ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.258
Committed: Sun Sep 7 18:15:12 2008 UTC (15 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.257: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.207 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52     # if HAVE_CLOCK_GETTIME
53 root 1.97 # ifndef EV_USE_MONOTONIC
54     # define EV_USE_MONOTONIC 1
55     # endif
56     # ifndef EV_USE_REALTIME
57     # define EV_USE_REALTIME 1
58     # endif
59 root 1.126 # else
60     # ifndef EV_USE_MONOTONIC
61     # define EV_USE_MONOTONIC 0
62     # endif
63     # ifndef EV_USE_REALTIME
64     # define EV_USE_REALTIME 0
65     # endif
66 root 1.60 # endif
67    
68 root 1.193 # ifndef EV_USE_NANOSLEEP
69     # if HAVE_NANOSLEEP
70     # define EV_USE_NANOSLEEP 1
71     # else
72     # define EV_USE_NANOSLEEP 0
73     # endif
74     # endif
75    
76 root 1.127 # ifndef EV_USE_SELECT
77     # if HAVE_SELECT && HAVE_SYS_SELECT_H
78     # define EV_USE_SELECT 1
79     # else
80     # define EV_USE_SELECT 0
81     # endif
82 root 1.60 # endif
83    
84 root 1.127 # ifndef EV_USE_POLL
85     # if HAVE_POLL && HAVE_POLL_H
86     # define EV_USE_POLL 1
87     # else
88     # define EV_USE_POLL 0
89     # endif
90 root 1.60 # endif
91 root 1.127
92     # ifndef EV_USE_EPOLL
93     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94     # define EV_USE_EPOLL 1
95     # else
96     # define EV_USE_EPOLL 0
97     # endif
98 root 1.60 # endif
99 root 1.127
100     # ifndef EV_USE_KQUEUE
101     # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102     # define EV_USE_KQUEUE 1
103     # else
104     # define EV_USE_KQUEUE 0
105     # endif
106 root 1.60 # endif
107 root 1.127
108     # ifndef EV_USE_PORT
109     # if HAVE_PORT_H && HAVE_PORT_CREATE
110     # define EV_USE_PORT 1
111     # else
112     # define EV_USE_PORT 0
113     # endif
114 root 1.118 # endif
115    
116 root 1.152 # ifndef EV_USE_INOTIFY
117     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118     # define EV_USE_INOTIFY 1
119     # else
120     # define EV_USE_INOTIFY 0
121     # endif
122     # endif
123    
124 root 1.220 # ifndef EV_USE_EVENTFD
125     # if HAVE_EVENTFD
126     # define EV_USE_EVENTFD 1
127     # else
128     # define EV_USE_EVENTFD 0
129     # endif
130     # endif
131 root 1.250
132 root 1.29 #endif
133 root 1.17
134 root 1.1 #include <math.h>
135     #include <stdlib.h>
136 root 1.7 #include <fcntl.h>
137 root 1.16 #include <stddef.h>
138 root 1.1
139     #include <stdio.h>
140    
141 root 1.4 #include <assert.h>
142 root 1.1 #include <errno.h>
143 root 1.22 #include <sys/types.h>
144 root 1.71 #include <time.h>
145    
146 root 1.72 #include <signal.h>
147 root 1.71
148 root 1.152 #ifdef EV_H
149     # include EV_H
150     #else
151     # include "ev.h"
152     #endif
153    
154 root 1.103 #ifndef _WIN32
155 root 1.71 # include <sys/time.h>
156 root 1.45 # include <sys/wait.h>
157 root 1.140 # include <unistd.h>
158 root 1.103 #else
159 root 1.256 # include <io.h>
160 root 1.103 # define WIN32_LEAN_AND_MEAN
161     # include <windows.h>
162     # ifndef EV_SELECT_IS_WINSOCKET
163     # define EV_SELECT_IS_WINSOCKET 1
164     # endif
165 root 1.45 #endif
166 root 1.103
167 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
168 root 1.40
169 root 1.29 #ifndef EV_USE_MONOTONIC
170 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171     # define EV_USE_MONOTONIC 1
172     # else
173     # define EV_USE_MONOTONIC 0
174     # endif
175 root 1.37 #endif
176    
177 root 1.118 #ifndef EV_USE_REALTIME
178 root 1.121 # define EV_USE_REALTIME 0
179 root 1.118 #endif
180    
181 root 1.193 #ifndef EV_USE_NANOSLEEP
182 root 1.253 # if _POSIX_C_SOURCE >= 199309L
183     # define EV_USE_NANOSLEEP 1
184     # else
185     # define EV_USE_NANOSLEEP 0
186     # endif
187 root 1.193 #endif
188    
189 root 1.29 #ifndef EV_USE_SELECT
190     # define EV_USE_SELECT 1
191 root 1.10 #endif
192    
193 root 1.59 #ifndef EV_USE_POLL
194 root 1.104 # ifdef _WIN32
195     # define EV_USE_POLL 0
196     # else
197     # define EV_USE_POLL 1
198     # endif
199 root 1.41 #endif
200    
201 root 1.29 #ifndef EV_USE_EPOLL
202 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203     # define EV_USE_EPOLL 1
204     # else
205     # define EV_USE_EPOLL 0
206     # endif
207 root 1.10 #endif
208    
209 root 1.44 #ifndef EV_USE_KQUEUE
210     # define EV_USE_KQUEUE 0
211     #endif
212    
213 root 1.118 #ifndef EV_USE_PORT
214     # define EV_USE_PORT 0
215 root 1.40 #endif
216    
217 root 1.152 #ifndef EV_USE_INOTIFY
218 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219     # define EV_USE_INOTIFY 1
220     # else
221     # define EV_USE_INOTIFY 0
222     # endif
223 root 1.152 #endif
224    
225 root 1.149 #ifndef EV_PID_HASHSIZE
226     # if EV_MINIMAL
227     # define EV_PID_HASHSIZE 1
228     # else
229     # define EV_PID_HASHSIZE 16
230     # endif
231     #endif
232    
233 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
234     # if EV_MINIMAL
235     # define EV_INOTIFY_HASHSIZE 1
236     # else
237     # define EV_INOTIFY_HASHSIZE 16
238     # endif
239     #endif
240    
241 root 1.220 #ifndef EV_USE_EVENTFD
242     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243     # define EV_USE_EVENTFD 1
244     # else
245     # define EV_USE_EVENTFD 0
246     # endif
247     #endif
248    
249 root 1.249 #if 0 /* debugging */
250 root 1.250 # define EV_VERIFY 3
251 root 1.249 # define EV_USE_4HEAP 1
252     # define EV_HEAP_CACHE_AT 1
253     #endif
254    
255 root 1.250 #ifndef EV_VERIFY
256     # define EV_VERIFY !EV_MINIMAL
257     #endif
258    
259 root 1.243 #ifndef EV_USE_4HEAP
260     # define EV_USE_4HEAP !EV_MINIMAL
261     #endif
262    
263     #ifndef EV_HEAP_CACHE_AT
264     # define EV_HEAP_CACHE_AT !EV_MINIMAL
265     #endif
266    
267 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 root 1.40
269     #ifndef CLOCK_MONOTONIC
270     # undef EV_USE_MONOTONIC
271     # define EV_USE_MONOTONIC 0
272     #endif
273    
274 root 1.31 #ifndef CLOCK_REALTIME
275 root 1.40 # undef EV_USE_REALTIME
276 root 1.31 # define EV_USE_REALTIME 0
277     #endif
278 root 1.40
279 root 1.152 #if !EV_STAT_ENABLE
280 root 1.185 # undef EV_USE_INOTIFY
281 root 1.152 # define EV_USE_INOTIFY 0
282     #endif
283    
284 root 1.193 #if !EV_USE_NANOSLEEP
285     # ifndef _WIN32
286     # include <sys/select.h>
287     # endif
288     #endif
289    
290 root 1.152 #if EV_USE_INOTIFY
291     # include <sys/inotify.h>
292     #endif
293    
294 root 1.185 #if EV_SELECT_IS_WINSOCKET
295     # include <winsock.h>
296     #endif
297    
298 root 1.220 #if EV_USE_EVENTFD
299     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300 root 1.221 # include <stdint.h>
301 root 1.222 # ifdef __cplusplus
302     extern "C" {
303     # endif
304 root 1.220 int eventfd (unsigned int initval, int flags);
305 root 1.222 # ifdef __cplusplus
306     }
307     # endif
308 root 1.220 #endif
309    
310 root 1.40 /**/
311 root 1.1
312 root 1.250 #if EV_VERIFY >= 3
313 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314     #else
315     # define EV_FREQUENT_CHECK do { } while (0)
316     #endif
317    
318 root 1.176 /*
319     * This is used to avoid floating point rounding problems.
320     * It is added to ev_rt_now when scheduling periodics
321     * to ensure progress, time-wise, even when rounding
322     * errors are against us.
323 root 1.177 * This value is good at least till the year 4000.
324 root 1.176 * Better solutions welcome.
325     */
326     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
327    
328 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330 root 1.176 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
331 root 1.1
332 root 1.185 #if __GNUC__ >= 4
333 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
334 root 1.169 # define noinline __attribute__ ((noinline))
335 root 1.40 #else
336     # define expect(expr,value) (expr)
337 root 1.140 # define noinline
338 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339 root 1.169 # define inline
340     # endif
341 root 1.40 #endif
342    
343     #define expect_false(expr) expect ((expr) != 0, 0)
344     #define expect_true(expr) expect ((expr) != 0, 1)
345 root 1.169 #define inline_size static inline
346    
347     #if EV_MINIMAL
348     # define inline_speed static noinline
349     #else
350     # define inline_speed static inline
351     #endif
352 root 1.40
353 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354 root 1.164 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
355 root 1.42
356 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
357 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
358 root 1.103
359 root 1.136 typedef ev_watcher *W;
360     typedef ev_watcher_list *WL;
361     typedef ev_watcher_time *WT;
362 root 1.10
363 root 1.229 #define ev_active(w) ((W)(w))->active
364 root 1.228 #define ev_at(w) ((WT)(w))->at
365    
366 root 1.198 #if EV_USE_MONOTONIC
367 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
368     /* giving it a reasonably high chance of working on typical architetcures */
369 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370 root 1.198 #endif
371 root 1.54
372 root 1.103 #ifdef _WIN32
373 root 1.98 # include "ev_win32.c"
374     #endif
375 root 1.67
376 root 1.53 /*****************************************************************************/
377 root 1.1
378 root 1.70 static void (*syserr_cb)(const char *msg);
379 root 1.69
380 root 1.141 void
381     ev_set_syserr_cb (void (*cb)(const char *msg))
382 root 1.69 {
383     syserr_cb = cb;
384     }
385    
386 root 1.141 static void noinline
387 root 1.70 syserr (const char *msg)
388 root 1.69 {
389 root 1.70 if (!msg)
390     msg = "(libev) system error";
391    
392 root 1.69 if (syserr_cb)
393 root 1.70 syserr_cb (msg);
394 root 1.69 else
395     {
396 root 1.70 perror (msg);
397 root 1.69 abort ();
398     }
399     }
400    
401 root 1.224 static void *
402     ev_realloc_emul (void *ptr, long size)
403     {
404     /* some systems, notably openbsd and darwin, fail to properly
405     * implement realloc (x, 0) (as required by both ansi c-98 and
406     * the single unix specification, so work around them here.
407     */
408    
409     if (size)
410     return realloc (ptr, size);
411    
412     free (ptr);
413     return 0;
414     }
415    
416     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
417 root 1.69
418 root 1.141 void
419 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
420 root 1.69 {
421     alloc = cb;
422     }
423    
424 root 1.150 inline_speed void *
425 root 1.155 ev_realloc (void *ptr, long size)
426 root 1.69 {
427 root 1.224 ptr = alloc (ptr, size);
428 root 1.69
429     if (!ptr && size)
430     {
431 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
432 root 1.69 abort ();
433     }
434    
435     return ptr;
436     }
437    
438     #define ev_malloc(size) ev_realloc (0, (size))
439     #define ev_free(ptr) ev_realloc ((ptr), 0)
440    
441     /*****************************************************************************/
442    
443 root 1.53 typedef struct
444     {
445 root 1.68 WL head;
446 root 1.53 unsigned char events;
447     unsigned char reify;
448 root 1.103 #if EV_SELECT_IS_WINSOCKET
449     SOCKET handle;
450     #endif
451 root 1.53 } ANFD;
452 root 1.1
453 root 1.53 typedef struct
454     {
455     W w;
456     int events;
457     } ANPENDING;
458 root 1.51
459 root 1.155 #if EV_USE_INOTIFY
460 root 1.241 /* hash table entry per inotify-id */
461 root 1.152 typedef struct
462     {
463     WL head;
464 root 1.155 } ANFS;
465 root 1.152 #endif
466    
467 root 1.241 /* Heap Entry */
468     #if EV_HEAP_CACHE_AT
469     typedef struct {
470 root 1.243 ev_tstamp at;
471 root 1.241 WT w;
472     } ANHE;
473    
474 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
475     #define ANHE_at(he) (he).at /* access cached at, read-only */
476     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477 root 1.241 #else
478     typedef WT ANHE;
479    
480 root 1.248 #define ANHE_w(he) (he)
481     #define ANHE_at(he) (he)->at
482     #define ANHE_at_cache(he)
483 root 1.241 #endif
484    
485 root 1.55 #if EV_MULTIPLICITY
486 root 1.54
487 root 1.80 struct ev_loop
488     {
489 root 1.86 ev_tstamp ev_rt_now;
490 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
491 root 1.80 #define VAR(name,decl) decl;
492     #include "ev_vars.h"
493     #undef VAR
494     };
495     #include "ev_wrap.h"
496    
497 root 1.116 static struct ev_loop default_loop_struct;
498     struct ev_loop *ev_default_loop_ptr;
499 root 1.54
500 root 1.53 #else
501 root 1.54
502 root 1.86 ev_tstamp ev_rt_now;
503 root 1.80 #define VAR(name,decl) static decl;
504     #include "ev_vars.h"
505     #undef VAR
506    
507 root 1.116 static int ev_default_loop_ptr;
508 root 1.54
509 root 1.51 #endif
510 root 1.1
511 root 1.8 /*****************************************************************************/
512    
513 root 1.141 ev_tstamp
514 root 1.1 ev_time (void)
515     {
516 root 1.29 #if EV_USE_REALTIME
517 root 1.1 struct timespec ts;
518     clock_gettime (CLOCK_REALTIME, &ts);
519     return ts.tv_sec + ts.tv_nsec * 1e-9;
520     #else
521     struct timeval tv;
522     gettimeofday (&tv, 0);
523     return tv.tv_sec + tv.tv_usec * 1e-6;
524     #endif
525     }
526    
527 root 1.140 ev_tstamp inline_size
528 root 1.1 get_clock (void)
529     {
530 root 1.29 #if EV_USE_MONOTONIC
531 root 1.40 if (expect_true (have_monotonic))
532 root 1.1 {
533     struct timespec ts;
534     clock_gettime (CLOCK_MONOTONIC, &ts);
535     return ts.tv_sec + ts.tv_nsec * 1e-9;
536     }
537     #endif
538    
539     return ev_time ();
540     }
541    
542 root 1.85 #if EV_MULTIPLICITY
543 root 1.51 ev_tstamp
544     ev_now (EV_P)
545     {
546 root 1.85 return ev_rt_now;
547 root 1.51 }
548 root 1.85 #endif
549 root 1.51
550 root 1.193 void
551     ev_sleep (ev_tstamp delay)
552     {
553     if (delay > 0.)
554     {
555     #if EV_USE_NANOSLEEP
556     struct timespec ts;
557    
558     ts.tv_sec = (time_t)delay;
559     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560    
561     nanosleep (&ts, 0);
562     #elif defined(_WIN32)
563 root 1.217 Sleep ((unsigned long)(delay * 1e3));
564 root 1.193 #else
565     struct timeval tv;
566    
567     tv.tv_sec = (time_t)delay;
568     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569    
570 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571     /* somehting nto guaranteed by newer posix versions, but guaranteed */
572     /* by older ones */
573 root 1.193 select (0, 0, 0, 0, &tv);
574     #endif
575     }
576     }
577    
578     /*****************************************************************************/
579    
580 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581 root 1.232
582 root 1.163 int inline_size
583     array_nextsize (int elem, int cur, int cnt)
584     {
585     int ncur = cur + 1;
586    
587     do
588     ncur <<= 1;
589     while (cnt > ncur);
590    
591 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
592     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 root 1.163 {
594     ncur *= elem;
595 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 root 1.163 ncur = ncur - sizeof (void *) * 4;
597     ncur /= elem;
598     }
599    
600     return ncur;
601     }
602    
603 root 1.171 static noinline void *
604 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
605     {
606     *cur = array_nextsize (elem, *cur, cnt);
607     return ev_realloc (base, elem * *cur);
608     }
609 root 1.29
610 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
611 root 1.163 if (expect_false ((cnt) > (cur))) \
612 root 1.69 { \
613 root 1.163 int ocur_ = (cur); \
614     (base) = (type *)array_realloc \
615     (sizeof (type), (base), &(cur), (cnt)); \
616     init ((base) + (ocur_), (cur) - ocur_); \
617 root 1.1 }
618    
619 root 1.163 #if 0
620 root 1.74 #define array_slim(type,stem) \
621 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
622     { \
623     stem ## max = array_roundsize (stem ## cnt >> 1); \
624 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
625 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626     }
627 root 1.163 #endif
628 root 1.67
629 root 1.65 #define array_free(stem, idx) \
630 root 1.69 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
631 root 1.65
632 root 1.8 /*****************************************************************************/
633    
634 root 1.140 void noinline
635 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
636 root 1.1 {
637 root 1.78 W w_ = (W)w;
638 root 1.171 int pri = ABSPRI (w_);
639 root 1.78
640 root 1.123 if (expect_false (w_->pending))
641 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
642     else
643 root 1.32 {
644 root 1.171 w_->pending = ++pendingcnt [pri];
645     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646     pendings [pri][w_->pending - 1].w = w_;
647     pendings [pri][w_->pending - 1].events = revents;
648 root 1.32 }
649 root 1.1 }
650    
651 root 1.179 void inline_speed
652 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
653 root 1.27 {
654     int i;
655    
656     for (i = 0; i < eventcnt; ++i)
657 root 1.78 ev_feed_event (EV_A_ events [i], type);
658 root 1.27 }
659    
660 root 1.141 /*****************************************************************************/
661    
662     void inline_size
663     anfds_init (ANFD *base, int count)
664     {
665     while (count--)
666     {
667     base->head = 0;
668     base->events = EV_NONE;
669     base->reify = 0;
670    
671     ++base;
672     }
673     }
674    
675 root 1.140 void inline_speed
676 root 1.79 fd_event (EV_P_ int fd, int revents)
677 root 1.1 {
678     ANFD *anfd = anfds + fd;
679 root 1.136 ev_io *w;
680 root 1.1
681 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
682 root 1.1 {
683 root 1.79 int ev = w->events & revents;
684 root 1.1
685     if (ev)
686 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
687 root 1.1 }
688     }
689    
690 root 1.79 void
691     ev_feed_fd_event (EV_P_ int fd, int revents)
692     {
693 root 1.168 if (fd >= 0 && fd < anfdmax)
694     fd_event (EV_A_ fd, revents);
695 root 1.79 }
696    
697 root 1.140 void inline_size
698 root 1.51 fd_reify (EV_P)
699 root 1.9 {
700     int i;
701    
702 root 1.27 for (i = 0; i < fdchangecnt; ++i)
703     {
704     int fd = fdchanges [i];
705     ANFD *anfd = anfds + fd;
706 root 1.136 ev_io *w;
707 root 1.27
708 root 1.184 unsigned char events = 0;
709 root 1.27
710 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
711 root 1.184 events |= (unsigned char)w->events;
712 root 1.27
713 root 1.103 #if EV_SELECT_IS_WINSOCKET
714     if (events)
715     {
716 root 1.254 unsigned long arg;
717 root 1.200 #ifdef EV_FD_TO_WIN32_HANDLE
718     anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719     #else
720     anfd->handle = _get_osfhandle (fd);
721     #endif
722 root 1.254 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
723 root 1.103 }
724     #endif
725    
726 root 1.184 {
727     unsigned char o_events = anfd->events;
728     unsigned char o_reify = anfd->reify;
729    
730     anfd->reify = 0;
731     anfd->events = events;
732 root 1.27
733 root 1.184 if (o_events != events || o_reify & EV_IOFDSET)
734     backend_modify (EV_A_ fd, o_events, events);
735     }
736 root 1.27 }
737    
738     fdchangecnt = 0;
739     }
740    
741 root 1.140 void inline_size
742 root 1.183 fd_change (EV_P_ int fd, int flags)
743 root 1.27 {
744 root 1.183 unsigned char reify = anfds [fd].reify;
745 root 1.184 anfds [fd].reify |= flags;
746 root 1.27
747 root 1.183 if (expect_true (!reify))
748     {
749     ++fdchangecnt;
750     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751     fdchanges [fdchangecnt - 1] = fd;
752     }
753 root 1.9 }
754    
755 root 1.140 void inline_speed
756 root 1.51 fd_kill (EV_P_ int fd)
757 root 1.41 {
758 root 1.136 ev_io *w;
759 root 1.41
760 root 1.136 while ((w = (ev_io *)anfds [fd].head))
761 root 1.41 {
762 root 1.51 ev_io_stop (EV_A_ w);
763 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 root 1.41 }
765     }
766    
767 root 1.140 int inline_size
768 root 1.71 fd_valid (int fd)
769     {
770 root 1.103 #ifdef _WIN32
771     return _get_osfhandle (fd) != -1;
772 root 1.71 #else
773     return fcntl (fd, F_GETFD) != -1;
774     #endif
775     }
776    
777 root 1.19 /* called on EBADF to verify fds */
778 root 1.140 static void noinline
779 root 1.51 fd_ebadf (EV_P)
780 root 1.19 {
781     int fd;
782    
783     for (fd = 0; fd < anfdmax; ++fd)
784 root 1.27 if (anfds [fd].events)
785 root 1.254 if (!fd_valid (fd) && errno == EBADF)
786 root 1.51 fd_kill (EV_A_ fd);
787 root 1.41 }
788    
789     /* called on ENOMEM in select/poll to kill some fds and retry */
790 root 1.140 static void noinline
791 root 1.51 fd_enomem (EV_P)
792 root 1.41 {
793 root 1.62 int fd;
794 root 1.41
795 root 1.62 for (fd = anfdmax; fd--; )
796 root 1.41 if (anfds [fd].events)
797     {
798 root 1.51 fd_kill (EV_A_ fd);
799 root 1.41 return;
800     }
801 root 1.19 }
802    
803 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
804 root 1.140 static void noinline
805 root 1.56 fd_rearm_all (EV_P)
806     {
807     int fd;
808    
809     for (fd = 0; fd < anfdmax; ++fd)
810     if (anfds [fd].events)
811     {
812     anfds [fd].events = 0;
813 root 1.184 fd_change (EV_A_ fd, EV_IOFDSET | 1);
814 root 1.56 }
815     }
816    
817 root 1.8 /*****************************************************************************/
818    
819 root 1.235 /*
820 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
821     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822     * the branching factor of the d-tree.
823     */
824    
825     /*
826 root 1.235 * at the moment we allow libev the luxury of two heaps,
827     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828     * which is more cache-efficient.
829     * the difference is about 5% with 50000+ watchers.
830     */
831 root 1.241 #if EV_USE_4HEAP
832 root 1.235
833 root 1.237 #define DHEAP 4
834     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
835 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
837 root 1.235
838     /* away from the root */
839     void inline_speed
840 root 1.241 downheap (ANHE *heap, int N, int k)
841 root 1.235 {
842 root 1.241 ANHE he = heap [k];
843     ANHE *E = heap + N + HEAP0;
844 root 1.235
845     for (;;)
846     {
847     ev_tstamp minat;
848 root 1.241 ANHE *minpos;
849 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
850 root 1.235
851 root 1.248 /* find minimum child */
852 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
853 root 1.235 {
854 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 root 1.235 }
859 root 1.240 else if (pos < E)
860 root 1.235 {
861 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 root 1.235 }
866 root 1.240 else
867     break;
868 root 1.235
869 root 1.241 if (ANHE_at (he) <= minat)
870 root 1.235 break;
871    
872 root 1.247 heap [k] = *minpos;
873 root 1.241 ev_active (ANHE_w (*minpos)) = k;
874 root 1.235
875     k = minpos - heap;
876     }
877    
878 root 1.247 heap [k] = he;
879 root 1.241 ev_active (ANHE_w (he)) = k;
880 root 1.235 }
881    
882 root 1.248 #else /* 4HEAP */
883 root 1.235
884     #define HEAP0 1
885 root 1.247 #define HPARENT(k) ((k) >> 1)
886 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
887 root 1.235
888 root 1.248 /* away from the root */
889 root 1.140 void inline_speed
890 root 1.248 downheap (ANHE *heap, int N, int k)
891 root 1.1 {
892 root 1.241 ANHE he = heap [k];
893 root 1.1
894 root 1.228 for (;;)
895 root 1.1 {
896 root 1.248 int c = k << 1;
897 root 1.179
898 root 1.248 if (c > N + HEAP0 - 1)
899 root 1.179 break;
900    
901 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902     ? 1 : 0;
903    
904     if (ANHE_at (he) <= ANHE_at (heap [c]))
905     break;
906    
907     heap [k] = heap [c];
908 root 1.241 ev_active (ANHE_w (heap [k])) = k;
909 root 1.248
910     k = c;
911 root 1.1 }
912    
913 root 1.243 heap [k] = he;
914 root 1.248 ev_active (ANHE_w (he)) = k;
915 root 1.1 }
916 root 1.248 #endif
917 root 1.1
918 root 1.248 /* towards the root */
919 root 1.140 void inline_speed
920 root 1.248 upheap (ANHE *heap, int k)
921 root 1.1 {
922 root 1.241 ANHE he = heap [k];
923 root 1.1
924 root 1.179 for (;;)
925 root 1.1 {
926 root 1.248 int p = HPARENT (k);
927 root 1.179
928 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 root 1.179 break;
930 root 1.1
931 root 1.248 heap [k] = heap [p];
932 root 1.241 ev_active (ANHE_w (heap [k])) = k;
933 root 1.248 k = p;
934 root 1.1 }
935    
936 root 1.241 heap [k] = he;
937     ev_active (ANHE_w (he)) = k;
938 root 1.1 }
939    
940 root 1.140 void inline_size
941 root 1.241 adjustheap (ANHE *heap, int N, int k)
942 root 1.84 {
943 root 1.247 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
944     upheap (heap, k);
945     else
946     downheap (heap, N, k);
947 root 1.84 }
948    
949 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
950     void inline_size
951     reheap (ANHE *heap, int N)
952     {
953     int i;
954 root 1.251
955 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957     for (i = 0; i < N; ++i)
958     upheap (heap, i + HEAP0);
959     }
960    
961 root 1.8 /*****************************************************************************/
962    
963 root 1.7 typedef struct
964     {
965 root 1.68 WL head;
966 root 1.207 EV_ATOMIC_T gotsig;
967 root 1.7 } ANSIG;
968    
969     static ANSIG *signals;
970 root 1.4 static int signalmax;
971 root 1.1
972 root 1.207 static EV_ATOMIC_T gotsig;
973 root 1.7
974 root 1.140 void inline_size
975 root 1.7 signals_init (ANSIG *base, int count)
976 root 1.1 {
977     while (count--)
978 root 1.7 {
979     base->head = 0;
980     base->gotsig = 0;
981 root 1.33
982 root 1.7 ++base;
983     }
984     }
985    
986 root 1.207 /*****************************************************************************/
987    
988     void inline_speed
989     fd_intern (int fd)
990     {
991     #ifdef _WIN32
992 root 1.254 unsigned long arg = 1;
993 root 1.207 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994     #else
995     fcntl (fd, F_SETFD, FD_CLOEXEC);
996     fcntl (fd, F_SETFL, O_NONBLOCK);
997     #endif
998     }
999    
1000     static void noinline
1001     evpipe_init (EV_P)
1002     {
1003     if (!ev_is_active (&pipeev))
1004     {
1005 root 1.220 #if EV_USE_EVENTFD
1006     if ((evfd = eventfd (0, 0)) >= 0)
1007     {
1008     evpipe [0] = -1;
1009     fd_intern (evfd);
1010     ev_io_set (&pipeev, evfd, EV_READ);
1011     }
1012     else
1013     #endif
1014     {
1015     while (pipe (evpipe))
1016     syserr ("(libev) error creating signal/async pipe");
1017 root 1.207
1018 root 1.220 fd_intern (evpipe [0]);
1019     fd_intern (evpipe [1]);
1020     ev_io_set (&pipeev, evpipe [0], EV_READ);
1021     }
1022 root 1.207
1023     ev_io_start (EV_A_ &pipeev);
1024 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 root 1.207 }
1026     }
1027    
1028     void inline_size
1029 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030 root 1.207 {
1031 root 1.214 if (!*flag)
1032 root 1.207 {
1033 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1034 root 1.214
1035     *flag = 1;
1036 root 1.220
1037     #if EV_USE_EVENTFD
1038     if (evfd >= 0)
1039     {
1040     uint64_t counter = 1;
1041     write (evfd, &counter, sizeof (uint64_t));
1042     }
1043     else
1044     #endif
1045     write (evpipe [1], &old_errno, 1);
1046 root 1.214
1047 root 1.207 errno = old_errno;
1048     }
1049     }
1050    
1051     static void
1052     pipecb (EV_P_ ev_io *iow, int revents)
1053     {
1054 root 1.220 #if EV_USE_EVENTFD
1055     if (evfd >= 0)
1056     {
1057 root 1.232 uint64_t counter;
1058 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1059     }
1060     else
1061     #endif
1062     {
1063     char dummy;
1064     read (evpipe [0], &dummy, 1);
1065     }
1066 root 1.207
1067 root 1.211 if (gotsig && ev_is_default_loop (EV_A))
1068 root 1.207 {
1069     int signum;
1070     gotsig = 0;
1071    
1072     for (signum = signalmax; signum--; )
1073     if (signals [signum].gotsig)
1074     ev_feed_signal_event (EV_A_ signum + 1);
1075     }
1076    
1077 root 1.209 #if EV_ASYNC_ENABLE
1078 root 1.207 if (gotasync)
1079     {
1080     int i;
1081     gotasync = 0;
1082    
1083     for (i = asynccnt; i--; )
1084     if (asyncs [i]->sent)
1085     {
1086     asyncs [i]->sent = 0;
1087     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088     }
1089     }
1090 root 1.209 #endif
1091 root 1.207 }
1092    
1093     /*****************************************************************************/
1094    
1095 root 1.7 static void
1096 root 1.218 ev_sighandler (int signum)
1097 root 1.7 {
1098 root 1.207 #if EV_MULTIPLICITY
1099     struct ev_loop *loop = &default_loop_struct;
1100     #endif
1101    
1102 root 1.103 #if _WIN32
1103 root 1.218 signal (signum, ev_sighandler);
1104 root 1.67 #endif
1105    
1106 root 1.7 signals [signum - 1].gotsig = 1;
1107 root 1.214 evpipe_write (EV_A_ &gotsig);
1108 root 1.7 }
1109    
1110 root 1.140 void noinline
1111 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1112     {
1113 root 1.80 WL w;
1114    
1115 root 1.79 #if EV_MULTIPLICITY
1116 root 1.116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117 root 1.79 #endif
1118    
1119     --signum;
1120    
1121     if (signum < 0 || signum >= signalmax)
1122     return;
1123    
1124     signals [signum].gotsig = 0;
1125    
1126     for (w = signals [signum].head; w; w = w->next)
1127     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128     }
1129    
1130 root 1.8 /*****************************************************************************/
1131    
1132 root 1.182 static WL childs [EV_PID_HASHSIZE];
1133 root 1.71
1134 root 1.103 #ifndef _WIN32
1135 root 1.45
1136 root 1.136 static ev_signal childev;
1137 root 1.59
1138 root 1.206 #ifndef WIFCONTINUED
1139     # define WIFCONTINUED(status) 0
1140     #endif
1141    
1142 root 1.140 void inline_speed
1143 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1144 root 1.47 {
1145 root 1.136 ev_child *w;
1146 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147 root 1.47
1148 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 root 1.206 {
1150     if ((w->pid == pid || !w->pid)
1151     && (!traced || (w->flags & 1)))
1152     {
1153 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1154 root 1.206 w->rpid = pid;
1155     w->rstatus = status;
1156     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1157     }
1158     }
1159 root 1.47 }
1160    
1161 root 1.142 #ifndef WCONTINUED
1162     # define WCONTINUED 0
1163     #endif
1164    
1165 root 1.47 static void
1166 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1167 root 1.22 {
1168     int pid, status;
1169    
1170 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1171     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1172     if (!WCONTINUED
1173     || errno != EINVAL
1174     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1175     return;
1176    
1177 root 1.216 /* make sure we are called again until all children have been reaped */
1178 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1179     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1180 root 1.47
1181 root 1.216 child_reap (EV_A_ pid, pid, status);
1182 root 1.149 if (EV_PID_HASHSIZE > 1)
1183 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1184 root 1.22 }
1185    
1186 root 1.45 #endif
1187    
1188 root 1.22 /*****************************************************************************/
1189    
1190 root 1.118 #if EV_USE_PORT
1191     # include "ev_port.c"
1192     #endif
1193 root 1.44 #if EV_USE_KQUEUE
1194     # include "ev_kqueue.c"
1195     #endif
1196 root 1.29 #if EV_USE_EPOLL
1197 root 1.1 # include "ev_epoll.c"
1198     #endif
1199 root 1.59 #if EV_USE_POLL
1200 root 1.41 # include "ev_poll.c"
1201     #endif
1202 root 1.29 #if EV_USE_SELECT
1203 root 1.1 # include "ev_select.c"
1204     #endif
1205    
1206 root 1.24 int
1207     ev_version_major (void)
1208     {
1209     return EV_VERSION_MAJOR;
1210     }
1211    
1212     int
1213     ev_version_minor (void)
1214     {
1215     return EV_VERSION_MINOR;
1216     }
1217    
1218 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1219 root 1.140 int inline_size
1220 root 1.51 enable_secure (void)
1221 root 1.41 {
1222 root 1.103 #ifdef _WIN32
1223 root 1.49 return 0;
1224     #else
1225 root 1.41 return getuid () != geteuid ()
1226     || getgid () != getegid ();
1227 root 1.49 #endif
1228 root 1.41 }
1229    
1230 root 1.111 unsigned int
1231 root 1.129 ev_supported_backends (void)
1232     {
1233 root 1.130 unsigned int flags = 0;
1234 root 1.129
1235     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1236     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1237     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1238     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1239     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240    
1241     return flags;
1242     }
1243    
1244     unsigned int
1245 root 1.130 ev_recommended_backends (void)
1246 root 1.1 {
1247 root 1.131 unsigned int flags = ev_supported_backends ();
1248 root 1.129
1249     #ifndef __NetBSD__
1250     /* kqueue is borked on everything but netbsd apparently */
1251     /* it usually doesn't work correctly on anything but sockets and pipes */
1252     flags &= ~EVBACKEND_KQUEUE;
1253     #endif
1254     #ifdef __APPLE__
1255     // flags &= ~EVBACKEND_KQUEUE; for documentation
1256     flags &= ~EVBACKEND_POLL;
1257     #endif
1258    
1259     return flags;
1260 root 1.51 }
1261    
1262 root 1.130 unsigned int
1263 root 1.134 ev_embeddable_backends (void)
1264     {
1265 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1266    
1267 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 root 1.196 /* please fix it and tell me how to detect the fix */
1269     flags &= ~EVBACKEND_EPOLL;
1270    
1271     return flags;
1272 root 1.134 }
1273    
1274     unsigned int
1275 root 1.130 ev_backend (EV_P)
1276     {
1277     return backend;
1278     }
1279    
1280 root 1.162 unsigned int
1281     ev_loop_count (EV_P)
1282     {
1283     return loop_count;
1284     }
1285    
1286 root 1.193 void
1287     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288     {
1289     io_blocktime = interval;
1290     }
1291    
1292     void
1293     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294     {
1295     timeout_blocktime = interval;
1296     }
1297    
1298 root 1.151 static void noinline
1299 root 1.108 loop_init (EV_P_ unsigned int flags)
1300 root 1.51 {
1301 root 1.130 if (!backend)
1302 root 1.23 {
1303 root 1.29 #if EV_USE_MONOTONIC
1304 root 1.23 {
1305     struct timespec ts;
1306     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1307     have_monotonic = 1;
1308     }
1309 root 1.1 #endif
1310    
1311 root 1.209 ev_rt_now = ev_time ();
1312     mn_now = get_clock ();
1313     now_floor = mn_now;
1314     rtmn_diff = ev_rt_now - mn_now;
1315 root 1.1
1316 root 1.193 io_blocktime = 0.;
1317     timeout_blocktime = 0.;
1318 root 1.209 backend = 0;
1319     backend_fd = -1;
1320     gotasync = 0;
1321     #if EV_USE_INOTIFY
1322     fs_fd = -2;
1323     #endif
1324 root 1.193
1325 root 1.158 /* pid check not overridable via env */
1326     #ifndef _WIN32
1327     if (flags & EVFLAG_FORKCHECK)
1328     curpid = getpid ();
1329     #endif
1330    
1331 root 1.128 if (!(flags & EVFLAG_NOENV)
1332     && !enable_secure ()
1333     && getenv ("LIBEV_FLAGS"))
1334 root 1.108 flags = atoi (getenv ("LIBEV_FLAGS"));
1335    
1336 root 1.225 if (!(flags & 0x0000ffffU))
1337 root 1.129 flags |= ev_recommended_backends ();
1338 root 1.41
1339 root 1.118 #if EV_USE_PORT
1340 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1341 root 1.118 #endif
1342 root 1.44 #if EV_USE_KQUEUE
1343 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1344 root 1.44 #endif
1345 root 1.29 #if EV_USE_EPOLL
1346 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1347 root 1.41 #endif
1348 root 1.59 #if EV_USE_POLL
1349 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1350 root 1.1 #endif
1351 root 1.29 #if EV_USE_SELECT
1352 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1353 root 1.1 #endif
1354 root 1.70
1355 root 1.207 ev_init (&pipeev, pipecb);
1356     ev_set_priority (&pipeev, EV_MAXPRI);
1357 root 1.56 }
1358     }
1359    
1360 root 1.151 static void noinline
1361 root 1.56 loop_destroy (EV_P)
1362     {
1363 root 1.65 int i;
1364    
1365 root 1.207 if (ev_is_active (&pipeev))
1366     {
1367     ev_ref (EV_A); /* signal watcher */
1368     ev_io_stop (EV_A_ &pipeev);
1369    
1370 root 1.220 #if EV_USE_EVENTFD
1371     if (evfd >= 0)
1372     close (evfd);
1373     #endif
1374    
1375     if (evpipe [0] >= 0)
1376     {
1377     close (evpipe [0]);
1378     close (evpipe [1]);
1379     }
1380 root 1.207 }
1381    
1382 root 1.152 #if EV_USE_INOTIFY
1383     if (fs_fd >= 0)
1384     close (fs_fd);
1385     #endif
1386    
1387     if (backend_fd >= 0)
1388     close (backend_fd);
1389    
1390 root 1.118 #if EV_USE_PORT
1391 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1392 root 1.118 #endif
1393 root 1.56 #if EV_USE_KQUEUE
1394 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1395 root 1.56 #endif
1396     #if EV_USE_EPOLL
1397 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1398 root 1.56 #endif
1399 root 1.59 #if EV_USE_POLL
1400 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1401 root 1.56 #endif
1402     #if EV_USE_SELECT
1403 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1404 root 1.56 #endif
1405 root 1.1
1406 root 1.65 for (i = NUMPRI; i--; )
1407 root 1.164 {
1408     array_free (pending, [i]);
1409     #if EV_IDLE_ENABLE
1410     array_free (idle, [i]);
1411     #endif
1412     }
1413 root 1.65
1414 root 1.186 ev_free (anfds); anfdmax = 0;
1415    
1416 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1417 root 1.164 array_free (fdchange, EMPTY);
1418     array_free (timer, EMPTY);
1419 root 1.140 #if EV_PERIODIC_ENABLE
1420 root 1.164 array_free (periodic, EMPTY);
1421 root 1.93 #endif
1422 root 1.187 #if EV_FORK_ENABLE
1423     array_free (fork, EMPTY);
1424     #endif
1425 root 1.164 array_free (prepare, EMPTY);
1426     array_free (check, EMPTY);
1427 root 1.209 #if EV_ASYNC_ENABLE
1428     array_free (async, EMPTY);
1429     #endif
1430 root 1.65
1431 root 1.130 backend = 0;
1432 root 1.56 }
1433 root 1.22
1434 root 1.226 #if EV_USE_INOTIFY
1435 root 1.154 void inline_size infy_fork (EV_P);
1436 root 1.226 #endif
1437 root 1.154
1438 root 1.151 void inline_size
1439 root 1.56 loop_fork (EV_P)
1440     {
1441 root 1.118 #if EV_USE_PORT
1442 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443 root 1.56 #endif
1444     #if EV_USE_KQUEUE
1445 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1446 root 1.45 #endif
1447 root 1.118 #if EV_USE_EPOLL
1448 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1449 root 1.118 #endif
1450 root 1.154 #if EV_USE_INOTIFY
1451     infy_fork (EV_A);
1452     #endif
1453 root 1.70
1454 root 1.207 if (ev_is_active (&pipeev))
1455 root 1.70 {
1456 root 1.207 /* this "locks" the handlers against writing to the pipe */
1457 root 1.212 /* while we modify the fd vars */
1458     gotsig = 1;
1459     #if EV_ASYNC_ENABLE
1460     gotasync = 1;
1461     #endif
1462 root 1.70
1463     ev_ref (EV_A);
1464 root 1.207 ev_io_stop (EV_A_ &pipeev);
1465 root 1.220
1466     #if EV_USE_EVENTFD
1467     if (evfd >= 0)
1468     close (evfd);
1469     #endif
1470    
1471     if (evpipe [0] >= 0)
1472     {
1473     close (evpipe [0]);
1474     close (evpipe [1]);
1475     }
1476 root 1.207
1477     evpipe_init (EV_A);
1478 root 1.208 /* now iterate over everything, in case we missed something */
1479     pipecb (EV_A_ &pipeev, EV_READ);
1480 root 1.70 }
1481    
1482     postfork = 0;
1483 root 1.1 }
1484    
1485 root 1.55 #if EV_MULTIPLICITY
1486 root 1.250
1487 root 1.54 struct ev_loop *
1488 root 1.108 ev_loop_new (unsigned int flags)
1489 root 1.54 {
1490 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491    
1492     memset (loop, 0, sizeof (struct ev_loop));
1493 root 1.54
1494 root 1.108 loop_init (EV_A_ flags);
1495 root 1.56
1496 root 1.130 if (ev_backend (EV_A))
1497 root 1.55 return loop;
1498 root 1.54
1499 root 1.55 return 0;
1500 root 1.54 }
1501    
1502     void
1503 root 1.56 ev_loop_destroy (EV_P)
1504 root 1.54 {
1505 root 1.56 loop_destroy (EV_A);
1506 root 1.69 ev_free (loop);
1507 root 1.54 }
1508    
1509 root 1.56 void
1510     ev_loop_fork (EV_P)
1511     {
1512 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1513 root 1.56 }
1514 root 1.248
1515     #if EV_VERIFY
1516 root 1.258 static void noinline
1517 root 1.251 verify_watcher (EV_P_ W w)
1518     {
1519     assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520    
1521     if (w->pending)
1522     assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523     }
1524    
1525     static void noinline
1526     verify_heap (EV_P_ ANHE *heap, int N)
1527     {
1528     int i;
1529    
1530     for (i = HEAP0; i < N + HEAP0; ++i)
1531     {
1532     assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533     assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534     assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535    
1536     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537     }
1538     }
1539    
1540     static void noinline
1541     array_verify (EV_P_ W *ws, int cnt)
1542 root 1.248 {
1543     while (cnt--)
1544 root 1.251 {
1545     assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546     verify_watcher (EV_A_ ws [cnt]);
1547     }
1548 root 1.248 }
1549 root 1.250 #endif
1550 root 1.248
1551 root 1.250 void
1552 root 1.248 ev_loop_verify (EV_P)
1553     {
1554 root 1.250 #if EV_VERIFY
1555 root 1.248 int i;
1556 root 1.251 WL w;
1557    
1558     assert (activecnt >= -1);
1559    
1560     assert (fdchangemax >= fdchangecnt);
1561     for (i = 0; i < fdchangecnt; ++i)
1562     assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563    
1564     assert (anfdmax >= 0);
1565     for (i = 0; i < anfdmax; ++i)
1566     for (w = anfds [i].head; w; w = w->next)
1567     {
1568     verify_watcher (EV_A_ (W)w);
1569     assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570     assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571     }
1572    
1573     assert (timermax >= timercnt);
1574     verify_heap (EV_A_ timers, timercnt);
1575 root 1.248
1576     #if EV_PERIODIC_ENABLE
1577 root 1.251 assert (periodicmax >= periodiccnt);
1578     verify_heap (EV_A_ periodics, periodiccnt);
1579 root 1.248 #endif
1580    
1581 root 1.251 for (i = NUMPRI; i--; )
1582     {
1583     assert (pendingmax [i] >= pendingcnt [i]);
1584 root 1.248 #if EV_IDLE_ENABLE
1585 root 1.252 assert (idleall >= 0);
1586 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1587     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588 root 1.248 #endif
1589 root 1.251 }
1590    
1591 root 1.248 #if EV_FORK_ENABLE
1592 root 1.251 assert (forkmax >= forkcnt);
1593     array_verify (EV_A_ (W *)forks, forkcnt);
1594 root 1.248 #endif
1595 root 1.251
1596 root 1.250 #if EV_ASYNC_ENABLE
1597 root 1.251 assert (asyncmax >= asynccnt);
1598     array_verify (EV_A_ (W *)asyncs, asynccnt);
1599 root 1.250 #endif
1600 root 1.251
1601     assert (preparemax >= preparecnt);
1602     array_verify (EV_A_ (W *)prepares, preparecnt);
1603    
1604     assert (checkmax >= checkcnt);
1605     array_verify (EV_A_ (W *)checks, checkcnt);
1606    
1607     # if 0
1608     for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609     for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1610     # endif
1611 root 1.248 #endif
1612     }
1613    
1614 root 1.250 #endif /* multiplicity */
1615 root 1.56
1616     #if EV_MULTIPLICITY
1617     struct ev_loop *
1618 root 1.125 ev_default_loop_init (unsigned int flags)
1619 root 1.54 #else
1620     int
1621 root 1.116 ev_default_loop (unsigned int flags)
1622 root 1.56 #endif
1623 root 1.54 {
1624 root 1.116 if (!ev_default_loop_ptr)
1625 root 1.56 {
1626     #if EV_MULTIPLICITY
1627 root 1.116 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1628 root 1.56 #else
1629 ayin 1.117 ev_default_loop_ptr = 1;
1630 root 1.54 #endif
1631    
1632 root 1.110 loop_init (EV_A_ flags);
1633 root 1.56
1634 root 1.130 if (ev_backend (EV_A))
1635 root 1.56 {
1636 root 1.103 #ifndef _WIN32
1637 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1638     ev_set_priority (&childev, EV_MAXPRI);
1639     ev_signal_start (EV_A_ &childev);
1640     ev_unref (EV_A); /* child watcher should not keep loop alive */
1641     #endif
1642     }
1643     else
1644 root 1.116 ev_default_loop_ptr = 0;
1645 root 1.56 }
1646 root 1.8
1647 root 1.116 return ev_default_loop_ptr;
1648 root 1.1 }
1649    
1650 root 1.24 void
1651 root 1.56 ev_default_destroy (void)
1652 root 1.1 {
1653 root 1.57 #if EV_MULTIPLICITY
1654 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1655 root 1.57 #endif
1656 root 1.56
1657 root 1.103 #ifndef _WIN32
1658 root 1.56 ev_ref (EV_A); /* child watcher */
1659     ev_signal_stop (EV_A_ &childev);
1660 root 1.71 #endif
1661 root 1.56
1662     loop_destroy (EV_A);
1663 root 1.1 }
1664    
1665 root 1.24 void
1666 root 1.60 ev_default_fork (void)
1667 root 1.1 {
1668 root 1.60 #if EV_MULTIPLICITY
1669 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1670 root 1.60 #endif
1671    
1672 root 1.130 if (backend)
1673 root 1.205 postfork = 1; /* must be in line with ev_loop_fork */
1674 root 1.1 }
1675    
1676 root 1.8 /*****************************************************************************/
1677    
1678 root 1.168 void
1679     ev_invoke (EV_P_ void *w, int revents)
1680     {
1681     EV_CB_INVOKE ((W)w, revents);
1682     }
1683    
1684 root 1.140 void inline_speed
1685 root 1.51 call_pending (EV_P)
1686 root 1.1 {
1687 root 1.42 int pri;
1688    
1689     for (pri = NUMPRI; pri--; )
1690     while (pendingcnt [pri])
1691     {
1692     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1693 root 1.1
1694 root 1.122 if (expect_true (p->w))
1695 root 1.42 {
1696 root 1.151 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1697 root 1.139
1698 root 1.42 p->w->pending = 0;
1699 root 1.82 EV_CB_INVOKE (p->w, p->events);
1700 root 1.250 EV_FREQUENT_CHECK;
1701 root 1.42 }
1702     }
1703 root 1.1 }
1704    
1705 root 1.234 #if EV_IDLE_ENABLE
1706     void inline_size
1707     idle_reify (EV_P)
1708     {
1709     if (expect_false (idleall))
1710     {
1711     int pri;
1712    
1713     for (pri = NUMPRI; pri--; )
1714     {
1715     if (pendingcnt [pri])
1716     break;
1717    
1718     if (idlecnt [pri])
1719     {
1720     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1721     break;
1722     }
1723     }
1724     }
1725     }
1726     #endif
1727    
1728 root 1.140 void inline_size
1729 root 1.51 timers_reify (EV_P)
1730 root 1.1 {
1731 root 1.248 EV_FREQUENT_CHECK;
1732    
1733 root 1.244 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 root 1.1 {
1735 root 1.241 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736 root 1.1
1737 root 1.202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738 root 1.61
1739 root 1.4 /* first reschedule or stop timer */
1740 root 1.1 if (w->repeat)
1741     {
1742 root 1.228 ev_at (w) += w->repeat;
1743     if (ev_at (w) < mn_now)
1744     ev_at (w) = mn_now;
1745 root 1.90
1746 root 1.243 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747    
1748 root 1.248 ANHE_at_cache (timers [HEAP0]);
1749 root 1.235 downheap (timers, timercnt, HEAP0);
1750 root 1.12 }
1751     else
1752 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753 root 1.30
1754 root 1.248 EV_FREQUENT_CHECK;
1755 root 1.78 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 root 1.12 }
1757     }
1758 root 1.4
1759 root 1.140 #if EV_PERIODIC_ENABLE
1760     void inline_size
1761 root 1.51 periodics_reify (EV_P)
1762 root 1.12 {
1763 root 1.248 EV_FREQUENT_CHECK;
1764 root 1.250
1765 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 root 1.12 {
1767 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768 root 1.1
1769 root 1.151 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770 root 1.61
1771 root 1.12 /* first reschedule or stop timer */
1772 root 1.77 if (w->reschedule_cb)
1773     {
1774 root 1.244 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775 root 1.243
1776 root 1.244 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777 root 1.243
1778 root 1.248 ANHE_at_cache (periodics [HEAP0]);
1779 root 1.242 downheap (periodics, periodiccnt, HEAP0);
1780 root 1.77 }
1781     else if (w->interval)
1782 root 1.12 {
1783 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 root 1.246 /* if next trigger time is not sufficiently in the future, put it there */
1785     /* this might happen because of floating point inexactness */
1786     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787     {
1788     ev_at (w) += w->interval;
1789 root 1.243
1790 root 1.246 /* if interval is unreasonably low we might still have a time in the past */
1791     /* so correct this. this will make the periodic very inexact, but the user */
1792     /* has effectively asked to get triggered more often than possible */
1793     if (ev_at (w) < ev_rt_now)
1794     ev_at (w) = ev_rt_now;
1795     }
1796 root 1.243
1797 root 1.248 ANHE_at_cache (periodics [HEAP0]);
1798 root 1.235 downheap (periodics, periodiccnt, HEAP0);
1799 root 1.1 }
1800     else
1801 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802 root 1.12
1803 root 1.248 EV_FREQUENT_CHECK;
1804 root 1.78 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 root 1.12 }
1806     }
1807    
1808 root 1.140 static void noinline
1809 root 1.54 periodics_reschedule (EV_P)
1810 root 1.12 {
1811     int i;
1812    
1813 root 1.13 /* adjust periodics after time jump */
1814 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 root 1.12 {
1816 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817 root 1.12
1818 root 1.77 if (w->reschedule_cb)
1819 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 root 1.77 else if (w->interval)
1821 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822 root 1.242
1823 root 1.248 ANHE_at_cache (periodics [i]);
1824 root 1.77 }
1825 root 1.12
1826 root 1.248 reheap (periodics, periodiccnt);
1827 root 1.1 }
1828 root 1.93 #endif
1829 root 1.1
1830 root 1.178 void inline_speed
1831     time_update (EV_P_ ev_tstamp max_block)
1832 root 1.4 {
1833     int i;
1834 root 1.12
1835 root 1.40 #if EV_USE_MONOTONIC
1836     if (expect_true (have_monotonic))
1837     {
1838 root 1.178 ev_tstamp odiff = rtmn_diff;
1839    
1840     mn_now = get_clock ();
1841    
1842     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1843     /* interpolate in the meantime */
1844     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1845 root 1.40 {
1846 root 1.178 ev_rt_now = rtmn_diff + mn_now;
1847     return;
1848     }
1849    
1850     now_floor = mn_now;
1851     ev_rt_now = ev_time ();
1852 root 1.4
1853 root 1.178 /* loop a few times, before making important decisions.
1854     * on the choice of "4": one iteration isn't enough,
1855     * in case we get preempted during the calls to
1856     * ev_time and get_clock. a second call is almost guaranteed
1857     * to succeed in that case, though. and looping a few more times
1858     * doesn't hurt either as we only do this on time-jumps or
1859     * in the unlikely event of having been preempted here.
1860     */
1861     for (i = 4; --i; )
1862     {
1863     rtmn_diff = ev_rt_now - mn_now;
1864 root 1.4
1865 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1866 root 1.178 return; /* all is well */
1867 root 1.4
1868 root 1.178 ev_rt_now = ev_time ();
1869     mn_now = get_clock ();
1870     now_floor = mn_now;
1871     }
1872 root 1.4
1873 root 1.140 # if EV_PERIODIC_ENABLE
1874 root 1.178 periodics_reschedule (EV_A);
1875 root 1.93 # endif
1876 root 1.178 /* no timer adjustment, as the monotonic clock doesn't jump */
1877     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 root 1.4 }
1879     else
1880 root 1.40 #endif
1881 root 1.4 {
1882 root 1.85 ev_rt_now = ev_time ();
1883 root 1.40
1884 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 root 1.13 {
1886 root 1.140 #if EV_PERIODIC_ENABLE
1887 root 1.54 periodics_reschedule (EV_A);
1888 root 1.93 #endif
1889 root 1.157 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 root 1.241 for (i = 0; i < timercnt; ++i)
1891     {
1892     ANHE *he = timers + i + HEAP0;
1893     ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 root 1.248 ANHE_at_cache (*he);
1895 root 1.241 }
1896 root 1.13 }
1897 root 1.4
1898 root 1.85 mn_now = ev_rt_now;
1899 root 1.4 }
1900     }
1901    
1902 root 1.51 void
1903     ev_ref (EV_P)
1904     {
1905     ++activecnt;
1906     }
1907 root 1.1
1908 root 1.51 void
1909     ev_unref (EV_P)
1910     {
1911     --activecnt;
1912     }
1913    
1914     static int loop_done;
1915    
1916     void
1917     ev_loop (EV_P_ int flags)
1918 root 1.1 {
1919 root 1.219 loop_done = EVUNLOOP_CANCEL;
1920 root 1.1
1921 root 1.158 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1922    
1923 root 1.161 do
1924 root 1.9 {
1925 root 1.250 #if EV_VERIFY >= 2
1926     ev_loop_verify (EV_A);
1927     #endif
1928    
1929 root 1.158 #ifndef _WIN32
1930     if (expect_false (curpid)) /* penalise the forking check even more */
1931     if (expect_false (getpid () != curpid))
1932     {
1933     curpid = getpid ();
1934     postfork = 1;
1935     }
1936     #endif
1937    
1938 root 1.157 #if EV_FORK_ENABLE
1939     /* we might have forked, so queue fork handlers */
1940     if (expect_false (postfork))
1941     if (forkcnt)
1942     {
1943     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1944     call_pending (EV_A);
1945     }
1946     #endif
1947 root 1.147
1948 root 1.170 /* queue prepare watchers (and execute them) */
1949 root 1.40 if (expect_false (preparecnt))
1950 root 1.20 {
1951 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1952     call_pending (EV_A);
1953 root 1.20 }
1954 root 1.9
1955 root 1.159 if (expect_false (!activecnt))
1956     break;
1957    
1958 root 1.70 /* we might have forked, so reify kernel state if necessary */
1959     if (expect_false (postfork))
1960     loop_fork (EV_A);
1961    
1962 root 1.1 /* update fd-related kernel structures */
1963 root 1.51 fd_reify (EV_A);
1964 root 1.1
1965     /* calculate blocking time */
1966 root 1.135 {
1967 root 1.193 ev_tstamp waittime = 0.;
1968     ev_tstamp sleeptime = 0.;
1969 root 1.12
1970 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1971 root 1.135 {
1972     /* update time to cancel out callback processing overhead */
1973 root 1.178 time_update (EV_A_ 1e100);
1974 root 1.135
1975 root 1.193 waittime = MAX_BLOCKTIME;
1976 root 1.135
1977     if (timercnt)
1978     {
1979 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1980 root 1.193 if (waittime > to) waittime = to;
1981 root 1.135 }
1982 root 1.4
1983 root 1.140 #if EV_PERIODIC_ENABLE
1984 root 1.135 if (periodiccnt)
1985     {
1986 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1987 root 1.193 if (waittime > to) waittime = to;
1988 root 1.135 }
1989 root 1.93 #endif
1990 root 1.4
1991 root 1.193 if (expect_false (waittime < timeout_blocktime))
1992     waittime = timeout_blocktime;
1993    
1994     sleeptime = waittime - backend_fudge;
1995    
1996     if (expect_true (sleeptime > io_blocktime))
1997     sleeptime = io_blocktime;
1998    
1999     if (sleeptime)
2000     {
2001     ev_sleep (sleeptime);
2002     waittime -= sleeptime;
2003     }
2004 root 1.135 }
2005 root 1.1
2006 root 1.162 ++loop_count;
2007 root 1.193 backend_poll (EV_A_ waittime);
2008 root 1.178
2009     /* update ev_rt_now, do magic */
2010 root 1.193 time_update (EV_A_ waittime + sleeptime);
2011 root 1.135 }
2012 root 1.1
2013 root 1.9 /* queue pending timers and reschedule them */
2014 root 1.51 timers_reify (EV_A); /* relative timers called last */
2015 root 1.140 #if EV_PERIODIC_ENABLE
2016 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2017 root 1.93 #endif
2018 root 1.1
2019 root 1.164 #if EV_IDLE_ENABLE
2020 root 1.137 /* queue idle watchers unless other events are pending */
2021 root 1.164 idle_reify (EV_A);
2022     #endif
2023 root 1.9
2024 root 1.20 /* queue check watchers, to be executed first */
2025 root 1.123 if (expect_false (checkcnt))
2026 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2027 root 1.9
2028 root 1.51 call_pending (EV_A);
2029 root 1.1 }
2030 root 1.219 while (expect_true (
2031     activecnt
2032     && !loop_done
2033     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2034     ));
2035 root 1.13
2036 root 1.135 if (loop_done == EVUNLOOP_ONE)
2037     loop_done = EVUNLOOP_CANCEL;
2038 root 1.51 }
2039    
2040     void
2041     ev_unloop (EV_P_ int how)
2042     {
2043     loop_done = how;
2044 root 1.1 }
2045    
2046 root 1.8 /*****************************************************************************/
2047    
2048 root 1.140 void inline_size
2049 root 1.10 wlist_add (WL *head, WL elem)
2050 root 1.1 {
2051     elem->next = *head;
2052     *head = elem;
2053     }
2054    
2055 root 1.140 void inline_size
2056 root 1.10 wlist_del (WL *head, WL elem)
2057 root 1.1 {
2058     while (*head)
2059     {
2060     if (*head == elem)
2061     {
2062     *head = elem->next;
2063     return;
2064     }
2065    
2066     head = &(*head)->next;
2067     }
2068     }
2069    
2070 root 1.140 void inline_speed
2071 root 1.166 clear_pending (EV_P_ W w)
2072 root 1.16 {
2073     if (w->pending)
2074     {
2075 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
2076 root 1.16 w->pending = 0;
2077     }
2078     }
2079    
2080 root 1.167 int
2081     ev_clear_pending (EV_P_ void *w)
2082 root 1.166 {
2083     W w_ = (W)w;
2084     int pending = w_->pending;
2085    
2086 root 1.172 if (expect_true (pending))
2087     {
2088     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2089     w_->pending = 0;
2090     p->w = 0;
2091     return p->events;
2092     }
2093     else
2094 root 1.167 return 0;
2095 root 1.166 }
2096    
2097 root 1.164 void inline_size
2098     pri_adjust (EV_P_ W w)
2099     {
2100     int pri = w->priority;
2101     pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2102     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2103     w->priority = pri;
2104     }
2105    
2106 root 1.140 void inline_speed
2107 root 1.51 ev_start (EV_P_ W w, int active)
2108 root 1.1 {
2109 root 1.164 pri_adjust (EV_A_ w);
2110 root 1.1 w->active = active;
2111 root 1.51 ev_ref (EV_A);
2112 root 1.1 }
2113    
2114 root 1.140 void inline_size
2115 root 1.51 ev_stop (EV_P_ W w)
2116 root 1.1 {
2117 root 1.51 ev_unref (EV_A);
2118 root 1.1 w->active = 0;
2119     }
2120    
2121 root 1.8 /*****************************************************************************/
2122    
2123 root 1.171 void noinline
2124 root 1.136 ev_io_start (EV_P_ ev_io *w)
2125 root 1.1 {
2126 root 1.37 int fd = w->fd;
2127    
2128 root 1.123 if (expect_false (ev_is_active (w)))
2129 root 1.1 return;
2130    
2131 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
2132    
2133 root 1.248 EV_FREQUENT_CHECK;
2134    
2135 root 1.51 ev_start (EV_A_ (W)w, 1);
2136 root 1.74 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
2137 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2138 root 1.1
2139 root 1.184 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2140     w->events &= ~EV_IOFDSET;
2141 root 1.248
2142     EV_FREQUENT_CHECK;
2143 root 1.1 }
2144    
2145 root 1.171 void noinline
2146 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2147 root 1.1 {
2148 root 1.166 clear_pending (EV_A_ (W)w);
2149 root 1.123 if (expect_false (!ev_is_active (w)))
2150 root 1.1 return;
2151    
2152 root 1.242 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153 root 1.89
2154 root 1.248 EV_FREQUENT_CHECK;
2155    
2156 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2157 root 1.51 ev_stop (EV_A_ (W)w);
2158 root 1.1
2159 root 1.184 fd_change (EV_A_ w->fd, 1);
2160 root 1.248
2161     EV_FREQUENT_CHECK;
2162 root 1.1 }
2163    
2164 root 1.171 void noinline
2165 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2166 root 1.1 {
2167 root 1.123 if (expect_false (ev_is_active (w)))
2168 root 1.1 return;
2169    
2170 root 1.228 ev_at (w) += mn_now;
2171 root 1.12
2172 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2173 root 1.13
2174 root 1.248 EV_FREQUENT_CHECK;
2175    
2176     ++timercnt;
2177     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2178 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2179     ANHE_w (timers [ev_active (w)]) = (WT)w;
2180 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2181 root 1.235 upheap (timers, ev_active (w));
2182 root 1.62
2183 root 1.248 EV_FREQUENT_CHECK;
2184    
2185 root 1.242 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2186 root 1.12 }
2187    
2188 root 1.171 void noinline
2189 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2190 root 1.12 {
2191 root 1.166 clear_pending (EV_A_ (W)w);
2192 root 1.123 if (expect_false (!ev_is_active (w)))
2193 root 1.12 return;
2194    
2195 root 1.248 EV_FREQUENT_CHECK;
2196    
2197 root 1.230 {
2198     int active = ev_active (w);
2199 root 1.62
2200 root 1.241 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201 root 1.151
2202 root 1.248 --timercnt;
2203    
2204     if (expect_true (active < timercnt + HEAP0))
2205 root 1.151 {
2206 root 1.248 timers [active] = timers [timercnt + HEAP0];
2207 root 1.181 adjustheap (timers, timercnt, active);
2208 root 1.151 }
2209 root 1.248 }
2210 root 1.228
2211 root 1.248 EV_FREQUENT_CHECK;
2212 root 1.4
2213 root 1.228 ev_at (w) -= mn_now;
2214 root 1.14
2215 root 1.51 ev_stop (EV_A_ (W)w);
2216 root 1.12 }
2217 root 1.4
2218 root 1.171 void noinline
2219 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2220 root 1.14 {
2221 root 1.248 EV_FREQUENT_CHECK;
2222    
2223 root 1.14 if (ev_is_active (w))
2224     {
2225     if (w->repeat)
2226 root 1.99 {
2227 root 1.228 ev_at (w) = mn_now + w->repeat;
2228 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2229 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2230 root 1.99 }
2231 root 1.14 else
2232 root 1.51 ev_timer_stop (EV_A_ w);
2233 root 1.14 }
2234     else if (w->repeat)
2235 root 1.112 {
2236 root 1.229 ev_at (w) = w->repeat;
2237 root 1.112 ev_timer_start (EV_A_ w);
2238     }
2239 root 1.248
2240     EV_FREQUENT_CHECK;
2241 root 1.14 }
2242    
2243 root 1.140 #if EV_PERIODIC_ENABLE
2244 root 1.171 void noinline
2245 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2246 root 1.12 {
2247 root 1.123 if (expect_false (ev_is_active (w)))
2248 root 1.12 return;
2249 root 1.1
2250 root 1.77 if (w->reschedule_cb)
2251 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2252 root 1.77 else if (w->interval)
2253     {
2254     assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
2255     /* this formula differs from the one in periodic_reify because we do not always round up */
2256 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2257 root 1.77 }
2258 root 1.173 else
2259 root 1.228 ev_at (w) = w->offset;
2260 root 1.12
2261 root 1.248 EV_FREQUENT_CHECK;
2262    
2263     ++periodiccnt;
2264     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2265 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2266     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2267 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2268 root 1.235 upheap (periodics, ev_active (w));
2269 root 1.62
2270 root 1.248 EV_FREQUENT_CHECK;
2271    
2272 root 1.241 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2273 root 1.1 }
2274    
2275 root 1.171 void noinline
2276 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2277 root 1.1 {
2278 root 1.166 clear_pending (EV_A_ (W)w);
2279 root 1.123 if (expect_false (!ev_is_active (w)))
2280 root 1.1 return;
2281    
2282 root 1.248 EV_FREQUENT_CHECK;
2283    
2284 root 1.230 {
2285     int active = ev_active (w);
2286 root 1.62
2287 root 1.241 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288 root 1.151
2289 root 1.248 --periodiccnt;
2290    
2291     if (expect_true (active < periodiccnt + HEAP0))
2292 root 1.151 {
2293 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2294 root 1.181 adjustheap (periodics, periodiccnt, active);
2295 root 1.151 }
2296 root 1.248 }
2297 root 1.228
2298 root 1.248 EV_FREQUENT_CHECK;
2299 root 1.2
2300 root 1.51 ev_stop (EV_A_ (W)w);
2301 root 1.1 }
2302    
2303 root 1.171 void noinline
2304 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2305 root 1.77 {
2306 root 1.84 /* TODO: use adjustheap and recalculation */
2307 root 1.77 ev_periodic_stop (EV_A_ w);
2308     ev_periodic_start (EV_A_ w);
2309     }
2310 root 1.93 #endif
2311 root 1.77
2312 root 1.56 #ifndef SA_RESTART
2313     # define SA_RESTART 0
2314     #endif
2315    
2316 root 1.171 void noinline
2317 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2318 root 1.56 {
2319     #if EV_MULTIPLICITY
2320 root 1.116 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2321 root 1.56 #endif
2322 root 1.123 if (expect_false (ev_is_active (w)))
2323 root 1.56 return;
2324    
2325     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2326    
2327 root 1.207 evpipe_init (EV_A);
2328    
2329 root 1.248 EV_FREQUENT_CHECK;
2330    
2331 root 1.180 {
2332     #ifndef _WIN32
2333     sigset_t full, prev;
2334     sigfillset (&full);
2335     sigprocmask (SIG_SETMASK, &full, &prev);
2336     #endif
2337    
2338     array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2339    
2340     #ifndef _WIN32
2341     sigprocmask (SIG_SETMASK, &prev, 0);
2342     #endif
2343     }
2344    
2345 root 1.56 ev_start (EV_A_ (W)w, 1);
2346 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2347 root 1.56
2348 root 1.63 if (!((WL)w)->next)
2349 root 1.56 {
2350 root 1.103 #if _WIN32
2351 root 1.218 signal (w->signum, ev_sighandler);
2352 root 1.67 #else
2353 root 1.56 struct sigaction sa;
2354 root 1.218 sa.sa_handler = ev_sighandler;
2355 root 1.56 sigfillset (&sa.sa_mask);
2356     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2357     sigaction (w->signum, &sa, 0);
2358 root 1.67 #endif
2359 root 1.56 }
2360 root 1.248
2361     EV_FREQUENT_CHECK;
2362 root 1.56 }
2363    
2364 root 1.171 void noinline
2365 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2366 root 1.56 {
2367 root 1.166 clear_pending (EV_A_ (W)w);
2368 root 1.123 if (expect_false (!ev_is_active (w)))
2369 root 1.56 return;
2370    
2371 root 1.248 EV_FREQUENT_CHECK;
2372    
2373 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2374 root 1.56 ev_stop (EV_A_ (W)w);
2375    
2376     if (!signals [w->signum - 1].head)
2377     signal (w->signum, SIG_DFL);
2378 root 1.248
2379     EV_FREQUENT_CHECK;
2380 root 1.56 }
2381    
2382 root 1.28 void
2383 root 1.136 ev_child_start (EV_P_ ev_child *w)
2384 root 1.22 {
2385 root 1.56 #if EV_MULTIPLICITY
2386 root 1.116 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2387 root 1.56 #endif
2388 root 1.123 if (expect_false (ev_is_active (w)))
2389 root 1.22 return;
2390    
2391 root 1.248 EV_FREQUENT_CHECK;
2392    
2393 root 1.51 ev_start (EV_A_ (W)w, 1);
2394 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395 root 1.248
2396     EV_FREQUENT_CHECK;
2397 root 1.22 }
2398    
2399 root 1.28 void
2400 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2401 root 1.22 {
2402 root 1.166 clear_pending (EV_A_ (W)w);
2403 root 1.123 if (expect_false (!ev_is_active (w)))
2404 root 1.22 return;
2405    
2406 root 1.248 EV_FREQUENT_CHECK;
2407    
2408 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2409 root 1.51 ev_stop (EV_A_ (W)w);
2410 root 1.248
2411     EV_FREQUENT_CHECK;
2412 root 1.22 }
2413    
2414 root 1.140 #if EV_STAT_ENABLE
2415    
2416     # ifdef _WIN32
2417 root 1.146 # undef lstat
2418     # define lstat(a,b) _stati64 (a,b)
2419 root 1.140 # endif
2420    
2421 root 1.143 #define DEF_STAT_INTERVAL 5.0074891
2422     #define MIN_STAT_INTERVAL 0.1074891
2423    
2424 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425 root 1.152
2426     #if EV_USE_INOTIFY
2427 root 1.153 # define EV_INOTIFY_BUFSIZE 8192
2428 root 1.152
2429     static void noinline
2430     infy_add (EV_P_ ev_stat *w)
2431     {
2432     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2433    
2434     if (w->wd < 0)
2435     {
2436     ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2437    
2438     /* monitor some parent directory for speedup hints */
2439 root 1.233 /* note that exceeding the hardcoded limit is not a correctness issue, */
2440     /* but an efficiency issue only */
2441 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2442 root 1.152 {
2443 root 1.153 char path [4096];
2444 root 1.152 strcpy (path, w->path);
2445    
2446     do
2447     {
2448     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2449     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2450    
2451     char *pend = strrchr (path, '/');
2452    
2453     if (!pend)
2454     break; /* whoops, no '/', complain to your admin */
2455    
2456     *pend = 0;
2457 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2458 root 1.152 }
2459     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2460     }
2461     }
2462     else
2463     ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464    
2465     if (w->wd >= 0)
2466     wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2467     }
2468    
2469     static void noinline
2470     infy_del (EV_P_ ev_stat *w)
2471     {
2472     int slot;
2473     int wd = w->wd;
2474    
2475     if (wd < 0)
2476     return;
2477    
2478     w->wd = -2;
2479     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2480     wlist_del (&fs_hash [slot].head, (WL)w);
2481    
2482     /* remove this watcher, if others are watching it, they will rearm */
2483     inotify_rm_watch (fs_fd, wd);
2484     }
2485    
2486     static void noinline
2487     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488     {
2489     if (slot < 0)
2490     /* overflow, need to check for all hahs slots */
2491     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2492     infy_wd (EV_A_ slot, wd, ev);
2493     else
2494     {
2495     WL w_;
2496    
2497     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2498     {
2499     ev_stat *w = (ev_stat *)w_;
2500     w_ = w_->next; /* lets us remove this watcher and all before it */
2501    
2502     if (w->wd == wd || wd == -1)
2503     {
2504     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505     {
2506     w->wd = -1;
2507     infy_add (EV_A_ w); /* re-add, no matter what */
2508     }
2509    
2510 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
2511 root 1.152 }
2512     }
2513     }
2514     }
2515    
2516     static void
2517     infy_cb (EV_P_ ev_io *w, int revents)
2518     {
2519     char buf [EV_INOTIFY_BUFSIZE];
2520     struct inotify_event *ev = (struct inotify_event *)buf;
2521     int ofs;
2522     int len = read (fs_fd, buf, sizeof (buf));
2523    
2524     for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2525     infy_wd (EV_A_ ev->wd, ev->wd, ev);
2526     }
2527    
2528     void inline_size
2529     infy_init (EV_P)
2530     {
2531     if (fs_fd != -2)
2532     return;
2533    
2534     fs_fd = inotify_init ();
2535    
2536     if (fs_fd >= 0)
2537     {
2538     ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2539     ev_set_priority (&fs_w, EV_MAXPRI);
2540     ev_io_start (EV_A_ &fs_w);
2541     }
2542     }
2543    
2544 root 1.154 void inline_size
2545     infy_fork (EV_P)
2546     {
2547     int slot;
2548    
2549     if (fs_fd < 0)
2550     return;
2551    
2552     close (fs_fd);
2553     fs_fd = inotify_init ();
2554    
2555     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2556     {
2557     WL w_ = fs_hash [slot].head;
2558     fs_hash [slot].head = 0;
2559    
2560     while (w_)
2561     {
2562     ev_stat *w = (ev_stat *)w_;
2563     w_ = w_->next; /* lets us add this watcher */
2564    
2565     w->wd = -1;
2566    
2567     if (fs_fd >= 0)
2568     infy_add (EV_A_ w); /* re-add, no matter what */
2569     else
2570     ev_timer_start (EV_A_ &w->timer);
2571     }
2572    
2573     }
2574     }
2575    
2576 root 1.152 #endif
2577    
2578 root 1.255 #ifdef _WIN32
2579     # define EV_LSTAT(p,b) _stati64 (p, b)
2580     #else
2581     # define EV_LSTAT(p,b) lstat (p, b)
2582     #endif
2583    
2584 root 1.140 void
2585     ev_stat_stat (EV_P_ ev_stat *w)
2586     {
2587     if (lstat (w->path, &w->attr) < 0)
2588     w->attr.st_nlink = 0;
2589     else if (!w->attr.st_nlink)
2590     w->attr.st_nlink = 1;
2591     }
2592    
2593 root 1.157 static void noinline
2594 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2595     {
2596     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2597    
2598     /* we copy this here each the time so that */
2599     /* prev has the old value when the callback gets invoked */
2600     w->prev = w->attr;
2601     ev_stat_stat (EV_A_ w);
2602    
2603 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2604     if (
2605     w->prev.st_dev != w->attr.st_dev
2606     || w->prev.st_ino != w->attr.st_ino
2607     || w->prev.st_mode != w->attr.st_mode
2608     || w->prev.st_nlink != w->attr.st_nlink
2609     || w->prev.st_uid != w->attr.st_uid
2610     || w->prev.st_gid != w->attr.st_gid
2611     || w->prev.st_rdev != w->attr.st_rdev
2612     || w->prev.st_size != w->attr.st_size
2613     || w->prev.st_atime != w->attr.st_atime
2614     || w->prev.st_mtime != w->attr.st_mtime
2615     || w->prev.st_ctime != w->attr.st_ctime
2616     ) {
2617 root 1.152 #if EV_USE_INOTIFY
2618     infy_del (EV_A_ w);
2619     infy_add (EV_A_ w);
2620     ev_stat_stat (EV_A_ w); /* avoid race... */
2621     #endif
2622    
2623     ev_feed_event (EV_A_ w, EV_STAT);
2624     }
2625 root 1.140 }
2626    
2627     void
2628     ev_stat_start (EV_P_ ev_stat *w)
2629     {
2630     if (expect_false (ev_is_active (w)))
2631     return;
2632    
2633     /* since we use memcmp, we need to clear any padding data etc. */
2634     memset (&w->prev, 0, sizeof (ev_statdata));
2635     memset (&w->attr, 0, sizeof (ev_statdata));
2636    
2637     ev_stat_stat (EV_A_ w);
2638    
2639 root 1.143 if (w->interval < MIN_STAT_INTERVAL)
2640     w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2641    
2642 root 1.140 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2643     ev_set_priority (&w->timer, ev_priority (w));
2644 root 1.152
2645     #if EV_USE_INOTIFY
2646     infy_init (EV_A);
2647    
2648     if (fs_fd >= 0)
2649     infy_add (EV_A_ w);
2650     else
2651     #endif
2652     ev_timer_start (EV_A_ &w->timer);
2653 root 1.140
2654     ev_start (EV_A_ (W)w, 1);
2655 root 1.248
2656     EV_FREQUENT_CHECK;
2657 root 1.140 }
2658    
2659     void
2660     ev_stat_stop (EV_P_ ev_stat *w)
2661     {
2662 root 1.166 clear_pending (EV_A_ (W)w);
2663 root 1.140 if (expect_false (!ev_is_active (w)))
2664     return;
2665    
2666 root 1.248 EV_FREQUENT_CHECK;
2667    
2668 root 1.152 #if EV_USE_INOTIFY
2669     infy_del (EV_A_ w);
2670     #endif
2671 root 1.140 ev_timer_stop (EV_A_ &w->timer);
2672    
2673 root 1.134 ev_stop (EV_A_ (W)w);
2674 root 1.248
2675     EV_FREQUENT_CHECK;
2676 root 1.134 }
2677     #endif
2678    
2679 root 1.164 #if EV_IDLE_ENABLE
2680 root 1.144 void
2681     ev_idle_start (EV_P_ ev_idle *w)
2682     {
2683     if (expect_false (ev_is_active (w)))
2684     return;
2685    
2686 root 1.164 pri_adjust (EV_A_ (W)w);
2687    
2688 root 1.248 EV_FREQUENT_CHECK;
2689    
2690 root 1.164 {
2691     int active = ++idlecnt [ABSPRI (w)];
2692    
2693     ++idleall;
2694     ev_start (EV_A_ (W)w, active);
2695    
2696     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2697     idles [ABSPRI (w)][active - 1] = w;
2698     }
2699 root 1.248
2700     EV_FREQUENT_CHECK;
2701 root 1.144 }
2702    
2703     void
2704     ev_idle_stop (EV_P_ ev_idle *w)
2705     {
2706 root 1.166 clear_pending (EV_A_ (W)w);
2707 root 1.144 if (expect_false (!ev_is_active (w)))
2708     return;
2709    
2710 root 1.248 EV_FREQUENT_CHECK;
2711    
2712 root 1.144 {
2713 root 1.230 int active = ev_active (w);
2714 root 1.164
2715     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2716 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2717 root 1.164
2718     ev_stop (EV_A_ (W)w);
2719     --idleall;
2720 root 1.144 }
2721 root 1.248
2722     EV_FREQUENT_CHECK;
2723 root 1.144 }
2724 root 1.164 #endif
2725 root 1.144
2726     void
2727     ev_prepare_start (EV_P_ ev_prepare *w)
2728     {
2729     if (expect_false (ev_is_active (w)))
2730     return;
2731    
2732 root 1.248 EV_FREQUENT_CHECK;
2733    
2734 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
2735     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2736     prepares [preparecnt - 1] = w;
2737 root 1.248
2738     EV_FREQUENT_CHECK;
2739 root 1.144 }
2740    
2741     void
2742     ev_prepare_stop (EV_P_ ev_prepare *w)
2743     {
2744 root 1.166 clear_pending (EV_A_ (W)w);
2745 root 1.144 if (expect_false (!ev_is_active (w)))
2746     return;
2747    
2748 root 1.248 EV_FREQUENT_CHECK;
2749    
2750 root 1.144 {
2751 root 1.230 int active = ev_active (w);
2752    
2753 root 1.144 prepares [active - 1] = prepares [--preparecnt];
2754 root 1.230 ev_active (prepares [active - 1]) = active;
2755 root 1.144 }
2756    
2757     ev_stop (EV_A_ (W)w);
2758 root 1.248
2759     EV_FREQUENT_CHECK;
2760 root 1.144 }
2761    
2762     void
2763     ev_check_start (EV_P_ ev_check *w)
2764     {
2765     if (expect_false (ev_is_active (w)))
2766     return;
2767    
2768 root 1.248 EV_FREQUENT_CHECK;
2769    
2770 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
2771     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2772     checks [checkcnt - 1] = w;
2773 root 1.248
2774     EV_FREQUENT_CHECK;
2775 root 1.144 }
2776    
2777     void
2778     ev_check_stop (EV_P_ ev_check *w)
2779     {
2780 root 1.166 clear_pending (EV_A_ (W)w);
2781 root 1.144 if (expect_false (!ev_is_active (w)))
2782     return;
2783    
2784 root 1.248 EV_FREQUENT_CHECK;
2785    
2786 root 1.144 {
2787 root 1.230 int active = ev_active (w);
2788    
2789 root 1.144 checks [active - 1] = checks [--checkcnt];
2790 root 1.230 ev_active (checks [active - 1]) = active;
2791 root 1.144 }
2792    
2793     ev_stop (EV_A_ (W)w);
2794 root 1.248
2795     EV_FREQUENT_CHECK;
2796 root 1.144 }
2797    
2798     #if EV_EMBED_ENABLE
2799     void noinline
2800     ev_embed_sweep (EV_P_ ev_embed *w)
2801     {
2802 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
2803 root 1.144 }
2804    
2805     static void
2806 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
2807 root 1.144 {
2808     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2809    
2810     if (ev_cb (w))
2811     ev_feed_event (EV_A_ (W)w, EV_EMBED);
2812     else
2813 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
2814 root 1.144 }
2815    
2816 root 1.189 static void
2817     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2818     {
2819     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2820    
2821 root 1.195 {
2822     struct ev_loop *loop = w->other;
2823    
2824     while (fdchangecnt)
2825     {
2826     fd_reify (EV_A);
2827     ev_loop (EV_A_ EVLOOP_NONBLOCK);
2828     }
2829     }
2830     }
2831    
2832     #if 0
2833     static void
2834     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2835     {
2836     ev_idle_stop (EV_A_ idle);
2837 root 1.189 }
2838 root 1.195 #endif
2839 root 1.189
2840 root 1.144 void
2841     ev_embed_start (EV_P_ ev_embed *w)
2842     {
2843     if (expect_false (ev_is_active (w)))
2844     return;
2845    
2846     {
2847 root 1.188 struct ev_loop *loop = w->other;
2848 root 1.144 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2849 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2850 root 1.144 }
2851    
2852 root 1.248 EV_FREQUENT_CHECK;
2853    
2854 root 1.144 ev_set_priority (&w->io, ev_priority (w));
2855     ev_io_start (EV_A_ &w->io);
2856    
2857 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
2858     ev_set_priority (&w->prepare, EV_MINPRI);
2859     ev_prepare_start (EV_A_ &w->prepare);
2860    
2861 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2862    
2863 root 1.144 ev_start (EV_A_ (W)w, 1);
2864 root 1.248
2865     EV_FREQUENT_CHECK;
2866 root 1.144 }
2867    
2868     void
2869     ev_embed_stop (EV_P_ ev_embed *w)
2870     {
2871 root 1.166 clear_pending (EV_A_ (W)w);
2872 root 1.144 if (expect_false (!ev_is_active (w)))
2873     return;
2874    
2875 root 1.248 EV_FREQUENT_CHECK;
2876    
2877 root 1.144 ev_io_stop (EV_A_ &w->io);
2878 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
2879 root 1.144
2880     ev_stop (EV_A_ (W)w);
2881 root 1.248
2882     EV_FREQUENT_CHECK;
2883 root 1.144 }
2884     #endif
2885    
2886 root 1.147 #if EV_FORK_ENABLE
2887     void
2888     ev_fork_start (EV_P_ ev_fork *w)
2889     {
2890     if (expect_false (ev_is_active (w)))
2891     return;
2892    
2893 root 1.248 EV_FREQUENT_CHECK;
2894    
2895 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
2896     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2897     forks [forkcnt - 1] = w;
2898 root 1.248
2899     EV_FREQUENT_CHECK;
2900 root 1.147 }
2901    
2902     void
2903     ev_fork_stop (EV_P_ ev_fork *w)
2904     {
2905 root 1.166 clear_pending (EV_A_ (W)w);
2906 root 1.147 if (expect_false (!ev_is_active (w)))
2907     return;
2908    
2909 root 1.248 EV_FREQUENT_CHECK;
2910    
2911 root 1.147 {
2912 root 1.230 int active = ev_active (w);
2913    
2914 root 1.147 forks [active - 1] = forks [--forkcnt];
2915 root 1.230 ev_active (forks [active - 1]) = active;
2916 root 1.147 }
2917    
2918     ev_stop (EV_A_ (W)w);
2919 root 1.248
2920     EV_FREQUENT_CHECK;
2921 root 1.147 }
2922     #endif
2923    
2924 root 1.207 #if EV_ASYNC_ENABLE
2925     void
2926     ev_async_start (EV_P_ ev_async *w)
2927     {
2928     if (expect_false (ev_is_active (w)))
2929     return;
2930    
2931     evpipe_init (EV_A);
2932    
2933 root 1.248 EV_FREQUENT_CHECK;
2934    
2935 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
2936     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2937     asyncs [asynccnt - 1] = w;
2938 root 1.248
2939     EV_FREQUENT_CHECK;
2940 root 1.207 }
2941    
2942     void
2943     ev_async_stop (EV_P_ ev_async *w)
2944     {
2945     clear_pending (EV_A_ (W)w);
2946     if (expect_false (!ev_is_active (w)))
2947     return;
2948    
2949 root 1.248 EV_FREQUENT_CHECK;
2950    
2951 root 1.207 {
2952 root 1.230 int active = ev_active (w);
2953    
2954 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
2955 root 1.230 ev_active (asyncs [active - 1]) = active;
2956 root 1.207 }
2957    
2958     ev_stop (EV_A_ (W)w);
2959 root 1.248
2960     EV_FREQUENT_CHECK;
2961 root 1.207 }
2962    
2963     void
2964     ev_async_send (EV_P_ ev_async *w)
2965     {
2966     w->sent = 1;
2967 root 1.214 evpipe_write (EV_A_ &gotasync);
2968 root 1.207 }
2969     #endif
2970    
2971 root 1.1 /*****************************************************************************/
2972 root 1.10
2973 root 1.16 struct ev_once
2974     {
2975 root 1.136 ev_io io;
2976     ev_timer to;
2977 root 1.16 void (*cb)(int revents, void *arg);
2978     void *arg;
2979     };
2980    
2981     static void
2982 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
2983 root 1.16 {
2984     void (*cb)(int revents, void *arg) = once->cb;
2985     void *arg = once->arg;
2986    
2987 root 1.51 ev_io_stop (EV_A_ &once->io);
2988     ev_timer_stop (EV_A_ &once->to);
2989 root 1.69 ev_free (once);
2990 root 1.16
2991     cb (revents, arg);
2992     }
2993    
2994     static void
2995 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
2996 root 1.16 {
2997 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
2998 root 1.16 }
2999    
3000     static void
3001 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3002 root 1.16 {
3003 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
3004 root 1.16 }
3005    
3006     void
3007 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3008 root 1.16 {
3009 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3010 root 1.16
3011 root 1.123 if (expect_false (!once))
3012 root 1.16 {
3013 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3014     return;
3015     }
3016    
3017     once->cb = cb;
3018     once->arg = arg;
3019 root 1.16
3020 root 1.123 ev_init (&once->io, once_cb_io);
3021     if (fd >= 0)
3022     {
3023     ev_io_set (&once->io, fd, events);
3024     ev_io_start (EV_A_ &once->io);
3025     }
3026 root 1.16
3027 root 1.123 ev_init (&once->to, once_cb_to);
3028     if (timeout >= 0.)
3029     {
3030     ev_timer_set (&once->to, timeout, 0.);
3031     ev_timer_start (EV_A_ &once->to);
3032 root 1.16 }
3033     }
3034    
3035 root 1.188 #if EV_MULTIPLICITY
3036     #include "ev_wrap.h"
3037     #endif
3038    
3039 root 1.87 #ifdef __cplusplus
3040     }
3041     #endif
3042