element:
580    
581     for (node *n = start; n; n = n->next)
582     {
583     ecb_prefetch (n->next, 0, 0);
584     ... do medium amount of work with *n
585     }
586    
587     After processing the node, (part of) the next node might already be in
588     cache.
589 root 1.1
590 root 1.2 =back
591 root 1.1
592 root 1.36 =head2 BIT FIDDLING / BIT WIZARDRY
593 root 1.1
594 root 1.88 =over
595 root 1.4
596 root 1.3 =item bool ecb_big_endian ()
597    
598     =item bool ecb_little_endian ()
599    
600 sf-exg 1.11 These two functions return true if the byte order is big endian
601     (most-significant byte first) or little endian (least-significant byte
602     first) respectively.
603    
604 root 1.24 On systems that are neither, their return values are unspecified.
605    
606 root 1.3 =item int ecb_ctz32 (uint32_t x)
607    
608 root 1.35 =item int ecb_ctz64 (uint64_t x)
609    
610 root 1.77 =item int ecb_ctz (T x) [C++]
611    
612 sf-exg 1.11 Returns the index of the least significant bit set in C<x> (or
613 root 1.24 equivalently the number of bits set to 0 before the least significant bit
614 root 1.35 set), starting from 0. If C<x> is 0 the result is undefined.
615    
616 root 1.36 For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
617    
618 root 1.77 The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
619     C<uint32_t> and C<uint64_t> types.
620    
621 root 1.35 For example:
622 sf-exg 1.11
623 root 1.15 ecb_ctz32 (3) = 0
624     ecb_ctz32 (6) = 1
625 sf-exg 1.11
626 root 1.41 =item bool ecb_is_pot32 (uint32_t x)
627    
628     =item bool ecb_is_pot64 (uint32_t x)
629    
630 root 1.77 =item bool ecb_is_pot (T x) [C++]
631    
632 sf-exg 1.66 Returns true iff C<x> is a power of two or C<x == 0>.
633 root 1.41
634 sf-exg 1.66 For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
635 root 1.41
636 root 1.77 The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
637     C<uint32_t> and C<uint64_t> types.
638    
639 root 1.35 =item int ecb_ld32 (uint32_t x)
640    
641     =item int ecb_ld64 (uint64_t x)
642    
643 root 1.77 =item int ecb_ld64 (T x) [C++]
644    
645 root 1.35 Returns the index of the most significant bit set in C<x>, or the number
646     of digits the number requires in binary (so that C<< 2**ld <= x <
647     2**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
648     to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
649     example to see how many bits a certain number requires to be encoded.
650    
651     This function is similar to the "count leading zero bits" function, except
652     that that one returns how many zero bits are "in front" of the number (in
653     the given data type), while C<ecb_ld> returns how many bits the number
654     itself requires.
655    
656 root 1.36 For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
657    
658 root 1.77 The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
659     C<uint32_t> and C<uint64_t> types.
660    
661 root 1.3 =item int ecb_popcount32 (uint32_t x)
662    
663 root 1.35 =item int ecb_popcount64 (uint64_t x)
664    
665 root 1.77 =item int ecb_popcount (T x) [C++]
666    
667 root 1.36 Returns the number of bits set to 1 in C<x>.
668    
669     For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
670    
671 root 1.77 The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
672     C<uint32_t> and C<uint64_t> types.
673    
674 root 1.36 For example:
675 sf-exg 1.11
676 root 1.15 ecb_popcount32 (7) = 3
677     ecb_popcount32 (255) = 8
678 sf-exg 1.11
679 root 1.39 =item uint8_t ecb_bitrev8 (uint8_t x)
680    
681     =item uint16_t ecb_bitrev16 (uint16_t x)
682    
683     =item uint32_t ecb_bitrev32 (uint32_t x)
684    
685 root 1.77 =item T ecb_bitrev (T x) [C++]
686    
687 root 1.39 Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
688     and so on.
689    
690 root 1.77 The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
691    
692 root 1.39 Example:
693    
694     ecb_bitrev8 (0xa7) = 0xea
695     ecb_bitrev32 (0xffcc4411) = 0x882233ff
696    
697 root 1.77 =item T ecb_bitrev (T x) [C++]
698    
699     Overloaded C++ bitrev function.
700    
701     C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
702    
703 root 1.8 =item uint32_t ecb_bswap16 (uint32_t x)
704    
705 root 1.3 =item uint32_t ecb_bswap32 (uint32_t x)
706    
707 root 1.34 =item uint64_t ecb_bswap64 (uint64_t x)
708 sf-exg 1.13
709 root 1.78 =item T ecb_bswap (T x)
710    
711 root 1.34 These functions return the value of the 16-bit (32-bit, 64-bit) value
712     C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
713     C<ecb_bswap32>).
714    
715 root 1.77 The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
716     C<uint32_t> and C<uint64_t> types.
717 root 1.76
718 root 1.34 =item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
719    
720     =item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
721 root 1.3
722     =item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
723    
724 root 1.34 =item uint64_t ecb_rotl64 (uint64_t x, unsigned int count)
725    
726     =item uint8_t ecb_rotr8 (uint8_t x, unsigned int count)
727    
728     =item uint16_t ecb_rotr16 (uint16_t x, unsigned int count)
729    
730     =item uint32_t ecb_rotr32 (uint32_t x, unsigned int count)
731    
732 root 1.33 =item uint64_t ecb_rotr64 (uint64_t x, unsigned int count)
733    
734 root 1.34 These two families of functions return the value of C<x> after rotating
735     all the bits by C<count> positions to the right (C<ecb_rotr>) or left
736     (C<ecb_rotl>).
737 sf-exg 1.11
738 root 1.93 The valid range for C<count> is C<1> to the number of bits in the
739     underlying datatype minus one (7/15/31/63). If you need a rotate count
740     of zero you need to add an extra check before calling these functions
741     currently.
742    
743 root 1.85 Current GCC/clang versions understand these functions and usually compile
744     them to "optimal" code (e.g. a single C<rol> or a combination of C<shld>
745     on x86).
746 root 1.20
747 root 1.77 =item T ecb_rotl (T x, unsigned int count) [C++]
748    
749     =item T ecb_rotr (T x, unsigned int count) [C++]
750    
751     Overloaded C++ rotl/rotr functions.
752    
753     C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
754    
755 root 1.3 =back
756 root 1.1
757 root 1.76 =head2 HOST ENDIANNESS CONVERSION
758    
759 root 1.88 =over
760 root 1.76
761     =item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
762    
763     =item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
764    
765     =item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
766    
767     =item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
768    
769     =item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
770    
771     =item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
772    
773     Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
774    
775     The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
776 root 1.79 where C<be> and C<le> stand for big endian and little endian, respectively.
777 root 1.76
778     =item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
779    
780     =item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
781    
782     =item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
783    
784     =item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
785    
786     =item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
787    
788     =item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
789    
790     Like above, but converts I<from> host byte order to the specified
791     endianness.
792    
793     =back
794    
795 root 1.77 In C++ the following additional template functions are supported:
796 root 1.76
797 root 1.88 =over
798 root 1.76
799     =item T ecb_be_to_host (T v)
800    
801     =item T ecb_le_to_host (T v)
802    
803     =item T ecb_host_to_be (T v)
804    
805     =item T ecb_host_to_le (T v)
806    
807 root 1.86 =back
808    
809 root 1.77 These functions work like their C counterparts, above, but use templates,
810     which make them useful in generic code.
811 root 1.76
812     C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
813     (so unlike their C counterparts, there is a version for C<uint8_t>, which
814     again can be useful in generic code).
815    
816     =head2 UNALIGNED LOAD/STORE
817    
818     These function load or store unaligned multi-byte values.
819    
820 root 1.88 =over
821 root 1.76
822     =item uint_fast16_t ecb_peek_u16_u (const void *ptr)
823    
824     =item uint_fast32_t ecb_peek_u32_u (const void *ptr)
825    
826     =item uint_fast64_t ecb_peek_u64_u (const void *ptr)
827    
828     These functions load an unaligned, unsigned 16, 32 or 64 bit value from
829     memory.
830    
831     =item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
832    
833     =item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
834    
835     =item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
836    
837     =item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
838    
839     =item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
840    
841     =item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
842    
843     Like above, but additionally convert from big endian (C<be>) or little
844     endian (C<le>) byte order to host byte order while doing so.
845    
846     =item ecb_poke_u16_u (void *ptr, uint16_t v)
847    
848     =item ecb_poke_u32_u (void *ptr, uint32_t v)
849    
850     =item ecb_poke_u64_u (void *ptr, uint64_t v)
851    
852     These functions store an unaligned, unsigned 16, 32 or 64 bit value to
853     memory.
854    
855     =item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
856    
857     =item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
858    
859     =item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
860    
861     =item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
862    
863     =item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
864    
865     =item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
866    
867     Like above, but additionally convert from host byte order to big endian
868     (C<be>) or little endian (C<le>) byte order while doing so.
869    
870     =back
871    
872 root 1.77 In C++ the following additional template functions are supported:
873 root 1.76
874 root 1.88 =over
875 root 1.76
876 root 1.80 =item T ecb_peek<T> (const void *ptr)
877 root 1.76
878 root 1.80 =item T ecb_peek_be<T> (const void *ptr)
879 root 1.76
880 root 1.80 =item T ecb_peek_le<T> (const void *ptr)
881 root 1.76
882 root 1.80 =item T ecb_peek_u<T> (const void *ptr)
883 root 1.76
884 root 1.80 =item T ecb_peek_be_u<T> (const void *ptr)
885 root 1.76
886 root 1.80 =item T ecb_peek_le_u<T> (const void *ptr)
887 root 1.76
888     Similarly to their C counterparts, these functions load an unsigned 8, 16,
889     32 or 64 bit value from memory, with optional conversion from big/little
890     endian.
891    
892 root 1.80 Since the type cannot be deduced, it has to be specified explicitly, e.g.
893 root 1.76
894     uint_fast16_t v = ecb_peek<uint16_t> (ptr);
895    
896     C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
897    
898     Unlike their C counterparts, these functions support 8 bit quantities
899     (C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
900     all of which hopefully makes them more useful in generic code.
901    
902     =item ecb_poke (void *ptr, T v)
903    
904     =item ecb_poke_be (void *ptr, T v)
905    
906     =item ecb_poke_le (void *ptr, T v)
907    
908     =item ecb_poke_u (void *ptr, T v)
909    
910     =item ecb_poke_be_u (void *ptr, T v)
911    
912     =item ecb_poke_le_u (void *ptr, T v)
913    
914     Again, similarly to their C counterparts, these functions store an
915     unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
916     big/little endian.
917    
918     C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
919    
920     Unlike their C counterparts, these functions support 8 bit quantities
921     (C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
922     all of which hopefully makes them more useful in generic code.
923    
924     =back
925    
926 root 1.89 =head2 FAST INTEGER TO STRING
927    
928     Libecb defines a set of very fast integer to decimal string (or integer
929     to ascii, short C<i2a>) functions. These work by converting the integer
930     to a fixed point representation and then successively multiplying out
931     the topmost digits. Unlike some other, also very fast, libraries, ecb's
932     algorithm should be completely branchless per digit, and does not rely on
933     the presence of special cpu functions (such as clz).
934    
935     There is a high level API that takes an C<int32_t>, C<uint32_t>,
936     C<int64_t> or C<uint64_t> as argument, and a low-level API, which is
937     harder to use but supports slightly more formatting options.
938    
939     =head3 HIGH LEVEL API
940    
941     The high level API consists of four functions, one each for C<int32_t>,
942     C<uint32_t>, C<int64_t> and C<uint64_t>:
943    
944 root 1.91 Example:
945    
946     char buf[ECB_I2A_MAX_DIGITS + 1];
947     char *end = ecb_i2a_i32 (buf, 17262);
948     *end = 0;
949     // buf now contains "17262"
950    
951 root 1.89 =over
952    
953     =item ECB_I2A_I32_DIGITS (=11)
954    
955     =item char *ecb_i2a_u32 (char *ptr, uint32_t value)
956    
957     Takes an C<uint32_t> I<value> and formats it as a decimal number starting
958     at I<ptr>, using at most C<ECB_I2A_I32_DIGITS> characters. Returns a
959     pointer to just after the generated string, where you would normally put
960 sf-exg 1.92 the terminating C<0> character. This function outputs the minimum number
961 root 1.89 of digits.
962    
963     =item ECB_I2A_U32_DIGITS (=10)
964    
965     =item char *ecb_i2a_i32 (char *ptr, int32_t value)
966    
967     Same as C<ecb_i2a_u32>, but formats a C<int32_t> value, including a minus
968     sign if needed.
969    
970     =item ECB_I2A_I64_DIGITS (=20)
971    
972     =item char *ecb_i2a_u64 (char *ptr, uint64_t value)
973    
974     =item ECB_I2A_U64_DIGITS (=21)
975    
976     =item char *ecb_i2a_i64 (char *ptr, int64_t value)
977    
978     Similar to their 32 bit counterparts, these take a 64 bit argument.
979    
980 root 1.90 =item ECB_I2A_MAX_DIGITS (=21)
981 root 1.89
982     Instead of using a type specific length macro, youi can just use
983 root 1.90 C<ECB_I2A_MAX_DIGITS>, which is good enough for any C<ecb_i2a> function.
984 root 1.89
985     =back
986    
987     =head3 LOW-LEVEL API
988    
989     The functions above use a number of low-level APIs which have some strict
990 sf-exg 1.92 limitations, but can be used as building blocks (study of C<ecb_i2a_i32>
991     and related functions is recommended).
992 root 1.89
993     There are three families of functions: functions that convert a number
994     to a fixed number of digits with leading zeroes (C<ecb_i2a_0N>, C<0>
995     for "leading zeroes"), functions that generate up to N digits, skipping
996     leading zeroes (C<_N>), and functions that can generate more digits, but
997     the leading digit has limited range (C<_xN>).
998    
999 sf-exg 1.92 None of the functions deal with negative numbers.
1000 root 1.89
1001 root 1.91 Example: convert an IP address in an u32 into dotted-quad:
1002    
1003     uint32_t ip = 0x0a000164; // 10.0.1.100
1004     char ips[3 * 4 + 3 + 1];
1005     char *ptr = ips;
1006     ptr = ecb_i2a_3 (ptr, ip >> 24 ); *ptr++ = '.';
1007     ptr = ecb_i2a_3 (ptr, (ip >> 16) & 0xff); *ptr++ = '.';
1008     ptr = ecb_i2a_3 (ptr, (ip >> 8) & 0xff); *ptr++ = '.';
1009     ptr = ecb_i2a_3 (ptr, ip & 0xff); *ptr++ = 0;
1010     printf ("ip: %s\n", ips); // prints "ip: 10.0.1.100"
1011    
1012 root 1.89 =over
1013    
1014     =item char *ecb_i2a_02 (char *ptr, uint32_t value) // 32 bit
1015    
1016     =item char *ecb_i2a_03 (char *ptr, uint32_t value) // 32 bit
1017    
1018     =item char *ecb_i2a_04 (char *ptr, uint32_t value) // 32 bit
1019    
1020     =item char *ecb_i2a_05 (char *ptr, uint32_t value) // 64 bit
1021    
1022     =item char *ecb_i2a_06 (char *ptr, uint32_t value) // 64 bit
1023    
1024     =item char *ecb_i2a_07 (char *ptr, uint32_t value) // 64 bit
1025    
1026     =item char *ecb_i2a_08 (char *ptr, uint32_t value) // 64 bit
1027    
1028     =item char *ecb_i2a_09 (char *ptr, uint32_t value) // 64 bit
1029    
1030     The C<< ecb_i2a_0I<N> > functions take an unsigned I<value> and convert
1031     them to exactly I<N> digits, returning a pointer to the first character
1032     after the digits. The I<value> must be in range. The functions marked with
1033     I<32 bit> do their calculations internally in 32 bit, the ones marked with
1034     I<64 bit> internally use 64 bit integers, which might be slow on 32 bit
1035     architectures (the high level API decides on 32 vs. 64 bit versions using
1036     C<ECB_64BIT_NATIVE>).
1037    
1038     =item char *ecb_i2a_2 (char *ptr, uint32_t value) // 32 bit
1039    
1040     =item char *ecb_i2a_3 (char *ptr, uint32_t value) // 32 bit
1041    
1042     =item char *ecb_i2a_4 (char *ptr, uint32_t value) // 32 bit
1043    
1044     =item char *ecb_i2a_5 (char *ptr, uint32_t value) // 64 bit
1045    
1046     =item char *ecb_i2a_6 (char *ptr, uint32_t value) // 64 bit
1047    
1048     =item char *ecb_i2a_7 (char *ptr, uint32_t value) // 64 bit
1049    
1050     =item char *ecb_i2a_8 (char *ptr, uint32_t value) // 64 bit
1051    
1052     =item char *ecb_i2a_9 (char *ptr, uint32_t value) // 64 bit
1053    
1054     Similarly, the C<< ecb_i2a_I<N> > functions take an unsigned I<value>
1055     and convert them to at most I<N> digits, suppressing leading zeroes, and
1056     returning a pointer to the first character after the digits.
1057    
1058     =item ECB_I2A_MAX_X5 (=59074)
1059    
1060     =item char *ecb_i2a_x5 (char *ptr, uint32_t value) // 32 bit
1061    
1062     =item ECB_I2A_MAX_X10 (=2932500665)
1063    
1064     =item char *ecb_i2a_x10 (char *ptr, uint32_t value) // 64 bit
1065    
1066     The C<< ecb_i2a_xI<N> >> functions are similar to the C<< ecb_i2a_I<N> >
1067     functions, but they can generate one digit more, as long as the number
1068     is within range, which is given by the symbols C<ECB_I2A_MAX_X5> (almost
1069     16 bit range) and C<ECB_I2A_MAX_X10> (a bit more than 31 bit range),
1070     respectively.
1071    
1072 sf-exg 1.92 For example, the digit part of a 32 bit signed integer just fits into the
1073 root 1.89 C<ECB_I2A_MAX_X10> range, so while C<ecb_i2a_x10> cannot convert a 10
1074     digit number, it can convert all 32 bit signed numbers. Sadly, it's not
1075     good enough for 32 bit unsigned numbers.
1076    
1077     =back
1078    
1079 root 1.50 =head2 FLOATING POINT FIDDLING
1080    
1081 root 1.88 =over
1082 root 1.50
1083 root 1.71 =item ECB_INFINITY [-UECB_NO_LIBM]
1084 root 1.62
1085     Evaluates to positive infinity if supported by the platform, otherwise to
1086     a truly huge number.
1087    
1088 root 1.71 =item ECB_NAN [-UECB_NO_LIBM]
1089 root 1.62
1090     Evaluates to a quiet NAN if supported by the platform, otherwise to
1091     C<ECB_INFINITY>.
1092    
1093 root 1.71 =item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
1094 root 1.62
1095     Same as C<ldexpf>, but always available.
1096    
1097 root 1.71 =item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
1098    
1099 root 1.50 =item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
1100    
1101     =item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
1102    
1103     These functions each take an argument in the native C<float> or C<double>
1104 root 1.71 type and return the IEEE 754 bit representation of it (binary16/half,
1105     binary32/single or binary64/double precision).
1106 root 1.50
1107     The bit representation is just as IEEE 754 defines it, i.e. the sign bit
1108     will be the most significant bit, followed by exponent and mantissa.
1109    
1110     This function should work even when the native floating point format isn't
1111     IEEE compliant, of course at a speed and code size penalty, and of course
1112     also within reasonable limits (it tries to convert NaNs, infinities and
1113     denormals, but will likely convert negative zero to positive zero).
1114    
1115     On all modern platforms (where C<ECB_STDFP> is true), the compiler should
1116     be able to optimise away this function completely.
1117    
1118     These functions can be helpful when serialising floats to the network - you
1119 root 1.71 can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
1120 root 1.50
1121     Another use for these functions is to manipulate floating point values
1122     directly.
1123    
1124     Silly example: toggle the sign bit of a float.
1125    
1126     /* On gcc-4.7 on amd64, */
1127     /* this results in a single add instruction to toggle the bit, and 4 extra */
1128     /* instructions to move the float value to an integer register and back. */
1129    
1130     x = ecb_binary32_to_float (ecb_float_to_binary32 (x) ^ 0x80000000U)
1131    
1132 root 1.58 =item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM]
1133    
1134 root 1.50 =item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
1135    
1136 root 1.70 =item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
1137 root 1.50
1138 sf-exg 1.59 The reverse operation of the previous function - takes the bit
1139 root 1.71 representation of an IEEE binary16, binary32 or binary64 number (half,
1140     single or double precision) and converts it to the native C<float> or
1141     C<double> format.
1142 root 1.50
1143     This function should work even when the native floating point format isn't
1144     IEEE compliant, of course at a speed and code size penalty, and of course
1145     also within reasonable limits (it tries to convert normals and denormals,
1146     and might be lucky for infinities, and with extraordinary luck, also for
1147     negative zero).
1148    
1149     On all modern platforms (where C<ECB_STDFP> is true), the compiler should
1150     be able to optimise away this function completely.
1151    
1152 root 1.71 =item uint16_t ecb_binary32_to_binary16 (uint32_t x)
1153    
1154     =item uint32_t ecb_binary16_to_binary32 (uint16_t x)
1155    
1156     Convert a IEEE binary32/single precision to binary16/half format, and vice
1157 root 1.72 versa, handling all details (round-to-nearest-even, subnormals, infinity
1158     and NaNs) correctly.
1159 root 1.71
1160     These are functions are available under C<-DECB_NO_LIBM>, since
1161     they do not rely on the platform floating point format. The
1162     C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
1163     usually what you want.
1164    
1165 root 1.50 =back
1166    
1167 root 1.1 =head2 ARITHMETIC
1168    
1169 root 1.88 =over
1170 root 1.3
1171 root 1.14 =item x = ecb_mod (m, n)
1172 root 1.3
1173 root 1.25 Returns C<m> modulo C<n>, which is the same as the positive remainder
1174     of the division operation between C<m> and C<n>, using floored
1175     division. Unlike the C remainder operator C<%>, this function ensures that
1176     the return value is always positive and that the two numbers I<m> and
1177     I<m' = m + i * n> result in the same value modulo I<n> - in other words,
1178     C<ecb_mod> implements the mathematical modulo operation, which is missing
1179     in the language.
1180 root 1.14
1181 sf-exg 1.23 C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be
1182 root 1.14 negatable, that is, both C<m> and C<-m> must be representable in its
1183 root 1.30 type (this typically excludes the minimum signed integer value, the same
1184 root 1.25 limitation as for C</> and C<%> in C).
1185 sf-exg 1.11
1186 root 1.85 Current GCC/clang versions compile this into an efficient branchless
1187     sequence on almost all CPUs.
1188 root 1.24
1189     For example, when you want to rotate forward through the members of an
1190     array for increasing C<m> (which might be negative), then you should use
1191     C<ecb_mod>, as the C<%> operator might give either negative results, or
1192     change direction for negative values:
1193    
1194     for (m = -100; m <= 100; ++m)
1195     int elem = myarray [ecb_mod (m, ecb_array_length (myarray))];
1196    
1197 sf-exg 1.37 =item x = ecb_div_rd (val, div)
1198    
1199     =item x = ecb_div_ru (val, div)
1200    
1201     Returns C<val> divided by C<div> rounded down or up, respectively.
1202     C<val> and C<div> must have integer types and C<div> must be strictly
1203 sf-exg 1.38 positive. Note that these functions are implemented with macros in C
1204     and with function templates in C++.
1205 sf-exg 1.37
1206 root 1.3 =back
1207 root 1.1
1208     =head2 UTILITY
1209    
1210 root 1.88 =over
1211 root 1.3
1212 sf-exg 1.23 =item element_count = ecb_array_length (name)
1213 root 1.3
1214 sf-exg 1.13 Returns the number of elements in the array C<name>. For example:
1215    
1216     int primes[] = { 2, 3, 5, 7, 11 };
1217     int sum = 0;
1218    
1219     for (i = 0; i < ecb_array_length (primes); i++)
1220     sum += primes [i];
1221    
1222 root 1.3 =back
1223 root 1.1
1224 root 1.43 =head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF
1225    
1226     These symbols need to be defined before including F<ecb.h> the first time.
1227    
1228 root 1.88 =over
1229 root 1.43
1230 root 1.51 =item ECB_NO_THREADS
1231 root 1.43
1232     If F<ecb.h> is never used from multiple threads, then this symbol can
1233     be defined, in which case memory fences (and similar constructs) are
1234     completely removed, leading to more efficient code and fewer dependencies.
1235    
1236     Setting this symbol to a true value implies C<ECB_NO_SMP>.
1237    
1238     =item ECB_NO_SMP
1239    
1240     The weaker version of C<ECB_NO_THREADS> - if F<ecb.h> is used from
1241     multiple threads, but never concurrently (e.g. if the system the program
1242     runs on has only a single CPU with a single core, no hyperthreading and so
1243     on), then this symbol can be defined, leading to more efficient code and
1244     fewer dependencies.
1245    
1246 root 1.50 =item ECB_NO_LIBM
1247    
1248     When defined to C<1>, do not export any functions that might introduce
1249     dependencies on the math library (usually called F<-lm>) - these are
1250     marked with [-UECB_NO_LIBM].
1251    
1252 sf-exg 1.69 =back
1253    
1254 root 1.68 =head1 UNDOCUMENTED FUNCTIONALITY
1255    
1256     F<ecb.h> is full of undocumented functionality as well, some of which is
1257     intended to be internal-use only, some of which we forgot to document, and
1258     some of which we hide because we are not sure we will keep the interface
1259     stable.
1260    
1261     While you are welcome to rummage around and use whatever you find useful
1262     (we can't stop you), keep in mind that we will change undocumented
1263     functionality in incompatible ways without thinking twice, while we are
1264     considerably more conservative with documented things.
1265    
1266     =head1 AUTHORS
1267    
1268     C<libecb> is designed and maintained by:
1269    
1270     Emanuele Giaquinta <e.giaquinta@glauco.it>
1271     Marc Alexander Lehmann <schmorp@schmorp.de>
1272    
1273 root 1.1