ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.288
Committed: Sat Apr 25 14:12:48 2009 UTC (15 years ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-3_6
Changes since 1.287: +66 -27 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.278 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 root 1.17 * All rights reserved.
6     *
7 root 1.199 * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27 root 1.17 *
28 root 1.199 * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38 root 1.17 */
39 root 1.87
40     #ifdef __cplusplus
41     extern "C" {
42     #endif
43    
44 root 1.220 /* this big block deduces configuration from config.h */
45 root 1.59 #ifndef EV_STANDALONE
46 root 1.133 # ifdef EV_CONFIG_H
47     # include EV_CONFIG_H
48     # else
49     # include "config.h"
50     # endif
51 root 1.60
52 root 1.274 # if HAVE_CLOCK_SYSCALL
53     # ifndef EV_USE_CLOCK_SYSCALL
54     # define EV_USE_CLOCK_SYSCALL 1
55     # ifndef EV_USE_REALTIME
56     # define EV_USE_REALTIME 0
57     # endif
58     # ifndef EV_USE_MONOTONIC
59     # define EV_USE_MONOTONIC 1
60     # endif
61     # endif
62     # endif
63    
64 root 1.60 # if HAVE_CLOCK_GETTIME
65 root 1.97 # ifndef EV_USE_MONOTONIC
66     # define EV_USE_MONOTONIC 1
67     # endif
68     # ifndef EV_USE_REALTIME
69 root 1.279 # define EV_USE_REALTIME 0
70 root 1.97 # endif
71 root 1.126 # else
72     # ifndef EV_USE_MONOTONIC
73     # define EV_USE_MONOTONIC 0
74     # endif
75     # ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 0
77     # endif
78 root 1.60 # endif
79    
80 root 1.193 # ifndef EV_USE_NANOSLEEP
81     # if HAVE_NANOSLEEP
82     # define EV_USE_NANOSLEEP 1
83     # else
84     # define EV_USE_NANOSLEEP 0
85     # endif
86     # endif
87    
88 root 1.127 # ifndef EV_USE_SELECT
89     # if HAVE_SELECT && HAVE_SYS_SELECT_H
90     # define EV_USE_SELECT 1
91     # else
92     # define EV_USE_SELECT 0
93     # endif
94 root 1.60 # endif
95    
96 root 1.127 # ifndef EV_USE_POLL
97     # if HAVE_POLL && HAVE_POLL_H
98     # define EV_USE_POLL 1
99     # else
100     # define EV_USE_POLL 0
101     # endif
102 root 1.60 # endif
103 root 1.127
104     # ifndef EV_USE_EPOLL
105     # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106     # define EV_USE_EPOLL 1
107     # else
108     # define EV_USE_EPOLL 0
109     # endif
110 root 1.60 # endif
111 root 1.127
112     # ifndef EV_USE_KQUEUE
113     # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114     # define EV_USE_KQUEUE 1
115     # else
116     # define EV_USE_KQUEUE 0
117     # endif
118 root 1.60 # endif
119 root 1.127
120     # ifndef EV_USE_PORT
121     # if HAVE_PORT_H && HAVE_PORT_CREATE
122     # define EV_USE_PORT 1
123     # else
124     # define EV_USE_PORT 0
125     # endif
126 root 1.118 # endif
127    
128 root 1.152 # ifndef EV_USE_INOTIFY
129     # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130     # define EV_USE_INOTIFY 1
131     # else
132     # define EV_USE_INOTIFY 0
133     # endif
134     # endif
135    
136 root 1.220 # ifndef EV_USE_EVENTFD
137     # if HAVE_EVENTFD
138     # define EV_USE_EVENTFD 1
139     # else
140     # define EV_USE_EVENTFD 0
141     # endif
142     # endif
143 root 1.250
144 root 1.29 #endif
145 root 1.17
146 root 1.1 #include <math.h>
147     #include <stdlib.h>
148 root 1.7 #include <fcntl.h>
149 root 1.16 #include <stddef.h>
150 root 1.1
151     #include <stdio.h>
152    
153 root 1.4 #include <assert.h>
154 root 1.1 #include <errno.h>
155 root 1.22 #include <sys/types.h>
156 root 1.71 #include <time.h>
157    
158 root 1.72 #include <signal.h>
159 root 1.71
160 root 1.152 #ifdef EV_H
161     # include EV_H
162     #else
163     # include "ev.h"
164     #endif
165    
166 root 1.103 #ifndef _WIN32
167 root 1.71 # include <sys/time.h>
168 root 1.45 # include <sys/wait.h>
169 root 1.140 # include <unistd.h>
170 root 1.103 #else
171 root 1.256 # include <io.h>
172 root 1.103 # define WIN32_LEAN_AND_MEAN
173     # include <windows.h>
174     # ifndef EV_SELECT_IS_WINSOCKET
175     # define EV_SELECT_IS_WINSOCKET 1
176     # endif
177 root 1.45 #endif
178 root 1.103
179 root 1.220 /* this block tries to deduce configuration from header-defined symbols and defaults */
180 root 1.40
181 root 1.274 #ifndef EV_USE_CLOCK_SYSCALL
182     # if __linux && __GLIBC__ >= 2
183     # define EV_USE_CLOCK_SYSCALL 1
184     # else
185     # define EV_USE_CLOCK_SYSCALL 0
186     # endif
187     #endif
188    
189 root 1.29 #ifndef EV_USE_MONOTONIC
190 root 1.253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191     # define EV_USE_MONOTONIC 1
192     # else
193     # define EV_USE_MONOTONIC 0
194     # endif
195 root 1.37 #endif
196    
197 root 1.118 #ifndef EV_USE_REALTIME
198 root 1.279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199 root 1.118 #endif
200    
201 root 1.193 #ifndef EV_USE_NANOSLEEP
202 root 1.253 # if _POSIX_C_SOURCE >= 199309L
203     # define EV_USE_NANOSLEEP 1
204     # else
205     # define EV_USE_NANOSLEEP 0
206     # endif
207 root 1.193 #endif
208    
209 root 1.29 #ifndef EV_USE_SELECT
210     # define EV_USE_SELECT 1
211 root 1.10 #endif
212    
213 root 1.59 #ifndef EV_USE_POLL
214 root 1.104 # ifdef _WIN32
215     # define EV_USE_POLL 0
216     # else
217     # define EV_USE_POLL 1
218     # endif
219 root 1.41 #endif
220    
221 root 1.29 #ifndef EV_USE_EPOLL
222 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223     # define EV_USE_EPOLL 1
224     # else
225     # define EV_USE_EPOLL 0
226     # endif
227 root 1.10 #endif
228    
229 root 1.44 #ifndef EV_USE_KQUEUE
230     # define EV_USE_KQUEUE 0
231     #endif
232    
233 root 1.118 #ifndef EV_USE_PORT
234     # define EV_USE_PORT 0
235 root 1.40 #endif
236    
237 root 1.152 #ifndef EV_USE_INOTIFY
238 root 1.220 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239     # define EV_USE_INOTIFY 1
240     # else
241     # define EV_USE_INOTIFY 0
242     # endif
243 root 1.152 #endif
244    
245 root 1.149 #ifndef EV_PID_HASHSIZE
246     # if EV_MINIMAL
247     # define EV_PID_HASHSIZE 1
248     # else
249     # define EV_PID_HASHSIZE 16
250     # endif
251     #endif
252    
253 root 1.152 #ifndef EV_INOTIFY_HASHSIZE
254     # if EV_MINIMAL
255     # define EV_INOTIFY_HASHSIZE 1
256     # else
257     # define EV_INOTIFY_HASHSIZE 16
258     # endif
259     #endif
260    
261 root 1.220 #ifndef EV_USE_EVENTFD
262     # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263     # define EV_USE_EVENTFD 1
264     # else
265     # define EV_USE_EVENTFD 0
266     # endif
267     #endif
268    
269 root 1.249 #if 0 /* debugging */
270 root 1.250 # define EV_VERIFY 3
271 root 1.249 # define EV_USE_4HEAP 1
272     # define EV_HEAP_CACHE_AT 1
273     #endif
274    
275 root 1.250 #ifndef EV_VERIFY
276     # define EV_VERIFY !EV_MINIMAL
277     #endif
278    
279 root 1.243 #ifndef EV_USE_4HEAP
280     # define EV_USE_4HEAP !EV_MINIMAL
281     #endif
282    
283     #ifndef EV_HEAP_CACHE_AT
284     # define EV_HEAP_CACHE_AT !EV_MINIMAL
285     #endif
286    
287 root 1.220 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 root 1.40
289     #ifndef CLOCK_MONOTONIC
290     # undef EV_USE_MONOTONIC
291     # define EV_USE_MONOTONIC 0
292     #endif
293    
294 root 1.31 #ifndef CLOCK_REALTIME
295 root 1.40 # undef EV_USE_REALTIME
296 root 1.31 # define EV_USE_REALTIME 0
297     #endif
298 root 1.40
299 root 1.152 #if !EV_STAT_ENABLE
300 root 1.185 # undef EV_USE_INOTIFY
301 root 1.152 # define EV_USE_INOTIFY 0
302     #endif
303    
304 root 1.193 #if !EV_USE_NANOSLEEP
305     # ifndef _WIN32
306     # include <sys/select.h>
307     # endif
308     #endif
309    
310 root 1.152 #if EV_USE_INOTIFY
311 root 1.264 # include <sys/utsname.h>
312 root 1.273 # include <sys/statfs.h>
313 root 1.152 # include <sys/inotify.h>
314 root 1.263 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315     # ifndef IN_DONT_FOLLOW
316     # undef EV_USE_INOTIFY
317     # define EV_USE_INOTIFY 0
318     # endif
319 root 1.152 #endif
320    
321 root 1.185 #if EV_SELECT_IS_WINSOCKET
322     # include <winsock.h>
323     #endif
324    
325 root 1.274 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326     /* which makes programs even slower. might work on other unices, too. */
327     #if EV_USE_CLOCK_SYSCALL
328     # include <syscall.h>
329     # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330     # undef EV_USE_MONOTONIC
331     # define EV_USE_MONOTONIC 1
332     #endif
333    
334 root 1.220 #if EV_USE_EVENTFD
335     /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336 root 1.221 # include <stdint.h>
337 root 1.222 # ifdef __cplusplus
338     extern "C" {
339     # endif
340 root 1.220 int eventfd (unsigned int initval, int flags);
341 root 1.222 # ifdef __cplusplus
342     }
343     # endif
344 root 1.220 #endif
345    
346 root 1.40 /**/
347 root 1.1
348 root 1.250 #if EV_VERIFY >= 3
349 root 1.248 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350     #else
351     # define EV_FREQUENT_CHECK do { } while (0)
352     #endif
353    
354 root 1.176 /*
355     * This is used to avoid floating point rounding problems.
356     * It is added to ev_rt_now when scheduling periodics
357     * to ensure progress, time-wise, even when rounding
358     * errors are against us.
359 root 1.177 * This value is good at least till the year 4000.
360 root 1.176 * Better solutions welcome.
361     */
362     #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363    
364 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365 root 1.120 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366 root 1.176 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 root 1.1
368 root 1.185 #if __GNUC__ >= 4
369 root 1.40 # define expect(expr,value) __builtin_expect ((expr),(value))
370 root 1.169 # define noinline __attribute__ ((noinline))
371 root 1.40 #else
372     # define expect(expr,value) (expr)
373 root 1.140 # define noinline
374 root 1.223 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375 root 1.169 # define inline
376     # endif
377 root 1.40 #endif
378    
379     #define expect_false(expr) expect ((expr) != 0, 0)
380     #define expect_true(expr) expect ((expr) != 0, 1)
381 root 1.169 #define inline_size static inline
382    
383     #if EV_MINIMAL
384     # define inline_speed static noinline
385     #else
386     # define inline_speed static inline
387     #endif
388 root 1.40
389 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390 root 1.164 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
391 root 1.42
392 root 1.164 #define EMPTY /* required for microsofts broken pseudo-c compiler */
393 root 1.114 #define EMPTY2(a,b) /* used to suppress some warnings */
394 root 1.103
395 root 1.136 typedef ev_watcher *W;
396     typedef ev_watcher_list *WL;
397     typedef ev_watcher_time *WT;
398 root 1.10
399 root 1.229 #define ev_active(w) ((W)(w))->active
400 root 1.228 #define ev_at(w) ((WT)(w))->at
401    
402 root 1.279 #if EV_USE_REALTIME
403 root 1.194 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
404     /* giving it a reasonably high chance of working on typical architetcures */
405 root 1.279 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406     #endif
407    
408     #if EV_USE_MONOTONIC
409 root 1.207 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410 root 1.198 #endif
411 root 1.54
412 root 1.103 #ifdef _WIN32
413 root 1.98 # include "ev_win32.c"
414     #endif
415 root 1.67
416 root 1.53 /*****************************************************************************/
417 root 1.1
418 root 1.70 static void (*syserr_cb)(const char *msg);
419 root 1.69
420 root 1.141 void
421     ev_set_syserr_cb (void (*cb)(const char *msg))
422 root 1.69 {
423     syserr_cb = cb;
424     }
425    
426 root 1.141 static void noinline
427 root 1.269 ev_syserr (const char *msg)
428 root 1.69 {
429 root 1.70 if (!msg)
430     msg = "(libev) system error";
431    
432 root 1.69 if (syserr_cb)
433 root 1.70 syserr_cb (msg);
434 root 1.69 else
435     {
436 root 1.70 perror (msg);
437 root 1.69 abort ();
438     }
439     }
440    
441 root 1.224 static void *
442     ev_realloc_emul (void *ptr, long size)
443     {
444     /* some systems, notably openbsd and darwin, fail to properly
445     * implement realloc (x, 0) (as required by both ansi c-98 and
446     * the single unix specification, so work around them here.
447     */
448    
449     if (size)
450     return realloc (ptr, size);
451    
452     free (ptr);
453     return 0;
454     }
455    
456     static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457 root 1.69
458 root 1.141 void
459 root 1.155 ev_set_allocator (void *(*cb)(void *ptr, long size))
460 root 1.69 {
461     alloc = cb;
462     }
463    
464 root 1.150 inline_speed void *
465 root 1.155 ev_realloc (void *ptr, long size)
466 root 1.69 {
467 root 1.224 ptr = alloc (ptr, size);
468 root 1.69
469     if (!ptr && size)
470     {
471 root 1.155 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 root 1.69 abort ();
473     }
474    
475     return ptr;
476     }
477    
478     #define ev_malloc(size) ev_realloc (0, (size))
479     #define ev_free(ptr) ev_realloc ((ptr), 0)
480    
481     /*****************************************************************************/
482    
483 root 1.288 /* file descriptor info structure */
484 root 1.53 typedef struct
485     {
486 root 1.68 WL head;
487 root 1.288 unsigned char events; /* the events watched for */
488     unsigned char reify; /* flag set when this ANFD needs reification */
489     unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
490 root 1.269 unsigned char unused;
491     #if EV_USE_EPOLL
492 root 1.288 unsigned int egen; /* generation counter to counter epoll bugs */
493 root 1.269 #endif
494 root 1.103 #if EV_SELECT_IS_WINSOCKET
495     SOCKET handle;
496     #endif
497 root 1.53 } ANFD;
498 root 1.1
499 root 1.288 /* stores the pending event set for a given watcher */
500 root 1.53 typedef struct
501     {
502     W w;
503 root 1.288 int events; /* the pending event set for the given watcher */
504 root 1.53 } ANPENDING;
505 root 1.51
506 root 1.155 #if EV_USE_INOTIFY
507 root 1.241 /* hash table entry per inotify-id */
508 root 1.152 typedef struct
509     {
510     WL head;
511 root 1.155 } ANFS;
512 root 1.152 #endif
513    
514 root 1.241 /* Heap Entry */
515     #if EV_HEAP_CACHE_AT
516 root 1.288 /* a heap element */
517 root 1.241 typedef struct {
518 root 1.243 ev_tstamp at;
519 root 1.241 WT w;
520     } ANHE;
521    
522 root 1.248 #define ANHE_w(he) (he).w /* access watcher, read-write */
523     #define ANHE_at(he) (he).at /* access cached at, read-only */
524     #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525 root 1.241 #else
526 root 1.288 /* a heap element */
527 root 1.241 typedef WT ANHE;
528    
529 root 1.248 #define ANHE_w(he) (he)
530     #define ANHE_at(he) (he)->at
531     #define ANHE_at_cache(he)
532 root 1.241 #endif
533    
534 root 1.55 #if EV_MULTIPLICITY
535 root 1.54
536 root 1.80 struct ev_loop
537     {
538 root 1.86 ev_tstamp ev_rt_now;
539 root 1.99 #define ev_rt_now ((loop)->ev_rt_now)
540 root 1.80 #define VAR(name,decl) decl;
541     #include "ev_vars.h"
542     #undef VAR
543     };
544     #include "ev_wrap.h"
545    
546 root 1.116 static struct ev_loop default_loop_struct;
547     struct ev_loop *ev_default_loop_ptr;
548 root 1.54
549 root 1.53 #else
550 root 1.54
551 root 1.86 ev_tstamp ev_rt_now;
552 root 1.80 #define VAR(name,decl) static decl;
553     #include "ev_vars.h"
554     #undef VAR
555    
556 root 1.116 static int ev_default_loop_ptr;
557 root 1.54
558 root 1.51 #endif
559 root 1.1
560 root 1.8 /*****************************************************************************/
561    
562 root 1.141 ev_tstamp
563 root 1.1 ev_time (void)
564     {
565 root 1.29 #if EV_USE_REALTIME
566 root 1.279 if (expect_true (have_realtime))
567     {
568     struct timespec ts;
569     clock_gettime (CLOCK_REALTIME, &ts);
570     return ts.tv_sec + ts.tv_nsec * 1e-9;
571     }
572     #endif
573    
574 root 1.1 struct timeval tv;
575     gettimeofday (&tv, 0);
576     return tv.tv_sec + tv.tv_usec * 1e-6;
577     }
578    
579 root 1.284 inline_size ev_tstamp
580 root 1.1 get_clock (void)
581     {
582 root 1.29 #if EV_USE_MONOTONIC
583 root 1.40 if (expect_true (have_monotonic))
584 root 1.1 {
585     struct timespec ts;
586     clock_gettime (CLOCK_MONOTONIC, &ts);
587     return ts.tv_sec + ts.tv_nsec * 1e-9;
588     }
589     #endif
590    
591     return ev_time ();
592     }
593    
594 root 1.85 #if EV_MULTIPLICITY
595 root 1.51 ev_tstamp
596     ev_now (EV_P)
597     {
598 root 1.85 return ev_rt_now;
599 root 1.51 }
600 root 1.85 #endif
601 root 1.51
602 root 1.193 void
603     ev_sleep (ev_tstamp delay)
604     {
605     if (delay > 0.)
606     {
607     #if EV_USE_NANOSLEEP
608     struct timespec ts;
609    
610     ts.tv_sec = (time_t)delay;
611     ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612    
613     nanosleep (&ts, 0);
614     #elif defined(_WIN32)
615 root 1.217 Sleep ((unsigned long)(delay * 1e3));
616 root 1.193 #else
617     struct timeval tv;
618    
619     tv.tv_sec = (time_t)delay;
620     tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621    
622 root 1.257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623     /* somehting nto guaranteed by newer posix versions, but guaranteed */
624     /* by older ones */
625 root 1.193 select (0, 0, 0, 0, &tv);
626     #endif
627     }
628     }
629    
630     /*****************************************************************************/
631    
632 root 1.233 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633 root 1.232
634 root 1.288 /* find a suitable new size for the given array, */
635     /* hopefully by rounding to a ncie-to-malloc size */
636 root 1.284 inline_size int
637 root 1.163 array_nextsize (int elem, int cur, int cnt)
638     {
639     int ncur = cur + 1;
640    
641     do
642     ncur <<= 1;
643     while (cnt > ncur);
644    
645 root 1.232 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
646     if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
647 root 1.163 {
648     ncur *= elem;
649 root 1.232 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
650 root 1.163 ncur = ncur - sizeof (void *) * 4;
651     ncur /= elem;
652     }
653    
654     return ncur;
655     }
656    
657 root 1.171 static noinline void *
658 root 1.163 array_realloc (int elem, void *base, int *cur, int cnt)
659     {
660     *cur = array_nextsize (elem, *cur, cnt);
661     return ev_realloc (base, elem * *cur);
662     }
663 root 1.29
664 root 1.265 #define array_init_zero(base,count) \
665     memset ((void *)(base), 0, sizeof (*(base)) * (count))
666    
667 root 1.74 #define array_needsize(type,base,cur,cnt,init) \
668 root 1.163 if (expect_false ((cnt) > (cur))) \
669 root 1.69 { \
670 root 1.163 int ocur_ = (cur); \
671     (base) = (type *)array_realloc \
672     (sizeof (type), (base), &(cur), (cnt)); \
673     init ((base) + (ocur_), (cur) - ocur_); \
674 root 1.1 }
675    
676 root 1.163 #if 0
677 root 1.74 #define array_slim(type,stem) \
678 root 1.67 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
679     { \
680     stem ## max = array_roundsize (stem ## cnt >> 1); \
681 root 1.74 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
682 root 1.67 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
683     }
684 root 1.163 #endif
685 root 1.67
686 root 1.65 #define array_free(stem, idx) \
687 root 1.280 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
688 root 1.65
689 root 1.8 /*****************************************************************************/
690    
691 root 1.288 /* dummy callback for pending events */
692     static void noinline
693     pendingcb (EV_P_ ev_prepare *w, int revents)
694     {
695     }
696    
697 root 1.140 void noinline
698 root 1.78 ev_feed_event (EV_P_ void *w, int revents)
699 root 1.1 {
700 root 1.78 W w_ = (W)w;
701 root 1.171 int pri = ABSPRI (w_);
702 root 1.78
703 root 1.123 if (expect_false (w_->pending))
704 root 1.171 pendings [pri][w_->pending - 1].events |= revents;
705     else
706 root 1.32 {
707 root 1.171 w_->pending = ++pendingcnt [pri];
708     array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
709     pendings [pri][w_->pending - 1].w = w_;
710     pendings [pri][w_->pending - 1].events = revents;
711 root 1.32 }
712 root 1.1 }
713    
714 root 1.284 inline_speed void
715     feed_reverse (EV_P_ W w)
716     {
717     array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718     rfeeds [rfeedcnt++] = w;
719     }
720    
721     inline_size void
722     feed_reverse_done (EV_P_ int revents)
723     {
724     do
725     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726     while (rfeedcnt);
727     }
728    
729     inline_speed void
730 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
731 root 1.27 {
732     int i;
733    
734     for (i = 0; i < eventcnt; ++i)
735 root 1.78 ev_feed_event (EV_A_ events [i], type);
736 root 1.27 }
737    
738 root 1.141 /*****************************************************************************/
739    
740 root 1.284 inline_speed void
741 root 1.79 fd_event (EV_P_ int fd, int revents)
742 root 1.1 {
743     ANFD *anfd = anfds + fd;
744 root 1.136 ev_io *w;
745 root 1.1
746 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
747 root 1.1 {
748 root 1.79 int ev = w->events & revents;
749 root 1.1
750     if (ev)
751 root 1.78 ev_feed_event (EV_A_ (W)w, ev);
752 root 1.1 }
753     }
754    
755 root 1.79 void
756     ev_feed_fd_event (EV_P_ int fd, int revents)
757     {
758 root 1.168 if (fd >= 0 && fd < anfdmax)
759     fd_event (EV_A_ fd, revents);
760 root 1.79 }
761    
762 root 1.288 /* make sure the external fd watch events are in-sync */
763     /* with the kernel/libev internal state */
764 root 1.284 inline_size void
765 root 1.51 fd_reify (EV_P)
766 root 1.9 {
767     int i;
768    
769 root 1.27 for (i = 0; i < fdchangecnt; ++i)
770     {
771     int fd = fdchanges [i];
772     ANFD *anfd = anfds + fd;
773 root 1.136 ev_io *w;
774 root 1.27
775 root 1.184 unsigned char events = 0;
776 root 1.27
777 root 1.136 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
778 root 1.184 events |= (unsigned char)w->events;
779 root 1.27
780 root 1.103 #if EV_SELECT_IS_WINSOCKET
781     if (events)
782     {
783 root 1.254 unsigned long arg;
784 root 1.200 #ifdef EV_FD_TO_WIN32_HANDLE
785     anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786     #else
787     anfd->handle = _get_osfhandle (fd);
788     #endif
789 root 1.278 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
790 root 1.103 }
791     #endif
792    
793 root 1.184 {
794     unsigned char o_events = anfd->events;
795     unsigned char o_reify = anfd->reify;
796    
797     anfd->reify = 0;
798     anfd->events = events;
799 root 1.27
800 root 1.281 if (o_events != events || o_reify & EV__IOFDSET)
801 root 1.184 backend_modify (EV_A_ fd, o_events, events);
802     }
803 root 1.27 }
804    
805     fdchangecnt = 0;
806     }
807    
808 root 1.288 /* something about the given fd changed */
809 root 1.284 inline_size void
810 root 1.183 fd_change (EV_P_ int fd, int flags)
811 root 1.27 {
812 root 1.183 unsigned char reify = anfds [fd].reify;
813 root 1.184 anfds [fd].reify |= flags;
814 root 1.27
815 root 1.183 if (expect_true (!reify))
816     {
817     ++fdchangecnt;
818     array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
819     fdchanges [fdchangecnt - 1] = fd;
820     }
821 root 1.9 }
822    
823 root 1.288 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824 root 1.284 inline_speed void
825 root 1.51 fd_kill (EV_P_ int fd)
826 root 1.41 {
827 root 1.136 ev_io *w;
828 root 1.41
829 root 1.136 while ((w = (ev_io *)anfds [fd].head))
830 root 1.41 {
831 root 1.51 ev_io_stop (EV_A_ w);
832 root 1.78 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
833 root 1.41 }
834     }
835    
836 root 1.288 /* check whether the given fd is atcually valid, for error recovery */
837 root 1.284 inline_size int
838 root 1.71 fd_valid (int fd)
839     {
840 root 1.103 #ifdef _WIN32
841     return _get_osfhandle (fd) != -1;
842 root 1.71 #else
843     return fcntl (fd, F_GETFD) != -1;
844     #endif
845     }
846    
847 root 1.19 /* called on EBADF to verify fds */
848 root 1.140 static void noinline
849 root 1.51 fd_ebadf (EV_P)
850 root 1.19 {
851     int fd;
852    
853     for (fd = 0; fd < anfdmax; ++fd)
854 root 1.27 if (anfds [fd].events)
855 root 1.254 if (!fd_valid (fd) && errno == EBADF)
856 root 1.51 fd_kill (EV_A_ fd);
857 root 1.41 }
858    
859     /* called on ENOMEM in select/poll to kill some fds and retry */
860 root 1.140 static void noinline
861 root 1.51 fd_enomem (EV_P)
862 root 1.41 {
863 root 1.62 int fd;
864 root 1.41
865 root 1.62 for (fd = anfdmax; fd--; )
866 root 1.41 if (anfds [fd].events)
867     {
868 root 1.51 fd_kill (EV_A_ fd);
869 root 1.41 return;
870     }
871 root 1.19 }
872    
873 root 1.130 /* usually called after fork if backend needs to re-arm all fds from scratch */
874 root 1.140 static void noinline
875 root 1.56 fd_rearm_all (EV_P)
876     {
877     int fd;
878    
879     for (fd = 0; fd < anfdmax; ++fd)
880     if (anfds [fd].events)
881     {
882     anfds [fd].events = 0;
883 root 1.268 anfds [fd].emask = 0;
884 root 1.281 fd_change (EV_A_ fd, EV__IOFDSET | 1);
885 root 1.56 }
886     }
887    
888 root 1.8 /*****************************************************************************/
889    
890 root 1.235 /*
891 root 1.241 * the heap functions want a real array index. array index 0 uis guaranteed to not
892     * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
893     * the branching factor of the d-tree.
894     */
895    
896     /*
897 root 1.235 * at the moment we allow libev the luxury of two heaps,
898     * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899     * which is more cache-efficient.
900     * the difference is about 5% with 50000+ watchers.
901     */
902 root 1.241 #if EV_USE_4HEAP
903 root 1.235
904 root 1.237 #define DHEAP 4
905     #define HEAP0 (DHEAP - 1) /* index of first element in heap */
906 root 1.247 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907 root 1.248 #define UPHEAP_DONE(p,k) ((p) == (k))
908 root 1.235
909     /* away from the root */
910 root 1.284 inline_speed void
911 root 1.241 downheap (ANHE *heap, int N, int k)
912 root 1.235 {
913 root 1.241 ANHE he = heap [k];
914     ANHE *E = heap + N + HEAP0;
915 root 1.235
916     for (;;)
917     {
918     ev_tstamp minat;
919 root 1.241 ANHE *minpos;
920 root 1.248 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921 root 1.235
922 root 1.248 /* find minimum child */
923 root 1.237 if (expect_true (pos + DHEAP - 1 < E))
924 root 1.235 {
925 root 1.245 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926     if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927     if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928     if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 root 1.235 }
930 root 1.240 else if (pos < E)
931 root 1.235 {
932 root 1.241 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933     if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934     if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935     if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 root 1.235 }
937 root 1.240 else
938     break;
939 root 1.235
940 root 1.241 if (ANHE_at (he) <= minat)
941 root 1.235 break;
942    
943 root 1.247 heap [k] = *minpos;
944 root 1.241 ev_active (ANHE_w (*minpos)) = k;
945 root 1.235
946     k = minpos - heap;
947     }
948    
949 root 1.247 heap [k] = he;
950 root 1.241 ev_active (ANHE_w (he)) = k;
951 root 1.235 }
952    
953 root 1.248 #else /* 4HEAP */
954 root 1.235
955     #define HEAP0 1
956 root 1.247 #define HPARENT(k) ((k) >> 1)
957 root 1.248 #define UPHEAP_DONE(p,k) (!(p))
958 root 1.235
959 root 1.248 /* away from the root */
960 root 1.284 inline_speed void
961 root 1.248 downheap (ANHE *heap, int N, int k)
962 root 1.1 {
963 root 1.241 ANHE he = heap [k];
964 root 1.1
965 root 1.228 for (;;)
966 root 1.1 {
967 root 1.248 int c = k << 1;
968 root 1.179
969 root 1.248 if (c > N + HEAP0 - 1)
970 root 1.179 break;
971    
972 root 1.248 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973     ? 1 : 0;
974    
975     if (ANHE_at (he) <= ANHE_at (heap [c]))
976     break;
977    
978     heap [k] = heap [c];
979 root 1.241 ev_active (ANHE_w (heap [k])) = k;
980 root 1.248
981     k = c;
982 root 1.1 }
983    
984 root 1.243 heap [k] = he;
985 root 1.248 ev_active (ANHE_w (he)) = k;
986 root 1.1 }
987 root 1.248 #endif
988 root 1.1
989 root 1.248 /* towards the root */
990 root 1.284 inline_speed void
991 root 1.248 upheap (ANHE *heap, int k)
992 root 1.1 {
993 root 1.241 ANHE he = heap [k];
994 root 1.1
995 root 1.179 for (;;)
996 root 1.1 {
997 root 1.248 int p = HPARENT (k);
998 root 1.179
999 root 1.248 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 root 1.179 break;
1001 root 1.1
1002 root 1.248 heap [k] = heap [p];
1003 root 1.241 ev_active (ANHE_w (heap [k])) = k;
1004 root 1.248 k = p;
1005 root 1.1 }
1006    
1007 root 1.241 heap [k] = he;
1008     ev_active (ANHE_w (he)) = k;
1009 root 1.1 }
1010    
1011 root 1.288 /* move an element suitably so it is in a correct place */
1012 root 1.284 inline_size void
1013 root 1.241 adjustheap (ANHE *heap, int N, int k)
1014 root 1.84 {
1015 root 1.247 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1016     upheap (heap, k);
1017     else
1018     downheap (heap, N, k);
1019 root 1.84 }
1020    
1021 root 1.248 /* rebuild the heap: this function is used only once and executed rarely */
1022 root 1.284 inline_size void
1023 root 1.248 reheap (ANHE *heap, int N)
1024     {
1025     int i;
1026 root 1.251
1027 root 1.248 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028     /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029     for (i = 0; i < N; ++i)
1030     upheap (heap, i + HEAP0);
1031     }
1032    
1033 root 1.8 /*****************************************************************************/
1034    
1035 root 1.288 /* associate signal watchers to a signal signal */
1036 root 1.7 typedef struct
1037     {
1038 root 1.68 WL head;
1039 root 1.207 EV_ATOMIC_T gotsig;
1040 root 1.7 } ANSIG;
1041    
1042     static ANSIG *signals;
1043 root 1.4 static int signalmax;
1044 root 1.1
1045 root 1.207 static EV_ATOMIC_T gotsig;
1046 root 1.7
1047 root 1.207 /*****************************************************************************/
1048    
1049 root 1.288 /* used to prepare libev internal fd's */
1050     /* this is not fork-safe */
1051 root 1.284 inline_speed void
1052 root 1.207 fd_intern (int fd)
1053     {
1054     #ifdef _WIN32
1055 root 1.254 unsigned long arg = 1;
1056 root 1.207 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1057     #else
1058     fcntl (fd, F_SETFD, FD_CLOEXEC);
1059     fcntl (fd, F_SETFL, O_NONBLOCK);
1060     #endif
1061     }
1062    
1063     static void noinline
1064     evpipe_init (EV_P)
1065     {
1066 root 1.288 if (!ev_is_active (&pipe_w))
1067 root 1.207 {
1068 root 1.220 #if EV_USE_EVENTFD
1069     if ((evfd = eventfd (0, 0)) >= 0)
1070     {
1071     evpipe [0] = -1;
1072     fd_intern (evfd);
1073 root 1.288 ev_io_set (&pipe_w, evfd, EV_READ);
1074 root 1.220 }
1075     else
1076     #endif
1077     {
1078     while (pipe (evpipe))
1079 root 1.269 ev_syserr ("(libev) error creating signal/async pipe");
1080 root 1.207
1081 root 1.220 fd_intern (evpipe [0]);
1082     fd_intern (evpipe [1]);
1083 root 1.288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 root 1.220 }
1085 root 1.207
1086 root 1.288 ev_io_start (EV_A_ &pipe_w);
1087 root 1.210 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 root 1.207 }
1089     }
1090    
1091 root 1.284 inline_size void
1092 root 1.214 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093 root 1.207 {
1094 root 1.214 if (!*flag)
1095 root 1.207 {
1096 ayin 1.215 int old_errno = errno; /* save errno because write might clobber it */
1097 root 1.214
1098     *flag = 1;
1099 root 1.220
1100     #if EV_USE_EVENTFD
1101     if (evfd >= 0)
1102     {
1103     uint64_t counter = 1;
1104     write (evfd, &counter, sizeof (uint64_t));
1105     }
1106     else
1107     #endif
1108     write (evpipe [1], &old_errno, 1);
1109 root 1.214
1110 root 1.207 errno = old_errno;
1111     }
1112     }
1113    
1114 root 1.288 /* called whenever the libev signal pipe */
1115     /* got some events (signal, async) */
1116 root 1.207 static void
1117     pipecb (EV_P_ ev_io *iow, int revents)
1118     {
1119 root 1.220 #if EV_USE_EVENTFD
1120     if (evfd >= 0)
1121     {
1122 root 1.232 uint64_t counter;
1123 root 1.220 read (evfd, &counter, sizeof (uint64_t));
1124     }
1125     else
1126     #endif
1127     {
1128     char dummy;
1129     read (evpipe [0], &dummy, 1);
1130     }
1131 root 1.207
1132 root 1.211 if (gotsig && ev_is_default_loop (EV_A))
1133 root 1.207 {
1134     int signum;
1135     gotsig = 0;
1136    
1137     for (signum = signalmax; signum--; )
1138     if (signals [signum].gotsig)
1139     ev_feed_signal_event (EV_A_ signum + 1);
1140     }
1141    
1142 root 1.209 #if EV_ASYNC_ENABLE
1143 root 1.207 if (gotasync)
1144     {
1145     int i;
1146     gotasync = 0;
1147    
1148     for (i = asynccnt; i--; )
1149     if (asyncs [i]->sent)
1150     {
1151     asyncs [i]->sent = 0;
1152     ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153     }
1154     }
1155 root 1.209 #endif
1156 root 1.207 }
1157    
1158     /*****************************************************************************/
1159    
1160 root 1.7 static void
1161 root 1.218 ev_sighandler (int signum)
1162 root 1.7 {
1163 root 1.207 #if EV_MULTIPLICITY
1164     struct ev_loop *loop = &default_loop_struct;
1165     #endif
1166    
1167 root 1.103 #if _WIN32
1168 root 1.218 signal (signum, ev_sighandler);
1169 root 1.67 #endif
1170    
1171 root 1.7 signals [signum - 1].gotsig = 1;
1172 root 1.214 evpipe_write (EV_A_ &gotsig);
1173 root 1.7 }
1174    
1175 root 1.140 void noinline
1176 root 1.79 ev_feed_signal_event (EV_P_ int signum)
1177     {
1178 root 1.80 WL w;
1179    
1180 root 1.79 #if EV_MULTIPLICITY
1181 root 1.278 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182 root 1.79 #endif
1183    
1184     --signum;
1185    
1186     if (signum < 0 || signum >= signalmax)
1187     return;
1188    
1189     signals [signum].gotsig = 0;
1190    
1191     for (w = signals [signum].head; w; w = w->next)
1192     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193     }
1194    
1195 root 1.8 /*****************************************************************************/
1196    
1197 root 1.182 static WL childs [EV_PID_HASHSIZE];
1198 root 1.71
1199 root 1.103 #ifndef _WIN32
1200 root 1.45
1201 root 1.136 static ev_signal childev;
1202 root 1.59
1203 root 1.206 #ifndef WIFCONTINUED
1204     # define WIFCONTINUED(status) 0
1205     #endif
1206    
1207 root 1.288 /* handle a single child status event */
1208 root 1.284 inline_speed void
1209 root 1.216 child_reap (EV_P_ int chain, int pid, int status)
1210 root 1.47 {
1211 root 1.136 ev_child *w;
1212 root 1.206 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1213 root 1.47
1214 root 1.149 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 root 1.206 {
1216     if ((w->pid == pid || !w->pid)
1217     && (!traced || (w->flags & 1)))
1218     {
1219 root 1.216 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1220 root 1.206 w->rpid = pid;
1221     w->rstatus = status;
1222     ev_feed_event (EV_A_ (W)w, EV_CHILD);
1223     }
1224     }
1225 root 1.47 }
1226    
1227 root 1.142 #ifndef WCONTINUED
1228     # define WCONTINUED 0
1229     #endif
1230    
1231 root 1.288 /* called on sigchld etc., calls waitpid */
1232 root 1.47 static void
1233 root 1.136 childcb (EV_P_ ev_signal *sw, int revents)
1234 root 1.22 {
1235     int pid, status;
1236    
1237 root 1.142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1238     if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1239     if (!WCONTINUED
1240     || errno != EINVAL
1241     || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1242     return;
1243    
1244 root 1.216 /* make sure we are called again until all children have been reaped */
1245 root 1.142 /* we need to do it this way so that the callback gets called before we continue */
1246     ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1247 root 1.47
1248 root 1.216 child_reap (EV_A_ pid, pid, status);
1249 root 1.149 if (EV_PID_HASHSIZE > 1)
1250 root 1.216 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1251 root 1.22 }
1252    
1253 root 1.45 #endif
1254    
1255 root 1.22 /*****************************************************************************/
1256    
1257 root 1.118 #if EV_USE_PORT
1258     # include "ev_port.c"
1259     #endif
1260 root 1.44 #if EV_USE_KQUEUE
1261     # include "ev_kqueue.c"
1262     #endif
1263 root 1.29 #if EV_USE_EPOLL
1264 root 1.1 # include "ev_epoll.c"
1265     #endif
1266 root 1.59 #if EV_USE_POLL
1267 root 1.41 # include "ev_poll.c"
1268     #endif
1269 root 1.29 #if EV_USE_SELECT
1270 root 1.1 # include "ev_select.c"
1271     #endif
1272    
1273 root 1.24 int
1274     ev_version_major (void)
1275     {
1276     return EV_VERSION_MAJOR;
1277     }
1278    
1279     int
1280     ev_version_minor (void)
1281     {
1282     return EV_VERSION_MINOR;
1283     }
1284    
1285 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
1286 root 1.140 int inline_size
1287 root 1.51 enable_secure (void)
1288 root 1.41 {
1289 root 1.103 #ifdef _WIN32
1290 root 1.49 return 0;
1291     #else
1292 root 1.41 return getuid () != geteuid ()
1293     || getgid () != getegid ();
1294 root 1.49 #endif
1295 root 1.41 }
1296    
1297 root 1.111 unsigned int
1298 root 1.129 ev_supported_backends (void)
1299     {
1300 root 1.130 unsigned int flags = 0;
1301 root 1.129
1302     if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1303     if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1304     if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1305     if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1306     if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1307    
1308     return flags;
1309     }
1310    
1311     unsigned int
1312 root 1.130 ev_recommended_backends (void)
1313 root 1.1 {
1314 root 1.131 unsigned int flags = ev_supported_backends ();
1315 root 1.129
1316     #ifndef __NetBSD__
1317     /* kqueue is borked on everything but netbsd apparently */
1318     /* it usually doesn't work correctly on anything but sockets and pipes */
1319     flags &= ~EVBACKEND_KQUEUE;
1320     #endif
1321     #ifdef __APPLE__
1322 root 1.278 /* only select works correctly on that "unix-certified" platform */
1323     flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324     flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1325 root 1.129 #endif
1326    
1327     return flags;
1328 root 1.51 }
1329    
1330 root 1.130 unsigned int
1331 root 1.134 ev_embeddable_backends (void)
1332     {
1333 root 1.196 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1334    
1335 root 1.192 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 root 1.196 /* please fix it and tell me how to detect the fix */
1337     flags &= ~EVBACKEND_EPOLL;
1338    
1339     return flags;
1340 root 1.134 }
1341    
1342     unsigned int
1343 root 1.130 ev_backend (EV_P)
1344     {
1345     return backend;
1346     }
1347    
1348 root 1.162 unsigned int
1349     ev_loop_count (EV_P)
1350     {
1351     return loop_count;
1352     }
1353    
1354 root 1.193 void
1355     ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356     {
1357     io_blocktime = interval;
1358     }
1359    
1360     void
1361     ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362     {
1363     timeout_blocktime = interval;
1364     }
1365    
1366 root 1.288 /* initialise a loop structure, must be zero-initialised */
1367 root 1.151 static void noinline
1368 root 1.108 loop_init (EV_P_ unsigned int flags)
1369 root 1.51 {
1370 root 1.130 if (!backend)
1371 root 1.23 {
1372 root 1.279 #if EV_USE_REALTIME
1373     if (!have_realtime)
1374     {
1375     struct timespec ts;
1376    
1377     if (!clock_gettime (CLOCK_REALTIME, &ts))
1378     have_realtime = 1;
1379     }
1380     #endif
1381    
1382 root 1.29 #if EV_USE_MONOTONIC
1383 root 1.279 if (!have_monotonic)
1384     {
1385     struct timespec ts;
1386    
1387     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1388     have_monotonic = 1;
1389     }
1390 root 1.1 #endif
1391    
1392 root 1.209 ev_rt_now = ev_time ();
1393     mn_now = get_clock ();
1394     now_floor = mn_now;
1395     rtmn_diff = ev_rt_now - mn_now;
1396 root 1.1
1397 root 1.193 io_blocktime = 0.;
1398     timeout_blocktime = 0.;
1399 root 1.209 backend = 0;
1400     backend_fd = -1;
1401     gotasync = 0;
1402     #if EV_USE_INOTIFY
1403     fs_fd = -2;
1404     #endif
1405 root 1.193
1406 root 1.158 /* pid check not overridable via env */
1407     #ifndef _WIN32
1408     if (flags & EVFLAG_FORKCHECK)
1409     curpid = getpid ();
1410     #endif
1411    
1412 root 1.128 if (!(flags & EVFLAG_NOENV)
1413     && !enable_secure ()
1414     && getenv ("LIBEV_FLAGS"))
1415 root 1.108 flags = atoi (getenv ("LIBEV_FLAGS"));
1416    
1417 root 1.225 if (!(flags & 0x0000ffffU))
1418 root 1.129 flags |= ev_recommended_backends ();
1419 root 1.41
1420 root 1.118 #if EV_USE_PORT
1421 root 1.130 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1422 root 1.118 #endif
1423 root 1.44 #if EV_USE_KQUEUE
1424 root 1.130 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1425 root 1.44 #endif
1426 root 1.29 #if EV_USE_EPOLL
1427 root 1.130 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1428 root 1.41 #endif
1429 root 1.59 #if EV_USE_POLL
1430 root 1.130 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1431 root 1.1 #endif
1432 root 1.29 #if EV_USE_SELECT
1433 root 1.130 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1434 root 1.1 #endif
1435 root 1.70
1436 root 1.288 ev_prepare_init (&pending_w, pendingcb);
1437    
1438     ev_init (&pipe_w, pipecb);
1439     ev_set_priority (&pipe_w, EV_MAXPRI);
1440 root 1.56 }
1441     }
1442    
1443 root 1.288 /* free up a loop structure */
1444 root 1.151 static void noinline
1445 root 1.56 loop_destroy (EV_P)
1446     {
1447 root 1.65 int i;
1448    
1449 root 1.288 if (ev_is_active (&pipe_w))
1450 root 1.207 {
1451     ev_ref (EV_A); /* signal watcher */
1452 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1453 root 1.207
1454 root 1.220 #if EV_USE_EVENTFD
1455     if (evfd >= 0)
1456     close (evfd);
1457     #endif
1458    
1459     if (evpipe [0] >= 0)
1460     {
1461     close (evpipe [0]);
1462     close (evpipe [1]);
1463     }
1464 root 1.207 }
1465    
1466 root 1.152 #if EV_USE_INOTIFY
1467     if (fs_fd >= 0)
1468     close (fs_fd);
1469     #endif
1470    
1471     if (backend_fd >= 0)
1472     close (backend_fd);
1473    
1474 root 1.118 #if EV_USE_PORT
1475 root 1.130 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1476 root 1.118 #endif
1477 root 1.56 #if EV_USE_KQUEUE
1478 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1479 root 1.56 #endif
1480     #if EV_USE_EPOLL
1481 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1482 root 1.56 #endif
1483 root 1.59 #if EV_USE_POLL
1484 root 1.130 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1485 root 1.56 #endif
1486     #if EV_USE_SELECT
1487 root 1.130 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1488 root 1.56 #endif
1489 root 1.1
1490 root 1.65 for (i = NUMPRI; i--; )
1491 root 1.164 {
1492     array_free (pending, [i]);
1493     #if EV_IDLE_ENABLE
1494     array_free (idle, [i]);
1495     #endif
1496     }
1497 root 1.65
1498 root 1.186 ev_free (anfds); anfdmax = 0;
1499    
1500 root 1.71 /* have to use the microsoft-never-gets-it-right macro */
1501 root 1.284 array_free (rfeed, EMPTY);
1502 root 1.164 array_free (fdchange, EMPTY);
1503     array_free (timer, EMPTY);
1504 root 1.140 #if EV_PERIODIC_ENABLE
1505 root 1.164 array_free (periodic, EMPTY);
1506 root 1.93 #endif
1507 root 1.187 #if EV_FORK_ENABLE
1508     array_free (fork, EMPTY);
1509     #endif
1510 root 1.164 array_free (prepare, EMPTY);
1511     array_free (check, EMPTY);
1512 root 1.209 #if EV_ASYNC_ENABLE
1513     array_free (async, EMPTY);
1514     #endif
1515 root 1.65
1516 root 1.130 backend = 0;
1517 root 1.56 }
1518 root 1.22
1519 root 1.226 #if EV_USE_INOTIFY
1520 root 1.284 inline_size void infy_fork (EV_P);
1521 root 1.226 #endif
1522 root 1.154
1523 root 1.284 inline_size void
1524 root 1.56 loop_fork (EV_P)
1525     {
1526 root 1.118 #if EV_USE_PORT
1527 root 1.130 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1528 root 1.56 #endif
1529     #if EV_USE_KQUEUE
1530 root 1.130 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1531 root 1.45 #endif
1532 root 1.118 #if EV_USE_EPOLL
1533 root 1.130 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1534 root 1.118 #endif
1535 root 1.154 #if EV_USE_INOTIFY
1536     infy_fork (EV_A);
1537     #endif
1538 root 1.70
1539 root 1.288 if (ev_is_active (&pipe_w))
1540 root 1.70 {
1541 root 1.207 /* this "locks" the handlers against writing to the pipe */
1542 root 1.212 /* while we modify the fd vars */
1543     gotsig = 1;
1544     #if EV_ASYNC_ENABLE
1545     gotasync = 1;
1546     #endif
1547 root 1.70
1548     ev_ref (EV_A);
1549 root 1.288 ev_io_stop (EV_A_ &pipe_w);
1550 root 1.220
1551     #if EV_USE_EVENTFD
1552     if (evfd >= 0)
1553     close (evfd);
1554     #endif
1555    
1556     if (evpipe [0] >= 0)
1557     {
1558     close (evpipe [0]);
1559     close (evpipe [1]);
1560     }
1561 root 1.207
1562     evpipe_init (EV_A);
1563 root 1.208 /* now iterate over everything, in case we missed something */
1564 root 1.288 pipecb (EV_A_ &pipe_w, EV_READ);
1565 root 1.70 }
1566    
1567     postfork = 0;
1568 root 1.1 }
1569    
1570 root 1.55 #if EV_MULTIPLICITY
1571 root 1.250
1572 root 1.54 struct ev_loop *
1573 root 1.108 ev_loop_new (unsigned int flags)
1574 root 1.54 {
1575 root 1.69 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1576    
1577     memset (loop, 0, sizeof (struct ev_loop));
1578 root 1.54
1579 root 1.108 loop_init (EV_A_ flags);
1580 root 1.56
1581 root 1.130 if (ev_backend (EV_A))
1582 root 1.55 return loop;
1583 root 1.54
1584 root 1.55 return 0;
1585 root 1.54 }
1586    
1587     void
1588 root 1.56 ev_loop_destroy (EV_P)
1589 root 1.54 {
1590 root 1.56 loop_destroy (EV_A);
1591 root 1.69 ev_free (loop);
1592 root 1.54 }
1593    
1594 root 1.56 void
1595     ev_loop_fork (EV_P)
1596     {
1597 root 1.205 postfork = 1; /* must be in line with ev_default_fork */
1598 root 1.56 }
1599 root 1.248
1600     #if EV_VERIFY
1601 root 1.258 static void noinline
1602 root 1.251 verify_watcher (EV_P_ W w)
1603     {
1604 root 1.278 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605 root 1.251
1606     if (w->pending)
1607 root 1.278 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608 root 1.251 }
1609    
1610     static void noinline
1611     verify_heap (EV_P_ ANHE *heap, int N)
1612     {
1613     int i;
1614    
1615     for (i = HEAP0; i < N + HEAP0; ++i)
1616     {
1617 root 1.278 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618     assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619     assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620 root 1.251
1621     verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622     }
1623     }
1624    
1625     static void noinline
1626     array_verify (EV_P_ W *ws, int cnt)
1627 root 1.248 {
1628     while (cnt--)
1629 root 1.251 {
1630 root 1.278 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 root 1.251 verify_watcher (EV_A_ ws [cnt]);
1632     }
1633 root 1.248 }
1634 root 1.250 #endif
1635 root 1.248
1636 root 1.250 void
1637 root 1.248 ev_loop_verify (EV_P)
1638     {
1639 root 1.250 #if EV_VERIFY
1640 root 1.248 int i;
1641 root 1.251 WL w;
1642    
1643     assert (activecnt >= -1);
1644    
1645     assert (fdchangemax >= fdchangecnt);
1646     for (i = 0; i < fdchangecnt; ++i)
1647 root 1.278 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648 root 1.251
1649     assert (anfdmax >= 0);
1650     for (i = 0; i < anfdmax; ++i)
1651     for (w = anfds [i].head; w; w = w->next)
1652     {
1653     verify_watcher (EV_A_ (W)w);
1654 root 1.278 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655     assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 root 1.251 }
1657    
1658     assert (timermax >= timercnt);
1659     verify_heap (EV_A_ timers, timercnt);
1660 root 1.248
1661     #if EV_PERIODIC_ENABLE
1662 root 1.251 assert (periodicmax >= periodiccnt);
1663     verify_heap (EV_A_ periodics, periodiccnt);
1664 root 1.248 #endif
1665    
1666 root 1.251 for (i = NUMPRI; i--; )
1667     {
1668     assert (pendingmax [i] >= pendingcnt [i]);
1669 root 1.248 #if EV_IDLE_ENABLE
1670 root 1.252 assert (idleall >= 0);
1671 root 1.251 assert (idlemax [i] >= idlecnt [i]);
1672     array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673 root 1.248 #endif
1674 root 1.251 }
1675    
1676 root 1.248 #if EV_FORK_ENABLE
1677 root 1.251 assert (forkmax >= forkcnt);
1678     array_verify (EV_A_ (W *)forks, forkcnt);
1679 root 1.248 #endif
1680 root 1.251
1681 root 1.250 #if EV_ASYNC_ENABLE
1682 root 1.251 assert (asyncmax >= asynccnt);
1683     array_verify (EV_A_ (W *)asyncs, asynccnt);
1684 root 1.250 #endif
1685 root 1.251
1686     assert (preparemax >= preparecnt);
1687     array_verify (EV_A_ (W *)prepares, preparecnt);
1688    
1689     assert (checkmax >= checkcnt);
1690     array_verify (EV_A_ (W *)checks, checkcnt);
1691    
1692     # if 0
1693     for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694     for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1695     # endif
1696 root 1.248 #endif
1697     }
1698    
1699 root 1.250 #endif /* multiplicity */
1700 root 1.56
1701     #if EV_MULTIPLICITY
1702     struct ev_loop *
1703 root 1.125 ev_default_loop_init (unsigned int flags)
1704 root 1.54 #else
1705     int
1706 root 1.116 ev_default_loop (unsigned int flags)
1707 root 1.56 #endif
1708 root 1.54 {
1709 root 1.116 if (!ev_default_loop_ptr)
1710 root 1.56 {
1711     #if EV_MULTIPLICITY
1712 root 1.116 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1713 root 1.56 #else
1714 ayin 1.117 ev_default_loop_ptr = 1;
1715 root 1.54 #endif
1716    
1717 root 1.110 loop_init (EV_A_ flags);
1718 root 1.56
1719 root 1.130 if (ev_backend (EV_A))
1720 root 1.56 {
1721 root 1.103 #ifndef _WIN32
1722 root 1.56 ev_signal_init (&childev, childcb, SIGCHLD);
1723     ev_set_priority (&childev, EV_MAXPRI);
1724     ev_signal_start (EV_A_ &childev);
1725     ev_unref (EV_A); /* child watcher should not keep loop alive */
1726     #endif
1727     }
1728     else
1729 root 1.116 ev_default_loop_ptr = 0;
1730 root 1.56 }
1731 root 1.8
1732 root 1.116 return ev_default_loop_ptr;
1733 root 1.1 }
1734    
1735 root 1.24 void
1736 root 1.56 ev_default_destroy (void)
1737 root 1.1 {
1738 root 1.57 #if EV_MULTIPLICITY
1739 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1740 root 1.57 #endif
1741 root 1.56
1742 root 1.266 ev_default_loop_ptr = 0;
1743    
1744 root 1.103 #ifndef _WIN32
1745 root 1.56 ev_ref (EV_A); /* child watcher */
1746     ev_signal_stop (EV_A_ &childev);
1747 root 1.71 #endif
1748 root 1.56
1749     loop_destroy (EV_A);
1750 root 1.1 }
1751    
1752 root 1.24 void
1753 root 1.60 ev_default_fork (void)
1754 root 1.1 {
1755 root 1.60 #if EV_MULTIPLICITY
1756 root 1.116 struct ev_loop *loop = ev_default_loop_ptr;
1757 root 1.60 #endif
1758    
1759 root 1.270 postfork = 1; /* must be in line with ev_loop_fork */
1760 root 1.1 }
1761    
1762 root 1.8 /*****************************************************************************/
1763    
1764 root 1.168 void
1765     ev_invoke (EV_P_ void *w, int revents)
1766     {
1767     EV_CB_INVOKE ((W)w, revents);
1768     }
1769    
1770 root 1.284 inline_speed void
1771 root 1.51 call_pending (EV_P)
1772 root 1.1 {
1773 root 1.42 int pri;
1774    
1775     for (pri = NUMPRI; pri--; )
1776     while (pendingcnt [pri])
1777     {
1778     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1779 root 1.1
1780 root 1.288 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781     /* ^ this is no longer true, as pending_w could be here */
1782 root 1.139
1783 root 1.288 p->w->pending = 0;
1784     EV_CB_INVOKE (p->w, p->events);
1785     EV_FREQUENT_CHECK;
1786 root 1.42 }
1787 root 1.1 }
1788    
1789 root 1.234 #if EV_IDLE_ENABLE
1790 root 1.288 /* make idle watchers pending. this handles the "call-idle */
1791     /* only when higher priorities are idle" logic */
1792 root 1.284 inline_size void
1793 root 1.234 idle_reify (EV_P)
1794     {
1795     if (expect_false (idleall))
1796     {
1797     int pri;
1798    
1799     for (pri = NUMPRI; pri--; )
1800     {
1801     if (pendingcnt [pri])
1802     break;
1803    
1804     if (idlecnt [pri])
1805     {
1806     queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1807     break;
1808     }
1809     }
1810     }
1811     }
1812     #endif
1813    
1814 root 1.288 /* make timers pending */
1815 root 1.284 inline_size void
1816 root 1.51 timers_reify (EV_P)
1817 root 1.1 {
1818 root 1.248 EV_FREQUENT_CHECK;
1819    
1820 root 1.284 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 root 1.1 {
1822 root 1.284 do
1823     {
1824     ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825 root 1.1
1826 root 1.284 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827    
1828     /* first reschedule or stop timer */
1829     if (w->repeat)
1830     {
1831     ev_at (w) += w->repeat;
1832     if (ev_at (w) < mn_now)
1833     ev_at (w) = mn_now;
1834 root 1.61
1835 root 1.284 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836 root 1.90
1837 root 1.284 ANHE_at_cache (timers [HEAP0]);
1838     downheap (timers, timercnt, HEAP0);
1839     }
1840     else
1841     ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842 root 1.243
1843 root 1.284 EV_FREQUENT_CHECK;
1844     feed_reverse (EV_A_ (W)w);
1845 root 1.12 }
1846 root 1.284 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847 root 1.30
1848 root 1.284 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 root 1.12 }
1850     }
1851 root 1.4
1852 root 1.140 #if EV_PERIODIC_ENABLE
1853 root 1.288 /* make periodics pending */
1854 root 1.284 inline_size void
1855 root 1.51 periodics_reify (EV_P)
1856 root 1.12 {
1857 root 1.248 EV_FREQUENT_CHECK;
1858 root 1.250
1859 root 1.244 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 root 1.12 {
1861 root 1.284 int feed_count = 0;
1862    
1863     do
1864     {
1865     ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866 root 1.1
1867 root 1.284 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868 root 1.61
1869 root 1.284 /* first reschedule or stop timer */
1870     if (w->reschedule_cb)
1871     {
1872     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873 root 1.243
1874 root 1.284 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875 root 1.243
1876 root 1.284 ANHE_at_cache (periodics [HEAP0]);
1877     downheap (periodics, periodiccnt, HEAP0);
1878     }
1879     else if (w->interval)
1880 root 1.246 {
1881 root 1.284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882     /* if next trigger time is not sufficiently in the future, put it there */
1883     /* this might happen because of floating point inexactness */
1884     if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885     {
1886     ev_at (w) += w->interval;
1887    
1888     /* if interval is unreasonably low we might still have a time in the past */
1889     /* so correct this. this will make the periodic very inexact, but the user */
1890     /* has effectively asked to get triggered more often than possible */
1891     if (ev_at (w) < ev_rt_now)
1892     ev_at (w) = ev_rt_now;
1893     }
1894 root 1.243
1895 root 1.284 ANHE_at_cache (periodics [HEAP0]);
1896     downheap (periodics, periodiccnt, HEAP0);
1897 root 1.246 }
1898 root 1.284 else
1899     ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900 root 1.243
1901 root 1.284 EV_FREQUENT_CHECK;
1902     feed_reverse (EV_A_ (W)w);
1903 root 1.1 }
1904 root 1.284 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905 root 1.12
1906 root 1.284 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 root 1.12 }
1908     }
1909    
1910 root 1.288 /* simply recalculate all periodics */
1911     /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912 root 1.140 static void noinline
1913 root 1.54 periodics_reschedule (EV_P)
1914 root 1.12 {
1915     int i;
1916    
1917 root 1.13 /* adjust periodics after time jump */
1918 root 1.241 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 root 1.12 {
1920 root 1.241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921 root 1.12
1922 root 1.77 if (w->reschedule_cb)
1923 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 root 1.77 else if (w->interval)
1925 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926 root 1.242
1927 root 1.248 ANHE_at_cache (periodics [i]);
1928 root 1.77 }
1929 root 1.12
1930 root 1.248 reheap (periodics, periodiccnt);
1931 root 1.1 }
1932 root 1.93 #endif
1933 root 1.1
1934 root 1.288 /* adjust all timers by a given offset */
1935 root 1.285 static void noinline
1936     timers_reschedule (EV_P_ ev_tstamp adjust)
1937     {
1938     int i;
1939    
1940     for (i = 0; i < timercnt; ++i)
1941     {
1942     ANHE *he = timers + i + HEAP0;
1943     ANHE_w (*he)->at += adjust;
1944     ANHE_at_cache (*he);
1945     }
1946     }
1947    
1948 root 1.288 /* fetch new monotonic and realtime times from the kernel */
1949     /* also detetc if there was a timejump, and act accordingly */
1950 root 1.284 inline_speed void
1951 root 1.178 time_update (EV_P_ ev_tstamp max_block)
1952 root 1.4 {
1953     int i;
1954 root 1.12
1955 root 1.40 #if EV_USE_MONOTONIC
1956     if (expect_true (have_monotonic))
1957     {
1958 root 1.178 ev_tstamp odiff = rtmn_diff;
1959    
1960     mn_now = get_clock ();
1961    
1962     /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1963     /* interpolate in the meantime */
1964     if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1965 root 1.40 {
1966 root 1.178 ev_rt_now = rtmn_diff + mn_now;
1967     return;
1968     }
1969    
1970     now_floor = mn_now;
1971     ev_rt_now = ev_time ();
1972 root 1.4
1973 root 1.178 /* loop a few times, before making important decisions.
1974     * on the choice of "4": one iteration isn't enough,
1975     * in case we get preempted during the calls to
1976     * ev_time and get_clock. a second call is almost guaranteed
1977     * to succeed in that case, though. and looping a few more times
1978     * doesn't hurt either as we only do this on time-jumps or
1979     * in the unlikely event of having been preempted here.
1980     */
1981     for (i = 4; --i; )
1982     {
1983     rtmn_diff = ev_rt_now - mn_now;
1984 root 1.4
1985 root 1.234 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1986 root 1.178 return; /* all is well */
1987 root 1.4
1988 root 1.178 ev_rt_now = ev_time ();
1989     mn_now = get_clock ();
1990     now_floor = mn_now;
1991     }
1992 root 1.4
1993 root 1.285 /* no timer adjustment, as the monotonic clock doesn't jump */
1994     /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1995 root 1.140 # if EV_PERIODIC_ENABLE
1996 root 1.178 periodics_reschedule (EV_A);
1997 root 1.93 # endif
1998 root 1.4 }
1999     else
2000 root 1.40 #endif
2001 root 1.4 {
2002 root 1.85 ev_rt_now = ev_time ();
2003 root 1.40
2004 root 1.178 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2005 root 1.13 {
2006 root 1.285 /* adjust timers. this is easy, as the offset is the same for all of them */
2007     timers_reschedule (EV_A_ ev_rt_now - mn_now);
2008 root 1.140 #if EV_PERIODIC_ENABLE
2009 root 1.54 periodics_reschedule (EV_A);
2010 root 1.93 #endif
2011 root 1.13 }
2012 root 1.4
2013 root 1.85 mn_now = ev_rt_now;
2014 root 1.4 }
2015     }
2016    
2017 root 1.51 static int loop_done;
2018    
2019     void
2020     ev_loop (EV_P_ int flags)
2021 root 1.1 {
2022 root 1.219 loop_done = EVUNLOOP_CANCEL;
2023 root 1.1
2024 root 1.158 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2025    
2026 root 1.161 do
2027 root 1.9 {
2028 root 1.250 #if EV_VERIFY >= 2
2029     ev_loop_verify (EV_A);
2030     #endif
2031    
2032 root 1.158 #ifndef _WIN32
2033     if (expect_false (curpid)) /* penalise the forking check even more */
2034     if (expect_false (getpid () != curpid))
2035     {
2036     curpid = getpid ();
2037     postfork = 1;
2038     }
2039     #endif
2040    
2041 root 1.157 #if EV_FORK_ENABLE
2042     /* we might have forked, so queue fork handlers */
2043     if (expect_false (postfork))
2044     if (forkcnt)
2045     {
2046     queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2047     call_pending (EV_A);
2048     }
2049     #endif
2050 root 1.147
2051 root 1.170 /* queue prepare watchers (and execute them) */
2052 root 1.40 if (expect_false (preparecnt))
2053 root 1.20 {
2054 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2055     call_pending (EV_A);
2056 root 1.20 }
2057 root 1.9
2058 root 1.70 /* we might have forked, so reify kernel state if necessary */
2059     if (expect_false (postfork))
2060     loop_fork (EV_A);
2061    
2062 root 1.1 /* update fd-related kernel structures */
2063 root 1.51 fd_reify (EV_A);
2064 root 1.1
2065     /* calculate blocking time */
2066 root 1.135 {
2067 root 1.193 ev_tstamp waittime = 0.;
2068     ev_tstamp sleeptime = 0.;
2069 root 1.12
2070 root 1.193 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2071 root 1.135 {
2072     /* update time to cancel out callback processing overhead */
2073 root 1.178 time_update (EV_A_ 1e100);
2074 root 1.135
2075 root 1.287 waittime = MAX_BLOCKTIME;
2076    
2077 root 1.135 if (timercnt)
2078     {
2079 root 1.241 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2080 root 1.193 if (waittime > to) waittime = to;
2081 root 1.135 }
2082 root 1.4
2083 root 1.140 #if EV_PERIODIC_ENABLE
2084 root 1.135 if (periodiccnt)
2085     {
2086 root 1.241 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2087 root 1.193 if (waittime > to) waittime = to;
2088 root 1.135 }
2089 root 1.93 #endif
2090 root 1.4
2091 root 1.193 if (expect_false (waittime < timeout_blocktime))
2092     waittime = timeout_blocktime;
2093    
2094     sleeptime = waittime - backend_fudge;
2095    
2096     if (expect_true (sleeptime > io_blocktime))
2097     sleeptime = io_blocktime;
2098    
2099     if (sleeptime)
2100     {
2101     ev_sleep (sleeptime);
2102     waittime -= sleeptime;
2103     }
2104 root 1.135 }
2105 root 1.1
2106 root 1.162 ++loop_count;
2107 root 1.193 backend_poll (EV_A_ waittime);
2108 root 1.178
2109     /* update ev_rt_now, do magic */
2110 root 1.193 time_update (EV_A_ waittime + sleeptime);
2111 root 1.135 }
2112 root 1.1
2113 root 1.9 /* queue pending timers and reschedule them */
2114 root 1.51 timers_reify (EV_A); /* relative timers called last */
2115 root 1.140 #if EV_PERIODIC_ENABLE
2116 root 1.51 periodics_reify (EV_A); /* absolute timers called first */
2117 root 1.93 #endif
2118 root 1.1
2119 root 1.164 #if EV_IDLE_ENABLE
2120 root 1.137 /* queue idle watchers unless other events are pending */
2121 root 1.164 idle_reify (EV_A);
2122     #endif
2123 root 1.9
2124 root 1.20 /* queue check watchers, to be executed first */
2125 root 1.123 if (expect_false (checkcnt))
2126 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2127 root 1.9
2128 root 1.51 call_pending (EV_A);
2129 root 1.1 }
2130 root 1.219 while (expect_true (
2131     activecnt
2132     && !loop_done
2133     && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2134     ));
2135 root 1.13
2136 root 1.135 if (loop_done == EVUNLOOP_ONE)
2137     loop_done = EVUNLOOP_CANCEL;
2138 root 1.51 }
2139    
2140     void
2141     ev_unloop (EV_P_ int how)
2142     {
2143     loop_done = how;
2144 root 1.1 }
2145    
2146 root 1.285 void
2147     ev_ref (EV_P)
2148     {
2149     ++activecnt;
2150     }
2151    
2152     void
2153     ev_unref (EV_P)
2154     {
2155     --activecnt;
2156     }
2157    
2158     void
2159     ev_now_update (EV_P)
2160     {
2161     time_update (EV_A_ 1e100);
2162     }
2163    
2164     void
2165     ev_suspend (EV_P)
2166     {
2167     ev_now_update (EV_A);
2168     }
2169    
2170     void
2171     ev_resume (EV_P)
2172     {
2173     ev_tstamp mn_prev = mn_now;
2174    
2175     ev_now_update (EV_A);
2176     timers_reschedule (EV_A_ mn_now - mn_prev);
2177 root 1.286 #if EV_PERIODIC_ENABLE
2178 root 1.288 /* TODO: really do this? */
2179 root 1.285 periodics_reschedule (EV_A);
2180 root 1.286 #endif
2181 root 1.285 }
2182    
2183 root 1.8 /*****************************************************************************/
2184 root 1.288 /* singly-linked list management, used when the expected list length is short */
2185 root 1.8
2186 root 1.284 inline_size void
2187 root 1.10 wlist_add (WL *head, WL elem)
2188 root 1.1 {
2189     elem->next = *head;
2190     *head = elem;
2191     }
2192    
2193 root 1.284 inline_size void
2194 root 1.10 wlist_del (WL *head, WL elem)
2195 root 1.1 {
2196     while (*head)
2197     {
2198     if (*head == elem)
2199     {
2200     *head = elem->next;
2201     return;
2202     }
2203    
2204     head = &(*head)->next;
2205     }
2206     }
2207    
2208 root 1.288 /* internal, faster, version of ev_clear_pending */
2209 root 1.284 inline_speed void
2210 root 1.166 clear_pending (EV_P_ W w)
2211 root 1.16 {
2212     if (w->pending)
2213     {
2214 root 1.288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2215 root 1.16 w->pending = 0;
2216     }
2217     }
2218    
2219 root 1.167 int
2220     ev_clear_pending (EV_P_ void *w)
2221 root 1.166 {
2222     W w_ = (W)w;
2223     int pending = w_->pending;
2224    
2225 root 1.172 if (expect_true (pending))
2226     {
2227     ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 root 1.288 p->w = (W)&pending_w;
2229 root 1.172 w_->pending = 0;
2230     return p->events;
2231     }
2232     else
2233 root 1.167 return 0;
2234 root 1.166 }
2235    
2236 root 1.284 inline_size void
2237 root 1.164 pri_adjust (EV_P_ W w)
2238     {
2239     int pri = w->priority;
2240     pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2241     pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2242     w->priority = pri;
2243     }
2244    
2245 root 1.284 inline_speed void
2246 root 1.51 ev_start (EV_P_ W w, int active)
2247 root 1.1 {
2248 root 1.164 pri_adjust (EV_A_ w);
2249 root 1.1 w->active = active;
2250 root 1.51 ev_ref (EV_A);
2251 root 1.1 }
2252    
2253 root 1.284 inline_size void
2254 root 1.51 ev_stop (EV_P_ W w)
2255 root 1.1 {
2256 root 1.51 ev_unref (EV_A);
2257 root 1.1 w->active = 0;
2258     }
2259    
2260 root 1.8 /*****************************************************************************/
2261    
2262 root 1.171 void noinline
2263 root 1.136 ev_io_start (EV_P_ ev_io *w)
2264 root 1.1 {
2265 root 1.37 int fd = w->fd;
2266    
2267 root 1.123 if (expect_false (ev_is_active (w)))
2268 root 1.1 return;
2269    
2270 root 1.278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 root 1.281 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272 root 1.33
2273 root 1.248 EV_FREQUENT_CHECK;
2274    
2275 root 1.51 ev_start (EV_A_ (W)w, 1);
2276 root 1.265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2277 root 1.182 wlist_add (&anfds[fd].head, (WL)w);
2278 root 1.1
2279 root 1.281 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2280     w->events &= ~EV__IOFDSET;
2281 root 1.248
2282     EV_FREQUENT_CHECK;
2283 root 1.1 }
2284    
2285 root 1.171 void noinline
2286 root 1.136 ev_io_stop (EV_P_ ev_io *w)
2287 root 1.1 {
2288 root 1.166 clear_pending (EV_A_ (W)w);
2289 root 1.123 if (expect_false (!ev_is_active (w)))
2290 root 1.1 return;
2291    
2292 root 1.278 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293 root 1.89
2294 root 1.248 EV_FREQUENT_CHECK;
2295    
2296 root 1.182 wlist_del (&anfds[w->fd].head, (WL)w);
2297 root 1.51 ev_stop (EV_A_ (W)w);
2298 root 1.1
2299 root 1.184 fd_change (EV_A_ w->fd, 1);
2300 root 1.248
2301     EV_FREQUENT_CHECK;
2302 root 1.1 }
2303    
2304 root 1.171 void noinline
2305 root 1.136 ev_timer_start (EV_P_ ev_timer *w)
2306 root 1.1 {
2307 root 1.123 if (expect_false (ev_is_active (w)))
2308 root 1.1 return;
2309    
2310 root 1.228 ev_at (w) += mn_now;
2311 root 1.12
2312 root 1.278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2313 root 1.13
2314 root 1.248 EV_FREQUENT_CHECK;
2315    
2316     ++timercnt;
2317     ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2318 root 1.241 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2319     ANHE_w (timers [ev_active (w)]) = (WT)w;
2320 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2321 root 1.235 upheap (timers, ev_active (w));
2322 root 1.62
2323 root 1.248 EV_FREQUENT_CHECK;
2324    
2325 root 1.278 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2326 root 1.12 }
2327    
2328 root 1.171 void noinline
2329 root 1.136 ev_timer_stop (EV_P_ ev_timer *w)
2330 root 1.12 {
2331 root 1.166 clear_pending (EV_A_ (W)w);
2332 root 1.123 if (expect_false (!ev_is_active (w)))
2333 root 1.12 return;
2334    
2335 root 1.248 EV_FREQUENT_CHECK;
2336    
2337 root 1.230 {
2338     int active = ev_active (w);
2339 root 1.62
2340 root 1.278 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2341 root 1.151
2342 root 1.248 --timercnt;
2343    
2344     if (expect_true (active < timercnt + HEAP0))
2345 root 1.151 {
2346 root 1.248 timers [active] = timers [timercnt + HEAP0];
2347 root 1.181 adjustheap (timers, timercnt, active);
2348 root 1.151 }
2349 root 1.248 }
2350 root 1.228
2351 root 1.248 EV_FREQUENT_CHECK;
2352 root 1.4
2353 root 1.228 ev_at (w) -= mn_now;
2354 root 1.14
2355 root 1.51 ev_stop (EV_A_ (W)w);
2356 root 1.12 }
2357 root 1.4
2358 root 1.171 void noinline
2359 root 1.136 ev_timer_again (EV_P_ ev_timer *w)
2360 root 1.14 {
2361 root 1.248 EV_FREQUENT_CHECK;
2362    
2363 root 1.14 if (ev_is_active (w))
2364     {
2365     if (w->repeat)
2366 root 1.99 {
2367 root 1.228 ev_at (w) = mn_now + w->repeat;
2368 root 1.248 ANHE_at_cache (timers [ev_active (w)]);
2369 root 1.230 adjustheap (timers, timercnt, ev_active (w));
2370 root 1.99 }
2371 root 1.14 else
2372 root 1.51 ev_timer_stop (EV_A_ w);
2373 root 1.14 }
2374     else if (w->repeat)
2375 root 1.112 {
2376 root 1.229 ev_at (w) = w->repeat;
2377 root 1.112 ev_timer_start (EV_A_ w);
2378     }
2379 root 1.248
2380     EV_FREQUENT_CHECK;
2381 root 1.14 }
2382    
2383 root 1.140 #if EV_PERIODIC_ENABLE
2384 root 1.171 void noinline
2385 root 1.136 ev_periodic_start (EV_P_ ev_periodic *w)
2386 root 1.12 {
2387 root 1.123 if (expect_false (ev_is_active (w)))
2388 root 1.12 return;
2389 root 1.1
2390 root 1.77 if (w->reschedule_cb)
2391 root 1.228 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2392 root 1.77 else if (w->interval)
2393     {
2394 root 1.278 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2395 root 1.77 /* this formula differs from the one in periodic_reify because we do not always round up */
2396 root 1.228 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2397 root 1.77 }
2398 root 1.173 else
2399 root 1.228 ev_at (w) = w->offset;
2400 root 1.12
2401 root 1.248 EV_FREQUENT_CHECK;
2402    
2403     ++periodiccnt;
2404     ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2405 root 1.241 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2406     ANHE_w (periodics [ev_active (w)]) = (WT)w;
2407 root 1.248 ANHE_at_cache (periodics [ev_active (w)]);
2408 root 1.235 upheap (periodics, ev_active (w));
2409 root 1.62
2410 root 1.248 EV_FREQUENT_CHECK;
2411    
2412 root 1.278 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2413 root 1.1 }
2414    
2415 root 1.171 void noinline
2416 root 1.136 ev_periodic_stop (EV_P_ ev_periodic *w)
2417 root 1.1 {
2418 root 1.166 clear_pending (EV_A_ (W)w);
2419 root 1.123 if (expect_false (!ev_is_active (w)))
2420 root 1.1 return;
2421    
2422 root 1.248 EV_FREQUENT_CHECK;
2423    
2424 root 1.230 {
2425     int active = ev_active (w);
2426 root 1.62
2427 root 1.278 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2428 root 1.151
2429 root 1.248 --periodiccnt;
2430    
2431     if (expect_true (active < periodiccnt + HEAP0))
2432 root 1.151 {
2433 root 1.248 periodics [active] = periodics [periodiccnt + HEAP0];
2434 root 1.181 adjustheap (periodics, periodiccnt, active);
2435 root 1.151 }
2436 root 1.248 }
2437 root 1.228
2438 root 1.248 EV_FREQUENT_CHECK;
2439 root 1.2
2440 root 1.51 ev_stop (EV_A_ (W)w);
2441 root 1.1 }
2442    
2443 root 1.171 void noinline
2444 root 1.136 ev_periodic_again (EV_P_ ev_periodic *w)
2445 root 1.77 {
2446 root 1.84 /* TODO: use adjustheap and recalculation */
2447 root 1.77 ev_periodic_stop (EV_A_ w);
2448     ev_periodic_start (EV_A_ w);
2449     }
2450 root 1.93 #endif
2451 root 1.77
2452 root 1.56 #ifndef SA_RESTART
2453     # define SA_RESTART 0
2454     #endif
2455    
2456 root 1.171 void noinline
2457 root 1.136 ev_signal_start (EV_P_ ev_signal *w)
2458 root 1.56 {
2459     #if EV_MULTIPLICITY
2460 root 1.278 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2461 root 1.56 #endif
2462 root 1.123 if (expect_false (ev_is_active (w)))
2463 root 1.56 return;
2464    
2465 root 1.278 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2466 root 1.56
2467 root 1.207 evpipe_init (EV_A);
2468    
2469 root 1.248 EV_FREQUENT_CHECK;
2470    
2471 root 1.180 {
2472     #ifndef _WIN32
2473     sigset_t full, prev;
2474     sigfillset (&full);
2475     sigprocmask (SIG_SETMASK, &full, &prev);
2476     #endif
2477    
2478 root 1.265 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2479 root 1.180
2480     #ifndef _WIN32
2481     sigprocmask (SIG_SETMASK, &prev, 0);
2482     #endif
2483     }
2484    
2485 root 1.56 ev_start (EV_A_ (W)w, 1);
2486 root 1.182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2487 root 1.56
2488 root 1.63 if (!((WL)w)->next)
2489 root 1.56 {
2490 root 1.103 #if _WIN32
2491 root 1.218 signal (w->signum, ev_sighandler);
2492 root 1.67 #else
2493 root 1.56 struct sigaction sa;
2494 root 1.218 sa.sa_handler = ev_sighandler;
2495 root 1.56 sigfillset (&sa.sa_mask);
2496     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2497     sigaction (w->signum, &sa, 0);
2498 root 1.67 #endif
2499 root 1.56 }
2500 root 1.248
2501     EV_FREQUENT_CHECK;
2502 root 1.56 }
2503    
2504 root 1.171 void noinline
2505 root 1.136 ev_signal_stop (EV_P_ ev_signal *w)
2506 root 1.56 {
2507 root 1.166 clear_pending (EV_A_ (W)w);
2508 root 1.123 if (expect_false (!ev_is_active (w)))
2509 root 1.56 return;
2510    
2511 root 1.248 EV_FREQUENT_CHECK;
2512    
2513 root 1.182 wlist_del (&signals [w->signum - 1].head, (WL)w);
2514 root 1.56 ev_stop (EV_A_ (W)w);
2515    
2516     if (!signals [w->signum - 1].head)
2517     signal (w->signum, SIG_DFL);
2518 root 1.248
2519     EV_FREQUENT_CHECK;
2520 root 1.56 }
2521    
2522 root 1.28 void
2523 root 1.136 ev_child_start (EV_P_ ev_child *w)
2524 root 1.22 {
2525 root 1.56 #if EV_MULTIPLICITY
2526 root 1.278 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2527 root 1.56 #endif
2528 root 1.123 if (expect_false (ev_is_active (w)))
2529 root 1.22 return;
2530    
2531 root 1.248 EV_FREQUENT_CHECK;
2532    
2533 root 1.51 ev_start (EV_A_ (W)w, 1);
2534 root 1.182 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535 root 1.248
2536     EV_FREQUENT_CHECK;
2537 root 1.22 }
2538    
2539 root 1.28 void
2540 root 1.136 ev_child_stop (EV_P_ ev_child *w)
2541 root 1.22 {
2542 root 1.166 clear_pending (EV_A_ (W)w);
2543 root 1.123 if (expect_false (!ev_is_active (w)))
2544 root 1.22 return;
2545    
2546 root 1.248 EV_FREQUENT_CHECK;
2547    
2548 root 1.182 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2549 root 1.51 ev_stop (EV_A_ (W)w);
2550 root 1.248
2551     EV_FREQUENT_CHECK;
2552 root 1.22 }
2553    
2554 root 1.140 #if EV_STAT_ENABLE
2555    
2556     # ifdef _WIN32
2557 root 1.146 # undef lstat
2558     # define lstat(a,b) _stati64 (a,b)
2559 root 1.140 # endif
2560    
2561 root 1.273 #define DEF_STAT_INTERVAL 5.0074891
2562     #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2563     #define MIN_STAT_INTERVAL 0.1074891
2564 root 1.143
2565 root 1.157 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2566 root 1.152
2567     #if EV_USE_INOTIFY
2568 root 1.153 # define EV_INOTIFY_BUFSIZE 8192
2569 root 1.152
2570     static void noinline
2571     infy_add (EV_P_ ev_stat *w)
2572     {
2573     w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2574    
2575     if (w->wd < 0)
2576     {
2577 root 1.273 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2578     ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2579 root 1.152
2580     /* monitor some parent directory for speedup hints */
2581 root 1.271 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 root 1.233 /* but an efficiency issue only */
2583 root 1.153 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2584 root 1.152 {
2585 root 1.153 char path [4096];
2586 root 1.152 strcpy (path, w->path);
2587    
2588     do
2589     {
2590     int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2591     | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2592    
2593     char *pend = strrchr (path, '/');
2594    
2595 root 1.275 if (!pend || pend == path)
2596     break;
2597 root 1.152
2598     *pend = 0;
2599 root 1.153 w->wd = inotify_add_watch (fs_fd, path, mask);
2600 root 1.152 }
2601     while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2602     }
2603     }
2604 root 1.275
2605     if (w->wd >= 0)
2606 root 1.273 {
2607     wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608    
2609     /* now local changes will be tracked by inotify, but remote changes won't */
2610     /* unless the filesystem it known to be local, we therefore still poll */
2611     /* also do poll on <2.6.25, but with normal frequency */
2612     struct statfs sfs;
2613    
2614     if (fs_2625 && !statfs (w->path, &sfs))
2615     if (sfs.f_type == 0x1373 /* devfs */
2616     || sfs.f_type == 0xEF53 /* ext2/3 */
2617     || sfs.f_type == 0x3153464a /* jfs */
2618     || sfs.f_type == 0x52654973 /* reiser3 */
2619     || sfs.f_type == 0x01021994 /* tempfs */
2620     || sfs.f_type == 0x58465342 /* xfs */)
2621     return;
2622 root 1.152
2623 root 1.273 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624     ev_timer_again (EV_A_ &w->timer);
2625     }
2626 root 1.152 }
2627    
2628     static void noinline
2629     infy_del (EV_P_ ev_stat *w)
2630     {
2631     int slot;
2632     int wd = w->wd;
2633    
2634     if (wd < 0)
2635     return;
2636    
2637     w->wd = -2;
2638     slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2639     wlist_del (&fs_hash [slot].head, (WL)w);
2640    
2641     /* remove this watcher, if others are watching it, they will rearm */
2642     inotify_rm_watch (fs_fd, wd);
2643     }
2644    
2645     static void noinline
2646     infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2647     {
2648     if (slot < 0)
2649 root 1.264 /* overflow, need to check for all hash slots */
2650 root 1.152 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651     infy_wd (EV_A_ slot, wd, ev);
2652     else
2653     {
2654     WL w_;
2655    
2656     for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2657     {
2658     ev_stat *w = (ev_stat *)w_;
2659     w_ = w_->next; /* lets us remove this watcher and all before it */
2660    
2661     if (w->wd == wd || wd == -1)
2662     {
2663     if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2664     {
2665 root 1.275 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2666 root 1.152 w->wd = -1;
2667     infy_add (EV_A_ w); /* re-add, no matter what */
2668     }
2669    
2670 root 1.153 stat_timer_cb (EV_A_ &w->timer, 0);
2671 root 1.152 }
2672     }
2673     }
2674     }
2675    
2676     static void
2677     infy_cb (EV_P_ ev_io *w, int revents)
2678     {
2679     char buf [EV_INOTIFY_BUFSIZE];
2680     struct inotify_event *ev = (struct inotify_event *)buf;
2681     int ofs;
2682     int len = read (fs_fd, buf, sizeof (buf));
2683    
2684     for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2685     infy_wd (EV_A_ ev->wd, ev->wd, ev);
2686     }
2687    
2688 root 1.284 inline_size void
2689 root 1.273 check_2625 (EV_P)
2690 root 1.152 {
2691 root 1.264 /* kernels < 2.6.25 are borked
2692     * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693     */
2694 root 1.273 struct utsname buf;
2695     int major, minor, micro;
2696    
2697     if (uname (&buf))
2698     return;
2699    
2700     if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701     return;
2702    
2703     if (major < 2
2704     || (major == 2 && minor < 6)
2705     || (major == 2 && minor == 6 && micro < 25))
2706     return;
2707 root 1.264
2708 root 1.273 fs_2625 = 1;
2709     }
2710 root 1.264
2711 root 1.284 inline_size void
2712 root 1.273 infy_init (EV_P)
2713     {
2714     if (fs_fd != -2)
2715     return;
2716 root 1.264
2717 root 1.273 fs_fd = -1;
2718 root 1.264
2719 root 1.273 check_2625 (EV_A);
2720 root 1.264
2721 root 1.152 fs_fd = inotify_init ();
2722    
2723     if (fs_fd >= 0)
2724     {
2725     ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2726     ev_set_priority (&fs_w, EV_MAXPRI);
2727     ev_io_start (EV_A_ &fs_w);
2728     }
2729     }
2730    
2731 root 1.284 inline_size void
2732 root 1.154 infy_fork (EV_P)
2733     {
2734     int slot;
2735    
2736     if (fs_fd < 0)
2737     return;
2738    
2739     close (fs_fd);
2740     fs_fd = inotify_init ();
2741    
2742     for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2743     {
2744     WL w_ = fs_hash [slot].head;
2745     fs_hash [slot].head = 0;
2746    
2747     while (w_)
2748     {
2749     ev_stat *w = (ev_stat *)w_;
2750     w_ = w_->next; /* lets us add this watcher */
2751    
2752     w->wd = -1;
2753    
2754     if (fs_fd >= 0)
2755     infy_add (EV_A_ w); /* re-add, no matter what */
2756     else
2757 root 1.273 ev_timer_again (EV_A_ &w->timer);
2758 root 1.154 }
2759     }
2760     }
2761    
2762 root 1.152 #endif
2763    
2764 root 1.255 #ifdef _WIN32
2765     # define EV_LSTAT(p,b) _stati64 (p, b)
2766     #else
2767     # define EV_LSTAT(p,b) lstat (p, b)
2768     #endif
2769    
2770 root 1.140 void
2771     ev_stat_stat (EV_P_ ev_stat *w)
2772     {
2773     if (lstat (w->path, &w->attr) < 0)
2774     w->attr.st_nlink = 0;
2775     else if (!w->attr.st_nlink)
2776     w->attr.st_nlink = 1;
2777     }
2778    
2779 root 1.157 static void noinline
2780 root 1.140 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2781     {
2782     ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2783    
2784     /* we copy this here each the time so that */
2785     /* prev has the old value when the callback gets invoked */
2786     w->prev = w->attr;
2787     ev_stat_stat (EV_A_ w);
2788    
2789 root 1.156 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2790     if (
2791     w->prev.st_dev != w->attr.st_dev
2792     || w->prev.st_ino != w->attr.st_ino
2793     || w->prev.st_mode != w->attr.st_mode
2794     || w->prev.st_nlink != w->attr.st_nlink
2795     || w->prev.st_uid != w->attr.st_uid
2796     || w->prev.st_gid != w->attr.st_gid
2797     || w->prev.st_rdev != w->attr.st_rdev
2798     || w->prev.st_size != w->attr.st_size
2799     || w->prev.st_atime != w->attr.st_atime
2800     || w->prev.st_mtime != w->attr.st_mtime
2801     || w->prev.st_ctime != w->attr.st_ctime
2802     ) {
2803 root 1.152 #if EV_USE_INOTIFY
2804 root 1.264 if (fs_fd >= 0)
2805     {
2806     infy_del (EV_A_ w);
2807     infy_add (EV_A_ w);
2808     ev_stat_stat (EV_A_ w); /* avoid race... */
2809     }
2810 root 1.152 #endif
2811    
2812     ev_feed_event (EV_A_ w, EV_STAT);
2813     }
2814 root 1.140 }
2815    
2816     void
2817     ev_stat_start (EV_P_ ev_stat *w)
2818     {
2819     if (expect_false (ev_is_active (w)))
2820     return;
2821    
2822     ev_stat_stat (EV_A_ w);
2823    
2824 root 1.273 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2825     w->interval = MIN_STAT_INTERVAL;
2826 root 1.143
2827 root 1.273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2828 root 1.140 ev_set_priority (&w->timer, ev_priority (w));
2829 root 1.152
2830     #if EV_USE_INOTIFY
2831     infy_init (EV_A);
2832    
2833     if (fs_fd >= 0)
2834     infy_add (EV_A_ w);
2835     else
2836     #endif
2837 root 1.273 ev_timer_again (EV_A_ &w->timer);
2838 root 1.140
2839     ev_start (EV_A_ (W)w, 1);
2840 root 1.248
2841     EV_FREQUENT_CHECK;
2842 root 1.140 }
2843    
2844     void
2845     ev_stat_stop (EV_P_ ev_stat *w)
2846     {
2847 root 1.166 clear_pending (EV_A_ (W)w);
2848 root 1.140 if (expect_false (!ev_is_active (w)))
2849     return;
2850    
2851 root 1.248 EV_FREQUENT_CHECK;
2852    
2853 root 1.152 #if EV_USE_INOTIFY
2854     infy_del (EV_A_ w);
2855     #endif
2856 root 1.140 ev_timer_stop (EV_A_ &w->timer);
2857    
2858 root 1.134 ev_stop (EV_A_ (W)w);
2859 root 1.248
2860     EV_FREQUENT_CHECK;
2861 root 1.134 }
2862     #endif
2863    
2864 root 1.164 #if EV_IDLE_ENABLE
2865 root 1.144 void
2866     ev_idle_start (EV_P_ ev_idle *w)
2867     {
2868     if (expect_false (ev_is_active (w)))
2869     return;
2870    
2871 root 1.164 pri_adjust (EV_A_ (W)w);
2872    
2873 root 1.248 EV_FREQUENT_CHECK;
2874    
2875 root 1.164 {
2876     int active = ++idlecnt [ABSPRI (w)];
2877    
2878     ++idleall;
2879     ev_start (EV_A_ (W)w, active);
2880    
2881     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2882     idles [ABSPRI (w)][active - 1] = w;
2883     }
2884 root 1.248
2885     EV_FREQUENT_CHECK;
2886 root 1.144 }
2887    
2888     void
2889     ev_idle_stop (EV_P_ ev_idle *w)
2890     {
2891 root 1.166 clear_pending (EV_A_ (W)w);
2892 root 1.144 if (expect_false (!ev_is_active (w)))
2893     return;
2894    
2895 root 1.248 EV_FREQUENT_CHECK;
2896    
2897 root 1.144 {
2898 root 1.230 int active = ev_active (w);
2899 root 1.164
2900     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2901 root 1.230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2902 root 1.164
2903     ev_stop (EV_A_ (W)w);
2904     --idleall;
2905 root 1.144 }
2906 root 1.248
2907     EV_FREQUENT_CHECK;
2908 root 1.144 }
2909 root 1.164 #endif
2910 root 1.144
2911     void
2912     ev_prepare_start (EV_P_ ev_prepare *w)
2913     {
2914     if (expect_false (ev_is_active (w)))
2915     return;
2916    
2917 root 1.248 EV_FREQUENT_CHECK;
2918    
2919 root 1.144 ev_start (EV_A_ (W)w, ++preparecnt);
2920     array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2921     prepares [preparecnt - 1] = w;
2922 root 1.248
2923     EV_FREQUENT_CHECK;
2924 root 1.144 }
2925    
2926     void
2927     ev_prepare_stop (EV_P_ ev_prepare *w)
2928     {
2929 root 1.166 clear_pending (EV_A_ (W)w);
2930 root 1.144 if (expect_false (!ev_is_active (w)))
2931     return;
2932    
2933 root 1.248 EV_FREQUENT_CHECK;
2934    
2935 root 1.144 {
2936 root 1.230 int active = ev_active (w);
2937    
2938 root 1.144 prepares [active - 1] = prepares [--preparecnt];
2939 root 1.230 ev_active (prepares [active - 1]) = active;
2940 root 1.144 }
2941    
2942     ev_stop (EV_A_ (W)w);
2943 root 1.248
2944     EV_FREQUENT_CHECK;
2945 root 1.144 }
2946    
2947     void
2948     ev_check_start (EV_P_ ev_check *w)
2949     {
2950     if (expect_false (ev_is_active (w)))
2951     return;
2952    
2953 root 1.248 EV_FREQUENT_CHECK;
2954    
2955 root 1.144 ev_start (EV_A_ (W)w, ++checkcnt);
2956     array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2957     checks [checkcnt - 1] = w;
2958 root 1.248
2959     EV_FREQUENT_CHECK;
2960 root 1.144 }
2961    
2962     void
2963     ev_check_stop (EV_P_ ev_check *w)
2964     {
2965 root 1.166 clear_pending (EV_A_ (W)w);
2966 root 1.144 if (expect_false (!ev_is_active (w)))
2967     return;
2968    
2969 root 1.248 EV_FREQUENT_CHECK;
2970    
2971 root 1.144 {
2972 root 1.230 int active = ev_active (w);
2973    
2974 root 1.144 checks [active - 1] = checks [--checkcnt];
2975 root 1.230 ev_active (checks [active - 1]) = active;
2976 root 1.144 }
2977    
2978     ev_stop (EV_A_ (W)w);
2979 root 1.248
2980     EV_FREQUENT_CHECK;
2981 root 1.144 }
2982    
2983     #if EV_EMBED_ENABLE
2984     void noinline
2985     ev_embed_sweep (EV_P_ ev_embed *w)
2986     {
2987 root 1.188 ev_loop (w->other, EVLOOP_NONBLOCK);
2988 root 1.144 }
2989    
2990     static void
2991 root 1.189 embed_io_cb (EV_P_ ev_io *io, int revents)
2992 root 1.144 {
2993     ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2994    
2995     if (ev_cb (w))
2996     ev_feed_event (EV_A_ (W)w, EV_EMBED);
2997     else
2998 root 1.195 ev_loop (w->other, EVLOOP_NONBLOCK);
2999 root 1.144 }
3000    
3001 root 1.189 static void
3002     embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3003     {
3004     ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3005    
3006 root 1.195 {
3007     struct ev_loop *loop = w->other;
3008    
3009     while (fdchangecnt)
3010     {
3011     fd_reify (EV_A);
3012     ev_loop (EV_A_ EVLOOP_NONBLOCK);
3013     }
3014     }
3015     }
3016    
3017 root 1.261 static void
3018     embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019     {
3020     ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021    
3022 root 1.277 ev_embed_stop (EV_A_ w);
3023    
3024 root 1.261 {
3025     struct ev_loop *loop = w->other;
3026    
3027     ev_loop_fork (EV_A);
3028 root 1.277 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 root 1.261 }
3030 root 1.277
3031     ev_embed_start (EV_A_ w);
3032 root 1.261 }
3033    
3034 root 1.195 #if 0
3035     static void
3036     embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3037     {
3038     ev_idle_stop (EV_A_ idle);
3039 root 1.189 }
3040 root 1.195 #endif
3041 root 1.189
3042 root 1.144 void
3043     ev_embed_start (EV_P_ ev_embed *w)
3044     {
3045     if (expect_false (ev_is_active (w)))
3046     return;
3047    
3048     {
3049 root 1.188 struct ev_loop *loop = w->other;
3050 root 1.278 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3051 root 1.191 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3052 root 1.144 }
3053    
3054 root 1.248 EV_FREQUENT_CHECK;
3055    
3056 root 1.144 ev_set_priority (&w->io, ev_priority (w));
3057     ev_io_start (EV_A_ &w->io);
3058    
3059 root 1.189 ev_prepare_init (&w->prepare, embed_prepare_cb);
3060     ev_set_priority (&w->prepare, EV_MINPRI);
3061     ev_prepare_start (EV_A_ &w->prepare);
3062    
3063 root 1.261 ev_fork_init (&w->fork, embed_fork_cb);
3064     ev_fork_start (EV_A_ &w->fork);
3065    
3066 root 1.195 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3067    
3068 root 1.144 ev_start (EV_A_ (W)w, 1);
3069 root 1.248
3070     EV_FREQUENT_CHECK;
3071 root 1.144 }
3072    
3073     void
3074     ev_embed_stop (EV_P_ ev_embed *w)
3075     {
3076 root 1.166 clear_pending (EV_A_ (W)w);
3077 root 1.144 if (expect_false (!ev_is_active (w)))
3078     return;
3079    
3080 root 1.248 EV_FREQUENT_CHECK;
3081    
3082 root 1.261 ev_io_stop (EV_A_ &w->io);
3083 root 1.189 ev_prepare_stop (EV_A_ &w->prepare);
3084 root 1.261 ev_fork_stop (EV_A_ &w->fork);
3085 root 1.248
3086     EV_FREQUENT_CHECK;
3087 root 1.144 }
3088     #endif
3089    
3090 root 1.147 #if EV_FORK_ENABLE
3091     void
3092     ev_fork_start (EV_P_ ev_fork *w)
3093     {
3094     if (expect_false (ev_is_active (w)))
3095     return;
3096    
3097 root 1.248 EV_FREQUENT_CHECK;
3098    
3099 root 1.147 ev_start (EV_A_ (W)w, ++forkcnt);
3100     array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3101     forks [forkcnt - 1] = w;
3102 root 1.248
3103     EV_FREQUENT_CHECK;
3104 root 1.147 }
3105    
3106     void
3107     ev_fork_stop (EV_P_ ev_fork *w)
3108     {
3109 root 1.166 clear_pending (EV_A_ (W)w);
3110 root 1.147 if (expect_false (!ev_is_active (w)))
3111     return;
3112    
3113 root 1.248 EV_FREQUENT_CHECK;
3114    
3115 root 1.147 {
3116 root 1.230 int active = ev_active (w);
3117    
3118 root 1.147 forks [active - 1] = forks [--forkcnt];
3119 root 1.230 ev_active (forks [active - 1]) = active;
3120 root 1.147 }
3121    
3122     ev_stop (EV_A_ (W)w);
3123 root 1.248
3124     EV_FREQUENT_CHECK;
3125 root 1.147 }
3126     #endif
3127    
3128 root 1.207 #if EV_ASYNC_ENABLE
3129     void
3130     ev_async_start (EV_P_ ev_async *w)
3131     {
3132     if (expect_false (ev_is_active (w)))
3133     return;
3134    
3135     evpipe_init (EV_A);
3136    
3137 root 1.248 EV_FREQUENT_CHECK;
3138    
3139 root 1.207 ev_start (EV_A_ (W)w, ++asynccnt);
3140     array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3141     asyncs [asynccnt - 1] = w;
3142 root 1.248
3143     EV_FREQUENT_CHECK;
3144 root 1.207 }
3145    
3146     void
3147     ev_async_stop (EV_P_ ev_async *w)
3148     {
3149     clear_pending (EV_A_ (W)w);
3150     if (expect_false (!ev_is_active (w)))
3151     return;
3152    
3153 root 1.248 EV_FREQUENT_CHECK;
3154    
3155 root 1.207 {
3156 root 1.230 int active = ev_active (w);
3157    
3158 root 1.207 asyncs [active - 1] = asyncs [--asynccnt];
3159 root 1.230 ev_active (asyncs [active - 1]) = active;
3160 root 1.207 }
3161    
3162     ev_stop (EV_A_ (W)w);
3163 root 1.248
3164     EV_FREQUENT_CHECK;
3165 root 1.207 }
3166    
3167     void
3168     ev_async_send (EV_P_ ev_async *w)
3169     {
3170     w->sent = 1;
3171 root 1.214 evpipe_write (EV_A_ &gotasync);
3172 root 1.207 }
3173     #endif
3174    
3175 root 1.1 /*****************************************************************************/
3176 root 1.10
3177 root 1.16 struct ev_once
3178     {
3179 root 1.136 ev_io io;
3180     ev_timer to;
3181 root 1.16 void (*cb)(int revents, void *arg);
3182     void *arg;
3183     };
3184    
3185     static void
3186 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
3187 root 1.16 {
3188     void (*cb)(int revents, void *arg) = once->cb;
3189     void *arg = once->arg;
3190    
3191 root 1.259 ev_io_stop (EV_A_ &once->io);
3192 root 1.51 ev_timer_stop (EV_A_ &once->to);
3193 root 1.69 ev_free (once);
3194 root 1.16
3195     cb (revents, arg);
3196     }
3197    
3198     static void
3199 root 1.136 once_cb_io (EV_P_ ev_io *w, int revents)
3200 root 1.16 {
3201 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202    
3203     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3204 root 1.16 }
3205    
3206     static void
3207 root 1.136 once_cb_to (EV_P_ ev_timer *w, int revents)
3208 root 1.16 {
3209 root 1.262 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210    
3211     once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3212 root 1.16 }
3213    
3214     void
3215 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3216 root 1.16 {
3217 root 1.74 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3218 root 1.16
3219 root 1.123 if (expect_false (!once))
3220 root 1.16 {
3221 root 1.123 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3222     return;
3223     }
3224    
3225     once->cb = cb;
3226     once->arg = arg;
3227 root 1.16
3228 root 1.123 ev_init (&once->io, once_cb_io);
3229     if (fd >= 0)
3230     {
3231     ev_io_set (&once->io, fd, events);
3232     ev_io_start (EV_A_ &once->io);
3233     }
3234 root 1.16
3235 root 1.123 ev_init (&once->to, once_cb_to);
3236     if (timeout >= 0.)
3237     {
3238     ev_timer_set (&once->to, timeout, 0.);
3239     ev_timer_start (EV_A_ &once->to);
3240 root 1.16 }
3241     }
3242    
3243 root 1.282 /*****************************************************************************/
3244    
3245 root 1.288 #if EV_WALK_ENABLE
3246 root 1.282 void
3247     ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248     {
3249     int i, j;
3250     ev_watcher_list *wl, *wn;
3251    
3252     if (types & (EV_IO | EV_EMBED))
3253     for (i = 0; i < anfdmax; ++i)
3254     for (wl = anfds [i].head; wl; )
3255     {
3256     wn = wl->next;
3257    
3258     #if EV_EMBED_ENABLE
3259     if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260     {
3261     if (types & EV_EMBED)
3262     cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263     }
3264     else
3265     #endif
3266     #if EV_USE_INOTIFY
3267     if (ev_cb ((ev_io *)wl) == infy_cb)
3268     ;
3269     else
3270     #endif
3271 root 1.288 if ((ev_io *)wl != &pipe_w)
3272 root 1.282 if (types & EV_IO)
3273     cb (EV_A_ EV_IO, wl);
3274    
3275     wl = wn;
3276     }
3277    
3278     if (types & (EV_TIMER | EV_STAT))
3279     for (i = timercnt + HEAP0; i-- > HEAP0; )
3280     #if EV_STAT_ENABLE
3281     /*TODO: timer is not always active*/
3282     if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283     {
3284     if (types & EV_STAT)
3285     cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286     }
3287     else
3288     #endif
3289     if (types & EV_TIMER)
3290     cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291    
3292     #if EV_PERIODIC_ENABLE
3293     if (types & EV_PERIODIC)
3294     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295     cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296     #endif
3297    
3298     #if EV_IDLE_ENABLE
3299     if (types & EV_IDLE)
3300     for (j = NUMPRI; i--; )
3301     for (i = idlecnt [j]; i--; )
3302     cb (EV_A_ EV_IDLE, idles [j][i]);
3303     #endif
3304    
3305     #if EV_FORK_ENABLE
3306     if (types & EV_FORK)
3307     for (i = forkcnt; i--; )
3308     if (ev_cb (forks [i]) != embed_fork_cb)
3309     cb (EV_A_ EV_FORK, forks [i]);
3310     #endif
3311    
3312     #if EV_ASYNC_ENABLE
3313     if (types & EV_ASYNC)
3314     for (i = asynccnt; i--; )
3315     cb (EV_A_ EV_ASYNC, asyncs [i]);
3316     #endif
3317    
3318     if (types & EV_PREPARE)
3319     for (i = preparecnt; i--; )
3320     #if EV_EMBED_ENABLE
3321     if (ev_cb (prepares [i]) != embed_prepare_cb)
3322     #endif
3323     cb (EV_A_ EV_PREPARE, prepares [i]);
3324    
3325     if (types & EV_CHECK)
3326     for (i = checkcnt; i--; )
3327     cb (EV_A_ EV_CHECK, checks [i]);
3328    
3329     if (types & EV_SIGNAL)
3330     for (i = 0; i < signalmax; ++i)
3331     for (wl = signals [i].head; wl; )
3332     {
3333     wn = wl->next;
3334     cb (EV_A_ EV_SIGNAL, wl);
3335     wl = wn;
3336     }
3337    
3338     if (types & EV_CHILD)
3339     for (i = EV_PID_HASHSIZE; i--; )
3340     for (wl = childs [i]; wl; )
3341     {
3342     wn = wl->next;
3343     cb (EV_A_ EV_CHILD, wl);
3344     wl = wn;
3345     }
3346     /* EV_STAT 0x00001000 /* stat data changed */
3347     /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348     }
3349     #endif
3350    
3351 root 1.188 #if EV_MULTIPLICITY
3352     #include "ev_wrap.h"
3353     #endif
3354    
3355 root 1.87 #ifdef __cplusplus
3356     }
3357     #endif
3358